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Introduction to Algorithms 
Throughout much of the documentation, we avoid detailed discussion of the inner workings of 
procedures in order to promote readability. This algorithms document is designed as a resource 
for those interested in the specific calculations performed by procedures. 

 

Algorithms Used in Multiple Procedures 
For some statistics, such as the significance of a t test, the same algorithms are used in more than 
one procedure. Another example is the group of post hoc tests that are used in ONEWAY and GLM. 
You can find algorithms for these tests in the appendixes. 

Choice of Formulas 
Starting with the first statistics course, students learn that there are often several equivalent ways 
to compute the same quantity. For example, the variance can be obtained using either of the 
following formulas: 

Since the formulas are algebraically equal, the one preferred is often the one easier to use (or 
remember). For small data sets consisting of “nice” numbers, the arbitrary choice of several 
computational methods is usually of little consequence. However, for handling large data sets 
or “troublesome” numbers, the choice of computational algorithms can become very important, 
even when those algorithms are to be executed by a computer. Care must be taken to choose an 
algorithm that produces accurate results under a wide variety of conditions without requiring 
extensive computer time. Often, these two considerations must be balanced against each other. 

You may notice that the same statistic is computed differently in various routines. Among the 
reasons for this are the precision of the calculations and the desirability of computing many 
statistics in the same procedure.  For example, in the paired t test procedure (T-TEST), the need  
to compute both the correlation coefficient and the standard error of the difference led to the 
selection of a different algorithm than would have been chosen for computation of only the 
standard error. Throughout the years of development, the personal preferences of many designers 
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and programmers have also influenced the choice of algorithms. Now, as new routines are added 
and old ones are updated, any unnecessary diversity is being replaced by a consistent  core 
of algorithms. 

 
Missing Values 

Since similar options for treatment of missing values are available in many procedures, treatment 
of missing values has often not been specified in each chapter. Instead, the following rules 
should be used: 
 If listwise deletion has been specified and a missing value is encountered, the case is not 

included in the analysis. This is equivalent, for purposes of following the algorithms, to 
setting the case weight to zero. 

 If variable-wise deletion is in effect, a case has zero weight when the variable with missing 
values is involved in computations. 

 If pairwise deletion has been specified, a case has zero weight when one or both of a pair of 
variables included in a computation is missing. 

 If missing-values declarations are to be ignored, all cases are always included in the 
computation. 

 
It should be noted again that the computer routines do not alter case weights for cases with missing 
data but, instead, actually exclude them from the computations. Missing-value specifications do 
not apply when a variable is used for weighting. All values are treated as weights. 



2SLS Algorithms 
2SLS produces the two-stage least-squares estimation for a structure of simultaneous linear 
equations. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

p Number of predictors 
p1 Number of endogenous variables among p predictors 
p2 Number of non-endogenous variables among p predictors 
k Number of instrument variables 
n Number of cases 
y n×1 vector which consists of a sample of the dependent variable 
Z n×p matrix which represents observed predictors 
β p×1 parameter vector 
X n×1 matrix with element xij, which represents the observed value of the 

jth instrumental variable for case i. 
Z1 Submatrix of Z with dimension n×p1, which represents observed endogenous 

variables 
Z2 Submatrix of Z with dimension n×p2, which  represents observed 

non-endogenous variables 
β1 Subvector of β with parameters associated with Z1 
β2 Subvector of β with parameters associated with Z2 

 

Model   
The structure equations of interest are written in the form: 

 

1 
2 

 

 

where 
 

,   
 

and and are the disturbances with zero means and covariance matrices   and ,  
respectively. 

 
Estimation 

The estimation technique used was developed by Theil; (Theil, 1953), (Theil, 1953). First 
premultiply both sides of the model equation by   to obtain 
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Since the disturbance vector has zero mean and  covariance matrix , then 

would have a covariance matrix . Thus, multiplying to both sides 
of the above equation results in a multiple linear regression model 

 

 

The ordinary least-square estimator  for  is 
 

 

Computational  Details 
E   2SLS constructs a matrix R, 

 

where 
 

  

 
and   is the correlation matrix between Z and X, and   is the correlation matrix among 
instrumental variables. 

 
E   Sweep the matrix R to obtain regression coefficient estimate for . 

 
E   Compute sum of the squares of residuals (SSE) by 

 

 

where 
 

E Compute the statistics for the ANOVA table and for variables in the equation. For more 
information, see the topic “REGRESSION Algorithms”. 
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ACF/PACF Algorithms 
Procedures ACF and PACF print and plot the sample autocorrelation and partial autocorrelation 
functions of a series of data. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 3-1 
Notation 
Notation Description 

ith observation of input series, i=1,...,n 

kth lag sample autocorrelation 

                                        kth lag sample partial autocorrelation 
 
 
Basic Statistics 

The following formulas are used if no missing values are encountered. If missing values are 
present, see “Series with Missing Values” for modification of some formulas. 

 

Sample Autocorrelation 
 

 

where is the average of the n observations. 
 

Standard Error of Sample Autocorrelation 

There are two formulas for the standard error of based on different assumptions about 
the autocorrelation. Under the assumption that the true MA order of the process is k−1, the 
approximate variance of (Bartlett, 1946) is: 

 

 

The standard error is the square root (Box and Jenkins, 1976), p. 35. Under the assumption that 
the process is white noise, 
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Box-Ljung Statistic 

At lag k, the Box-Ljung statistic is defined by 
 

When n is large,  has a chi-square distribution with degrees of freedom k−p−q, where p and q 
are autoregressive and moving average orders, respectively.  The significance level of   is 
calculated from the chi-square distribution with k−p−q degrees of freedom. 

 
Sample Partial Autocorrelation 

 

 

 

 

Standard Error of Sample Partial Autocorrelation 

Under the assumption that the AR(p) model is correct and , 

                   (Quenouville, 1949) 

Thus 
 

 
Series with Missing Values 

If there are missing values in x, the following statistics are computed differently (Cryer, 1986). 
First, define 

 

average of nonmissing , , , 

if is not missing 
SYSMIS, if is missing 

for k=0,1,2,..., and j=1,...,n 

if both are not missing 
SYSMIS, otherwise 

 

the number of nonmissing values in 
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the number of nonmissing values in 
 
Sample Autocorrelation 

 

 

Standard Error of Sample Autocorrelation 
 

MA assumption 
 

(white noise) 
 

Box-Ljung Statistic 
 

 

Standard Error of Sample Partial Autocorrelation 
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AIM Algorithms 
The Attribute Importance (AIM) procedure performs tests to find out if the groups are 
homogeneous. 

 
 

Notation 
 

The following notation is used throughout this chapter unless otherwise stated: 

Table 4-1 
Notation 

Notation Description 
G Number of groups. 
C Number of categories in the categorical variable. 

Number of cases in the jth category in the ith group, i = 1, …, G and j = 1, 
…, C. Assume that    . 
Number of cases in the ith group.  

n Overall number of cases. . Assume n>0. 

Overall proportion of cases in the jth category.  
Mean of the continuous variable in the ith group. 

Standard deviation of the continuous variable in the ith group. Assume 
that    . 

Overall mean of the continuous variable. 
 
 
 

Test of Homogeneity of Proportions 
 

This test is performed only for categorical variables. The null hypothesis is that the proportion 
of cases in the categories in the ith group is the same as the overall proportion. If C > 1, the 
Chi-square statistic for the ith group is computed as follows: 

 
 
 
 
 
 
 
 

The degrees of freedom is C−1. The significance is the probability that a Chi-square random 
variate with this degrees of freedom will have a value greater than the  statistic. 

 
If C<1, the Chi-square statistic is always 0 with zero degrees of freedom, and the significance 
value is undefined. 
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Test of Equality of Means 
This test is performed only for continuous variables. The null hypothesis is that the mean (of a 
continuous variable) in the ith group is the same as the overall mean. If and , the 
Student’s t statistic for the ith group is computed as follows: 

 

 

The degrees of freedom is . The significance is the probability that a Student’s t random 
variate with this degrees of freedom will have a value greater than the t statistic. 

 
When but , this implies that the continuous variable is constant in the ith group. In 
this case, the Student’s t statistic is infinity with positive degrees of freedom , and the 
significance value is zero. 

 
If , then is undefined. In this case, the Student’s t statistic is undefined, the degrees of 
freedom is 0, and the significance value is undefined. 

 
Graphical Display of Significance 

Since significance values are often very small numbers, the negative common logarithm ) 
of significance values are displayed instead in the bar charts. 



ALSCAL Algorithms 
ALSCAL attempts to find the structure in a set of distance measures between objects or cases. 

 
Initial Configuration 

The first step is to estimate an additive constant , which is added to the observed proximity 
measures (for example, ). Thus, 

 

 
such that for all triples the triangular inequality holds: 

 

and positivity holds        

,where 
Table 5-1 
Notation 
Notation   Description 

            is the adjusted proximity between stimulus i and stimulus j for subject k 

            is the adjusted proximity between stimulus j and stimulus l for subject k 

             is the adjusted proximity between stimulus i and stimulus l for subject k 

 
The constant , which is added, is as small as possible to estimate a zero point for the dissimilarity 
data, thus bringing the data more nearly in line with the ratio level of measurement.  This step 
is necessary to make the   matrix, described below, positive semidefinite (that is, with no 
imaginary roots). 

 
The next step is to compute a scalar product matrix   for each subject k by double centering 

, the adjusted proximity matrix for each subject.  An element of the   matrix   is 
computed as follows: 

 

 
where 
Table 5-2 
Notation 
Notation   Description 

            are the row means for the adjusted proximities for subject k 

             are the column means for the adjusted proximities for subject k 

             is the grand mean for subject k 
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Double centering to convert distances to scalar products is necessary because a scalar products 
matrix is required to compute an initial configuration using the Young-Householder-Torgerson 
procedure. 

 
Next the individual subject matrices are normalized so that they have the same variance. The 
normalized matrix  is found for each subject. The elements of the matrix are 

 

 

 

 
 

 
 

where n is the number of stimuli, and    is the number of off-diagonal elements in the 
  matrix. The denominator is both the root mean square and the standard deviation of the 

unnormalized scalar products matrix (It is both because , due to double centering.) 
  is thus a matrix with elements , which are scalar products for individual subject  k. 

Normalization of individual subjects’ matrices equates the contribution of each individual to the 
formation of a mean scalar products matrix and thus the resulting initial configuration. 

 
Next an average scalar products matrix over the subjects is computed. The elements of this 
matrix are 

 
 
 
 
 

where m is the number of subjects. 
 

The average matrix used in the previous step is used to compute an  initial stimulus 
configuration using the classical Young-Householder multidimensional scaling procedure 

 

 
where X is an matrix of n stimulus points on r dimensions, and   is the transpose of the X 
matrix; that is, the rows and columns are interchanged. The X matrix is the initial configuration. 

 
For the weighted ALSCAL matrix model, initial weight configuration matrices  for each of 
the m subjects are computed. The initial weight matrices  are matrices, where r is the 
number of dimensions. Later the diagonals of  will form rows of the W matrix, which is an 

matrix. The matrices are determined such that        , where and 
and where T is an orthogonal rotation of the configuration X to a new orientation Y. T is 

computed by the Schönemann-de Leeuw procedure discussed by Young, Takane, and Lewyckyj 
(Young, Takane, and Lewyckyj, 1978). T rotates X so that  is as diagonal as possible (that is, 
off-diagonal elements are as close to zero as possible on the average over subjects). Off-diagonal 
elements represent a departure from the model (which assumes that subjects weight only the 
dimensions of the stimulus space). 



 
 
Optimization Algorithm 

 

ALSCAL Algorithms 

 

The optimization algorithm is a series of steps which are repeated (iterated) until the final solution 
is achieved. The steps for the optimization algorithm are performed successively because 
disparities, weights, and coordinates cannot be solved for simultaneously. 

 
Distance 

 

Distances are computed according to the weighted Euclidean model 
 
 

 

 
 

 

 
 

where 
Table 5-3 
Notation 
Notation   Description 

is the weight for subject k on a dimension a,  

is the coordinate of stimulus i on dimension a, 

is the coordinate of stimulus j on dimension a. 

 
The first set of distances is computed from the coordinates and weights found in the previous 
steps. Subsequently, new distances are computed from new coordinates found in the iteration 
process (described below). 

 

Optimal Scaling 

Optimal scaling for ordinal data use Kruskal’s least-squares monotonic transformation. This yields 
disparities that are a monotonic transformation of the data and that are as much like the distances 
(in a least squares sense) as possible. Ideally, we want the distances to be in exactly the same rank 
order as the data, but usually they are not. So we locate a new set of numbers, called disparities, 
which are in the same rank order as the data and which fit the distances as well as possible. When 
we see an order violation we replace the numbers that are out of order with a block of values that 
are the mean of the out-of-order numbers. When there are ties in the data, the optimal scaling 
process is changed somewhat. Kruskal’s primary and secondary procedures are used in ALSCAL. 

 

Normalization 

The disparities computed previously are now normalized for technical reasons related to the 
alternating least squares algorithm (Takane, Young, and de Leeuw, 1977). During the course of 
the optimization process, we want to minimize a measure of error called SSTRESS. But the 
monotone regression procedure described above only minimizes the numerator of the SSTRESS 
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formula. Thus, the formula below is applied to readjust the length of the disparities vector so 
that SSTRESS is minimized: 

 

 
 

where 

Table 5-4 
Notation 

Notation Description 
                       is a column vector with elements containing all the disparities for subject k, 

is a column vector with elements containing all the distances for subject k, 

                is the sum of the squared distances, 

                is the sum of the cross products. 
 
 

The normalized disparities vector  is a conditional least squares estimate for the distances; 
that is, it is the least squares estimate for a given iteration. The previous values are replaced by 

 values, and subsequent steps utilize the normalized disparities. 
 
 
SSTRESS 

 
The Takane-Young-de Leeuw formula is used: 

 

 
 

where   values are the normalized disparity measures computed previously, and   are 
computed as shown above. Thus SSTRESS is computed from the normalized disparities and 
the previous set of coordinates and weights. 

 
 
Termination 

 
The current value of SSTRESS is compared to the value of SSTRESS from the previous iteration. 
If the improvement is less than a specified value (default equals 0.001), iteration stops and the 
output stages has been reached. If not, the program proceeds to the next step. (This step is skipped 
on the first iteration.) 



 
 
Model Estimation 

 

ALSCAL Algorithms 

 

In ALSCAL the weights and coordinates cannot be solved for simultaneously, so we do it 
successively. Thus, the model estimation phase consists of two steps: (i) estimation of subject 
weights and (ii) estimation of stimulus coordinates. 

 
(i) Estimation of subject weights. (This step is skipped for the simple, that is, 
unweighted, Euclidean model.) 

 
A conditional least-squares estimate of the weights is computed at each iteration: 

 

 

The derivation of the computational formula is as follows: 

We have found disparities such that 

 
 

where 
 
 

 

 
 

 

 
 

Let  be the unweighted distance between stimuli i and j as projected onto dimension a, that is, 

              . 

Then 
 

. 
 
 

In matrix notation, this is expressed as  , where is now an matrix 
having one row for every subject and one column for each stimulus pair; W is an  matrix 
having one row for every subject and one column for each dimension; and   has one row for 
every dimension and one column for every stimulus pair. 

 
We wish to solve for W, , which we do by noting that 

 

. 
 

Therefore, 
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and we have the conditional least squares estimate for W. We have in fact minimized SSTRESS at 
this point relative to the previously computed values for stimulus coordinates and optimal scaling. 
We replace the old subject weights with the newly estimated values. 

 
(ii) Estimation of Stimulus Coordinates. The next step is to estimate coordinates, one at a time, 
using the previously computed values for (disparities) and weights. Coordinates are 
determined  one at a time by minimizing SSTRESS with regard to a given coordinate. Equation 
(2) allows us to solve for a given coordinate : 

 

 

 
Equation (2) can be substituted back into equation (1). This equation with one unknown, , is 
then set equal to zero and solved by standard techniques. All the other coordinates except  are 
assumed to be constant while we solve for . 

 
Immediately upon solving for , we replace the value for used on the previous iteration with 
the newly obtained value, and then proceed to estimate the value for another coordinate. We 
successively obtain values for each coordinate of point l, one at a time, replacing old values with 
new ones. This continues for point l until the estimates stabilize. We then move to a new point and 
proceed until new coordinates for all stimuli are estimated. We then return to the beginning of the 
optimization algorithm (the previous step above) and start another iteration. 
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ANACOR Algorithms 
The ANACOR algorithm consists of three major parts: 

 
1. A singular value decomposition (SVD) 

 
2. Centering and rescaling of the data and various rescalings of the results 

 
3. Variance estimation by the delta method. 

 
Other names for SVD are “Eckart-Young decomposition” after Eckart and Young (1936), who 
introduced the technique in psychometrics, and “basic structure” (Horst, 1963). The rescalings 
and centering, including their rationale, are well explained in Benzécri (1969), Nishisato (1980), 
Gifi (1981), and Greenacre (1984). Those who are interested in the general framework of matrix 
approximation and reduction of dimensionality with positive definite row and column metrics 
are referred to Rao (1980).  The delta method is a method that can be used for the derivation 
of asymptotic distributions and is particularly useful for the approximation of the variance of 
complex statistics. There are many versions of the delta method, differing in the assumptions 
made and in the strength of the approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14; 
Wolter, 1985, ch.  6). 

 
 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

k1 Number of rows (row objects) 
k2 Number of columns (column objects) 
p Number of dimensions 

 
 
Data-Related Quantities 
 

 
 

 

 
 

Nonnegative data value for row i and column j: collected in table F 

Marginal total of row i,  

Marginal total of column j,   

N Grand total of F 
 
 
Scores and Statistics 

 
 

 

 
 

Score of row object i on dimension s 

Score of column object j on dimension s 

I Total inertia 
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Basic Calculations 
One way to phrase the ANACOR objective (cf. Heiser, 1981) is to say that we wish to find row 
scores and column scores so that the function 

 

is minimal, under the standardization restriction either that 
 

or 
 

where is Kronecker’s delta and t is an alternative index for dimensions.  The trivial set of 
scores ({1},{1}) is excluded. 

The ANACOR algorithm can be subdivided into five steps, as explained below. 
 
Data scaling and centering 

The first step is to form the auxiliary matrix Z with general element 
 

 
Singular value decomposition 

Let the singular value decomposition of Z be denoted by 
 

 
with , , and L diagonal.  This decomposition is calculated by a routine based 
on Golub and Reinsch (1971). It involves Householder reduction to bidiagonal form and 
diagonalization by a QR procedure with shifts. The routine requires an array with more rows 
than columns, so when         the original table is transposed and the parameter transfer is 
permuted accordingly. 

 
Adjustment to the row and column metric 

The arrays of both the left-hand singular vectors and the right-hand singular vectors are adjusted 
row-wise to form scores that are standardized in the row and in the column marginal proportions, 
respectively: 
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This way, both sets of scores satisfy the standardization restrictions simultaneously. 
 
 
Determination of variances and covariances 

 
For the application of the delta method to the results of generalized eigenvalue methods under 
multinomial sampling, the reader is referred to Gifi (1981, ch. 12) and Israëls (1987, Appendix 
B). It is shown there that N time variance-covariance matrix of a function φ of the observed cell 
proportions                   asymptotically reaches the form 

 

 
Here the quantities are the cell probabilities of the multinomial distribution, and   are 
the partial derivatives of φ (which is either a generalized eigenvalue or a generalized eigenvector) 
with respect to the observed cell proportion. Expressions for these partial derivatives can also 
be found in the above-mentioned references. 

 
 
Normalization of row and column scores 

 
Depending on the normalization option chosen, the scores are normalized, which implies a 
compensatory rescaling of the coordinate axes of the row scores and the column scores. The 
general formula for the weighted sum of squares that results from this rescaling is 

 
row scores: 

 
 

column scores: 
 

The parameter q can be chosen freely or it can be specified according to the following designations: 
 

canonical 
row principal 
column principal 

 

There is a fifth possibility, choosing the designation “principal,” that does not fit into this scheme. 
It implies that the weighted sum of squares of both sets of scores becomes equal to . The 
estimated variances and covariances are adjusted according to the type of normalization chosen. 

 

Diagnostics 

After printing the data, ANACOR optionally also prints a table of row profiles and column 
profiles, which are and , respectively. 
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Singular Values, Maximum Rank and Inertia 

All singular values  defined in step 2 are printed up to a maximum of . 
Small singular values and corresponding dimensions are suppressed when they don’t exceed the 
quantity ; in this case a warning message is issued. Dimensionwise inertia and total 
inertia are given by the relationships 

 

 

where the right-hand part of this equality is true only if the normalization is row principal (but 
for the other normalizations similar relationships are easily derived from “Normalization of 
row and column scores ”). The quantities “proportion explained” are equal to inertia divided 
by total inertia: . 

 
Scores and Contributions 

This output is given first for rows, then for columns, and always preceded by a column of marginal 
proportions ( and , respectively). The table of scores is printed in p dimensions. The 
contribution to the inertia of each dimension is given by 

 

 

The above formula is true only under the row principal normalization option. For the other 
normalizations, similar relationships are again easily derived from “Normalization of row and 
column scores ”) The contribution of dimensions to the inertia of each point is given by,  for 

, 
 

 

 

 
 

 
Variances and Correlation Matrix of Singular Values and Scores 

The computation of variances and covariances is explained in “Determination of variances and 
covariances ”. Since the row and column scores are linear functions of the singular vectors, an 
adjustment is necessary depending on the normalization option chosen. From these adjusted 
variances and covariances the correlations are derived in the standard way. 

 
Permutations of the Input Table 

For each dimension s, let be the permutation of the first   integers that would sort the 
sth column of in ascending order. Similarly, let be the permutation of the first 

  integers that would sort the sth column of in ascending order.  Then the permuted data 
matrix is given by . 
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ANOVA Algorithms 
This chapter describes the algorithms used by the ANOVA procedure. 

 
 

Model and Matrix Computations 
 
Notation 

 
The following notation is used throughout this section unless otherwise stated. 

Table 7-1 
Notation 

Notation   Description 
N Number of cases 
F Number of factors 
CN Number of covariates 

               Number of levels of factor i 

Value of the dependent variable for case k 

            Value of the jth covariate for case k 

Weight for case k 

W Sum of weights of all cases 
 
 
 

The Model 
 

A linear model with covariates can be written in matrix notation as 
 

(1) 
 

where 

Table 7-2 
Notation 

Notation   Description 
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Constraints 

To reparametrize equation (1) to a full rank model, a set of non-estimable conditions is needed. 
The constraint imposed on non-regression models is that all parameters involving level 1 of  
any factor are set to zero. 

 
For regression model, the constraints are that the analysis of variance parameters estimates for 
each main effect and each order of interactions sum to zero. The interaction must also sum to 
zero over each level of subscripts. 

 
For a standard two way ANOVA model with the main effects and , and interaction parameter 

, the constraints can be expressed as 
 

non regression 
regression 

 

where indicates summation. 
 

Computation of Matrices 
 

 
 

Non-regression Model 
 

The         matrix contains the sum of weights of the cases that contain a particular combination of 
parameters. All parameters that involve level 1 of any of the factors are excluded from the matrix. 
For a two-way design with         and        , the symmetric matrix would look like the following: 

 

 
 
 
 
 
 
 
 
 

The elements or   on the diagonal are the sums of weights of cases that have level i of a or 
level j of . Off-diagonal elements are sums of weights of cases cross-classified by parameter 
combinations. Thus,  is the sum of weights of cases in level 3 of main effect , while  is 
the sum of weights of cases with and . 

 
Regression Model 

0 0 

0 

0 
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A row of the design matrix X is formed for each case. The row is generated as follows: 
 

If a case belongs to one of the 2 to   levels of factor i, a code of 1 is placed in the column 
corresponding to the level and 0 in all other         columns associated with factor i. If the case 
belongs in the first level of factor i, -1 is placed in all the         columns associated with factor i. 
This is repeated for each factor. The entries for the interaction terms are obtained as products of 
the entries in the corresponding main effect columns. This vector of dummy variables for a case 
will be denoted as  , where NC is the number of columns in the reparametrized 
design matrix. After the vector d is generated for case k, the ijth cell of is incremented by 

, where and  . 
 

Checking and Adjustment for the Mean 
 

After all cases have been processed, the diagonal  entries of are examined. Rows and 
columns corresponding to zero diagonals are deleted and the number of levels of a factor is 
reduced accordingly. If a factor has only one level, the analysis will be terminated with a message. 
If the first specified level of a factor is missing, the first non-empty level will be deleted from the 
matrix for non-regression model. For regression designs, the first level cannot be missing. All 
entries of are subsequently adjusted for means. 

 
The highest order of interactions in the model can be selected. This will affect the generation of  

If none of these options is chosen, the program will generate the highest order of interactions 
allowed by the number of factors. If sub-matrices corresponding to main effects or interactions in 
the reparametrized model are not of full rank, a message is printed and the order of the model is 
reduced accordingly. 

 
Cross-Product Matrices for Continuous Variables 

 
Provisional means algorithm are used to compute the adjusted-for-the-means cross-product 
matrices. 

 
Matrix of Covariates Z’Z 

 
The covariance of covariates m and l after case k has been processed is 

 

 

where   is the sum of weights of the first k cases. 
 

The Vector Z’Y 
 

The covariance between the mth covariate and the dependent variable after case k has been 
processed is 
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The Scalar Y’Y 

 

The corrected sum of squares for the dependent variable after case k has been processed is 
 

 
The Vector X’Y 

is a vector with NC rows.  The ith element is 
 

, 
 

where, for non-regression model,  if case k has the factor combination in column i of  
 otherwise. For regression model,  where d(i) is the dummy variable for column i of 

case k. The final entries are adjusted for the mean. 
  

Matrix X’Z 

The (i, m)th entry is 
 
 

 
 

 
 

where  has been defined previously. The final entries are adjusted for the mean. 
 
Computation of ANOVA Sum of Squares 

The full rank model with covariates 
 

 
can also be expressed as 
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where X and b are partitioned as 
 

and                 . 
 

The normal equations are then 
 
 

(2) 
 

The normal equations for any reduced model can be obtained by excluding those entries from 
equation (2) corresponding to terms that do not appear in the reduced model. 

 
Thus, for the model excluding , 

 

 
the solution to the normal equation is: 

 
(3) 

 

The sum of squares due to fitting the complete model (explained SS) is 
 

 

For the reduced model, it is 
 

 

The residual (unexplained) sum of squares for the complete model is 
and similarly for the reduced model.  The total   sum 

of squares is .  The reduction in the sum of squares due to including  in a model that 
already includes  and C will be denoted as . This can also be expressed as 

 

 

There are several ways to compute . The sum of squares due to the full model, as 
well as the sum of squares due to the reduced model, can each be calculated, and the difference 
obtained (Method 1). 

 

 
A sometimes computationally more efficient procedure is to calculate 
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where  are the estimates obtained from fitting the full model and  is the partition of the 
inverse matrix corresponding to  (Method 2). 

 

 

Model and Options 
 
Notation 

Let b be partitioned as 
 

 
where 
Table 7-3 
Notation 
Notation   Description 
M Vector of main effect coefficients 

Vector of coefficients for main effect i 

           M excluding 
 

           M including only through 

D Vector of interaction coefficients 
              Vector of kth order interaction coefficients 

             Vector of coefficients for the ith of the kth order interactions 

          D excluding   
 

           D including only through  

  excluding 

C Vector of covariate coefficients 
Covariate coefficient 

. 

. 
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Notation   Description 
           C excluding 

 

            C including only through    
 
 
 

Models 
 

Different types of sums of squares can be calculated in ANOVA. 
 
 
Sum of Squares for Type of Effects 

Table 7-4 
Sum of squares for type of effect 

 
All sums of squares are calculated as described in the introduction. Reductions in sums of squares 

are computed using Method 1. Since all cross-product matrices have been corrected for 
the mean, all sums of squares are adjusted for the mean. 

 
 
Sum of Squares Within Effects 

Table 7-5 
Sum of squares within effects 

Type 
Experimental and 
Hierarchical 
Covariates with Main 
Effects 
Covariates after Main 
Effects 
Regression 

Covariates Main Effects Interactions 

Type 
Default Experimental 

Covariates Main Effects Interactions 

Covariates with Main 
Effects 
Covariates after Main 
Effects 
Regression 

same as default 

same as default 
 
 
 
Hierarchical same as default 

Hierarchical and Covariates 
with Main Effects or 
Hierarchical and Covariates 
after Main Effects 

same as default 
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Reductions in sums of squares are calculated using Method 2, except for specifications involving 
the Hierarchical approach.  For these, Method 1 is used.  All sums of squares are adjusted for  
the mean. 

 
Degrees of Freedom 

 
Main Effects 

 
 

 

 

 
 

 

 
 

Main Effect i 
 

 
Covariates 

 

 
Covariate i 

1 
 

Interactions 

Interactions : 
 

      number of linearly independent columns corresponding to interaction  in 
 

Interactions  : 
 

number of independent columns corresponding to interaction   in 
 

Model 
 
 

 
     

  
 

Residual 
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Total 
 

W − 1 
 
 
Multiple Classification Analysis 

 
 

Notation   
Table 7-6 
Notation 

Notation Description 
               Value of the dependent variable for the kth case in level j of main effect i 

Sum of weights of observations in level j of main effect 
i 

                   Number of nonempty levels in the ith main effect 

W Sum of weights of all observations 
 
 
Basic Computations 

 
Mean of Dependent Variable in Level j of Main Effect i 

 
 

 
 
 

Grand Mean 
 
 

 
 
 

Coefficient Estimates 
 

The computation of the coefficient for the main effects only model and coefficients for the 
main effects and covariates only model are obtained as previously described. 
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Calculation of the MCA Statistics (Andrews, et al., 1973) 

 
Deviations 

 
For each level of each main effect, the following are computed: 

 
Unadjusted Deviations 

 
The unadjusted deviation from the grand mean for the jth level of the ith factor: 

 

 

Deviations Adjusted for the Main Effects 
 

, where        . 
 
 

Deviations Adjusted for the Main Effects and Covariates (Only for Models with 
Covariates) 

 
, where        . 

 
 

ETA and Beta Coefficients 
 

For each main effect i, the following are computed: 
 

 
Beta Adjusted for Main Effects 

 

 
Beta Adjusted for Main Effects and Covariates 
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Squared Multiple Correlation Coefficients 
 

Main effects model 
 

. 
 

Main effects and covariates model 
 

. 
 

The computations of R(M), R(M,C), and are outlined previously. 
 
Unstandardized Regression Coefficients for Covariates 

Estimates for the C vector, which are obtained the first time covariates are entered into the model, 
are printed. 

 
Cell Means and Sample Sizes 

Cell means and sample sizes for each combination of factor levels are obtained from the and 
matrices prior to correction for the mean. 

 

 
Means for combinations involving the first level of a factor are obtained by subtraction from 
marginal totals. 

 

Matrix Inversion 

The Cholesky decomposition (Stewart, 1973) is used to triangularize the matrix. If the tolerance is 
less than , the matrix is considered singular. 
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AREG Algorithms 
In the ordinary regression model the errors are assumed to be uncorrelated. The model considered 
here has the form 

 

(1) 

 

where is an uncorrelated random error with variance   and zero mean.  The error terms 
follow a first-order autoregressive process. The constant term a can be included or excluded 

as specified. In the discussion below, if a is not included, it is set to be zero and not involved in 
the subsequent computation. 

 
Two computational methods—Prais-Winsten and Cochrane-Orcutt—are described here. 

 
Cochrane-Orcutt Method 

Note that model (1) can be rewritten in two equivalent forms as: 
 

(2) 
 
 

(3) 
 
 

Defining                         and                         for            , equation (2) can be rewritten 
as 

 
                                                                                                                                       (2*) 

 
 

Starting with an initial value for   , the difference   and  in equation (2*) are computed and 
OLS then applied to equation (2*) to estimate a and . These estimates in turn can be used in 
equation (3) to update    and the standard error of the estimate   . 

 

Initial Results 

An initial value for can be pre-set by the user or set to be zero by default. The OLS method is 
used to obtain an initial estimate for a (if constant term is include) and . 

 
ANOVA 

 
Based on the OLS results, an analysis of variance table is constructed in which the degrees of 
freedom for regression are p, the number of X variables in equation (1), while the degrees of 
freedom for the residual are if initial     and are otherwise.    is the 
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number of coefficients in equation (1). The sums of squares, mean squares, and other statistics are 
computed as in the REGRESSION procedure. 

 

Intermediate Results 

At each iteration, the following statistics are calculated: 
 

Rho 
 

An updated value for is computed as 
 
 

 

  
 

 
 

where the residuals  are obtained from equation (1). 
 

Standard Error of rho 
 

An estimate of the standard error of 
 

 

where                if there is a constant term; p otherwise. 
 

Durbin-Watson Statistic 
 
 

 
  

 

 
 

where 
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Mean Square Error 
 

An estimate of the variance of 
 
 

  
 

 
Final Results 

 

Iteration terminates if either all the parameters change by less than a specified value (default 
0.001) or the number of iterations exceeds the cutoff value (default 10). 

 
The following variables are computed for each case: 

 
FIT 

 

Fitted responses are computed as 
 

 
and 

 

 
in which is the final estimate of   , and 

 

 

 
 

 

   
 

 

    
 
 

ERR 
 

 
 
 
 
 

SEP 

Residuals are computed as 
 

 

 

Standard error of predicted values at time t 
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and 
 

 

where 
 

 

in which   is the predictor vector at time i with the first component 1 if a constant term is 
included in equation (2*). X* is a (𝑛𝑛 − 1) ×𝑝𝑝∗ design matrix for equation (2*). The first column 
has a value of 1 − 𝜌𝜌� if a constant term is included in equation (2*). 

 
LCL and UCL 

 
95% prediction interval for the future is 

 

 
 

Other Statistics 
 

Other statistics such as Multiple R, R-Squared, Adjusted R-Squared, and so on, are computed. 
Consult the REGRESSION procedure for details. 

 
Prais-Winsten Method 

This method is a modification of the Cochrane-Orcutt method in that the first case gets explicit 
treatment. By adding an extra equation to (2*), the model has the form of 

 

(4) 
    

 
 

Like the Cochrane-Orcutt method, an initial value of can be set by the user or a default value of 
zero can be used. The iterative process of estimating the parameters is performed via weighted 
least squares (WLS). The weights used in WLS computation are                            and 

for            . The computation of the variance of and the variance of is the same as 
that of the WLS in the REGRESSION procedure. 



 
 
Initial Results 

The WLS method is used to obtain initial parameter estimates. 
 

ANOVA 
 

The degrees of freedom are p for regression and for residuals. 
 

Intermediate Results 
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The formulas for RHO, SE Rho, DW, and MSE are exactly the same as those in the 
Cochrane-Orcutt method. The degrees of freedom for residuals, however, are 𝑛𝑛 − 1 −  𝑝𝑝∗. 

 

Final Results 

The following variables are computed for each case. 
 

SEP 
 

Standard error of predicted value at time t is computed as 
 

 

 
where is computed as 

 

 
in which  is the predictor vector at time i and is a design matrix for equation (4). If a 
constant term is included in the model, the first  column of X* has a constant value of 

, the first row of is , and               . 
 

LCL and UCL 
 

95% prediction interval for at time k is 
 



 

ARIMA Algorithms 
The ARIMA procedure computes the parameter estimates for a given seasonal or non-seasonal 
univariate ARIMA model. It also computes the fitted values, forecasting values, and other related 
variables for the model. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

yt (t=1, 2, ..., N) Univariate time series under investigation. 
N Total number of observations. 
at (t = 1, 2, ... , N) White noise series normally distributed with mean zero and variance . 
p Order of the non-seasonal autoregressive part of the model 
q Order of the non-seasonal moving average part of the model 
d Order of the non-seasonal differencing 
P Order of the seasonal autoregressive part of the model 
Q Order of the seasonal moving-average part of the model 
D Order of the seasonal differencing 
s Seasonality or period of the model 

AR polynomial of B of order p, 

MA polynomial of B of order q, 

Seasonal AR polynomial of BS of order P, 
 

      
Seasonal MA polynomial of BS of order Q, 

  
    

   
Differencing operator  

B Backward shift operator with and 
 
Models 

A seasonal univariate ARIMA(p,d,q)(P,D,Q)s model is given by 
 

 

where 
 

 

 
and μ is an optional model constant. It is also called the stationary series mean, assuming that, after 
differencing, the series is stationary. When NOCONSTANT is specified, μ is assumed to be zero. 

 
An optional log scale transformation can be applied to yt before the model is fitted. In this chapter, 
the same symbol, yt, is used to denote the series either before or after log scale transformation. 
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Independent variables x1, x2, …, xm can also be included in the model. The model with 
independent variables is given by 

 

 

where 
 
 

 

 
Estimation 

, are the regression coefficients for the independent variables. 

 

Basically, two different estimation algorithms are used to compute maximum likelihood (ML) 
estimates for the parameters in an ARIMA model: 
 Melard’s algorithm is used for the estimation when there is no missing data in the time 

series. The algorithm computes the maximum likelihood estimates of the model parameters. 
The details of the algorithm are described in (Melard, 1984), (Pearlman, 1980), and (Morf, 
Sidhu, and Kailath, 1974). 

 A Kalman filtering algorithm is used for the estimation when some observations in the time 
series are missing. The algorithm efficiently computes the marginal likelihood of an ARIMA 
model with missing observations. The details of the algorithm are described in the following 
literature: (Kohn and Ansley, 1986) and (Kohn and Ansley, 1985). 

 
Initialization of ARMA parameters 

 
The ARMA parameters are initialized as follows: 

 
Assume that the series  follows an ARMA(p,q)(P,Q) model with mean 0; that is: 

 

 
In the following and represent the lth lag autocovariance and  autocorrelation of 

 respectively, and   and   represent their estimates. 
 

Non-seasonal AR parameters 
 

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of 
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as . 

 
Non-seasonal MA parameters 

 
Let 
 

 
 
The cross covariance 
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Assuming that an AR(p+q) can approximate , it follows that: 
 

 

The AR parameters of this model are estimated as above and are denoted as . 

Thus   can be estimated by 

  
 

    
 

   
 

 

   
 

And the error variance   is approximated by 
 

 
with           . 

 
Then the initial MA parameters are approximated by                    and estimated by 

 

 

So  can be calculated by , and . In this procedure, only are used and all 
other parameters are set to 0. 

 

Seasonal parameters 
 

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above 
equations are used. 
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Diagnostic Statistics 
The following definitions are used in the statistics below: 

                                         Number of parameters. 
 

without model constant 
with model constant 

SSQ Residual sum of squares , where e is the residual vector 
                                            Estimated residual variance.       , where 

SSQ’ Adjusted residual sum of squares. , where Ω is the 
theoretical covariance matrix of the observation vector computed at MLE 

 
 
Log-Likelihood 

=  

 
Akaike Information Criterion (AIC) 

 

= 
 

Schwartz Bayesian Criterion (SBC) 
 

 
Generated  Variables 

The following variables are generated for each case. 
 

Predicted Values 

Computation of predicted values depends upon the forecasting method. 
 

Forecasting Method: Conditional Least Squares (CLS or AUTOINT) 
 

In general, the model used for fitting and forecasting (after estimation, if involved) can be 
written as 

 

 

where 
 



 

ARIMA Algorithms 

 
 

Thus, the predicted values (FIT)t are computed as follows: 
 

where 
 

 
Starting Values for Computing Fitted Series. To start the computation for fitted values, all 
unavailable beginning residuals are set to zero and unavailable beginning values of the fitted 
series are set according to the selected method: 

 
CLS. The computation starts at the (d+sD)-th period. After a specified log scale 
transformation, if any, the original series is differenced and/or seasonally differenced 
according to the model 
specification. Fitted values for the differenced series are computed first. All unavailable beginning 
fitted values in the computation are replaced by the stationary series mean, which is equal to the 
model constant in the model specification. The fitted values are then aggregated to the original 
series and properly transformed back to the original scale. The first d+sD fitted values are set to 
missing (SYSMIS). 

 
AUTOINIT. The computation starts at the [d+p+s(D+P)]-th period. After any specified log scale 
transformation, the actual d+p+s(D+P) beginning observations in the series are used as beginning 
fitted values in the computation. The first d+p+s(D+P) fitted values are set to missing. The fitted 
values are then transformed back to the original scale, if a log transformation is specified. 

 
Forecasting Method: Unconditional Least Squares (EXACT) 

 
As with the CLS method, the computations start at the (d+sD)-th period. First, the original series 
(or the log-transformed series if a transformation is specified) is differenced and/or seasonally 
differenced according to the model specification. Then the fitted values for the differenced series 
are computed. The fitted values are one-step-ahead, least-squares predictors calculated using the 
theoretical autocorrelation function of the stationary autoregressive moving average (ARMA) 
process corresponding to the differenced series. The autocorrelation function is computed by 
treating the estimated parameters as the true parameters.  The fitted values are then aggregated  
to the original series and properly transformed back to the original scale. The first d+sD fitted 
values are set to missing (SYSMIS). The details of the least-squares prediction algorithm for the 
ARMA models can be found in (Brockwell and Davis, 1991). 

 

Residuals 

Residual series are always computed in the transformed log scale, if a transformation is specified. 
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Standard Errors of the Predicted Values 

Standard errors of the predicted values are first computed in the transformed log scale, if a 
transformation is specified. 

 
Forecasting Method: Conditional Least Squares (CLS or AUTOINIT) 

 

 
Forecasting Method: Unconditional Least Squares (EXACT) 

In the EXACT method, unlike the CLS method, there is no simple expression for the standard 
errors of the predicted values. The standard errors of the predicted values will, however, be given 
by the least-squares prediction algorithm as a byproduct. 

Standard errors of the predicted values are then transformed back to the original scale for each 
predicted value, if a transformation is specified. 

 
Confidence Limits of the Predicted Values 

Confidence limits of the predicted values are first computed in the transformed log scale, if a 
transformation is specified: 

 

 

where  is the              -th percentile of a t distribution with df degrees of freedom and α 
is the specified confidence level (by default α=0.05). 

Confidence limits of the predicted values are then transformed back to the original scale for 
each predicted value, if a transformation is specified. 

 
Forecasting 

The following values are computed for each forecast period. 
 
Forecasting Values 

Computation of forecasting values depends upon the forecasting method. 
 

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT) 

 , the l-step-ahead forecast of at the time t, can be represented as: 
 

Note that 
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if 
if 

 
      if 

if 
 

Forecasting Method: Unconditional Least Squares (EXACT) 
 

The forecasts with this option are finite memory, least-squares forecasts computed using the 
theoretical autocorrelation function of the series. The details of the least-squares forecasting 
algorithm for the ARIMA models can be found in (Brockwell et al., 1991). 

 
Standard Errors of the Forecasting Values 

Computation of these standard errors depends upon the forecasting method. 
 

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT) 
 

For the purpose of computing standard errors of the forecasting values, the model can be written 
in the format of weights (ignoring the model constant): 

 

 

where 
 

 
Then 

 
se   

 
Note that, for the predicted value, . Hence,            at any time t. 

 
Computation of ΨWeights. Ψ weights can be computed by expanding both sides of the following 
equation and solving the linear equation system established by equating the corresponding 
coefficients on both sides of the expansion: 

 

 
An explicit expression of Ψ weights can be found in (Box et al., 1994). 

 
Forecasting Method: Unconditional Least Squares (EXACT) 

 
As with the standard errors of the predicted values, the standard errors of the forecasting values 
are a byproduct during the least-squares forecasting computation. The details can be found in 
(Brockwell et al., 1991). 
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Automated Data Preparation 
Algorithms 

The goal of automated data preparation is to prepare a dataset so as to generally improve the 
training speed, predictive power, and robustness of models fit to the prepared data. 

 
These algorithms do not assume which models will be trained post-data preparation. At the end 
of automated data preparation, we output the predictive power of each recommended predictor, 
which is computed from a linear regression or naïve Bayes model, depending upon whether the 
target is continuous or categorical. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

X A continuous or categorical variable 
Value of the variable X for case i. 

                            Frequency weight for case i. Non-integer positive values are rounded to the nearest 
integer.  If there is no frequency weight variable, then all         . If the frequency 
weight of a case is zero, negative or missing, then this case will be ignored. 
Analysis weight for case i. If there is no analysis weight variable, then all . If 
the analysis weight of a case is zero, negative or missing, then this case will be ignored. 

n Number of cases in the dataset 
is not missing , where expression  is the indicator function taking 

value 1 when the expression is true, 0 otherwise. 
is not missing 

and are not missing 

 
and are not missing 

 
The mean of variable X, is not missing 

 

 

and are not missing 
 

 
 

A note on missing values 
 

Listwise deletion is used in the following sections: 
 “Univariate Statistics Collection ” 
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 “Basic Variable Screening ” 
 “Measurement Level Recasting ” 
 “Missing Value Handling ” 
 “Outlier Identification and Handling ” 
 “Continuous Predictor Transformations ” 
 “Target Handling ” 
 “Reordering Categories ” 
 “Unsupervised Merge ” 

 
Pairwise deletion is used in the following sections: 
 “Bivariate Statistics Collection ” 
 “Supervised Merge ” 
 “Supervised Binning ” 
 “Feature Selection and Construction ” 
 “Predictive Power ” 

 
A note on frequency weight and analysis weight 

 
The frequency weight variable is treated as a case replication weight. For example if a case has 
a frequency weight of 2, then this case will count as 2 cases. 

 
The analysis weight would adjust the variance of cases. For example if a case of a variable X 
has an analysis weight , then we assume that . 

 
Frequency weights and analysis weights are used in automated preparation of other variables, but 
are themselves left unchanged in the dataset. 

 
Date/Time Handling 

Date Handling 
 

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables. 
If requested, we also calculate the number of elapsed days/months/years since the user-specified 
reference date (default is the current date). Unless specified by the user, the “best” unit of duration 
is chosen as follows: 

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit. 

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use 
months as the best unit. The number of months between two dates is calculated based on average 
number of days in a month (30.4375): months = days / 30.4375. 

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best 
unit. The number of years between two dates is calculated based on average number of days in a 
year (365.25):  years = days / 365.25. 
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Once the date elements are extracted and the duration is obtained, then the original date variable 
will be excluded from the rest of the analysis. 

 
Time Handling 

 
If there is a time variable, we extract the time elements (second, minute and hour) as ordinal 
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since 
the user-specified reference time (default is the current time). Unless specified by the user, the 
“best” unit of duration is chosen as follows: 

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit. 

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we 
use minutes as the best unit. 

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the 
best unit. 

 
Once the elements of time are extracted and time duration is obtained, then original time predictor 
will be excluded. 

 
Univariate Statistics Collection 

Continuous Variables 
 

For each continuous variable, we calculate the following statistics: 
 Number of missing values:                                         is missing 
 Number of valid values:    
 Minimum value: 
 Maximum value: 
 Mean, standard deviation, skewness.  (see below) 
 The number of distinct values I. 
 The number of cases for each distinct value : 
 Median: If the distinct values of X are sorted in ascending order, , then the 

median can be computed by              , where  . 

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating 
the number of distinct values and the number of cases for each distinct value. Also we do not 
calculate the median. 

 
Categorical Numeric Variables 

 
For each categorical numeric variable, we calculate the following statistics: 
 Number of missing values: is missing 
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 Number of valid values:    
 Minimum value: (only for ordinal variables) 
 Maximum value: (only for ordinal variables) 
 The number of categories. 
 The counts of each category. 
 Mean, Standard deviation, Skewness (only for ordinal variables). (see below) 
 Mode (only for nominal variables). If several values share the greatest frequency of 

occurrence, then the mode with the smallest value is used. 
 Median (only for ordinal variables): If the distinct values of X are sorted in ascending order, 

, then the median can be computed by              , 
where . 

 
Notes: 

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop 
updating the number of categories and the number of cases for each category. Also we do not 
calculate mode and median. 

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop 
collecting statistics and just store the information that the variable had more than threshold 
categories. 

 
Categorical String Variables 

 
For each string variable, we calculate the following statistics: 
 Number of missing values:                                         is missing 
 Number of valid values:    
 The number of categories. 
 Counts of each category. 
 Mode: If several values share the greatest frequency of occurrence, then the mode with the 

smallest value is used. 
 

Note: If a string predictor has more categories than a specified threshold (default 100), we stop 
collecting statistics and just store the information that the predictor had more than threshold 
categories. 

 
Mean, Standard Deviation, Skewness 

 
We calculate mean, standard deviation and skewness by updating moments. 

 
1. Start with . 

 

2. For j=1,..,n compute: 
is not missing 



   

 
 
 

                            is not missing 
 

 

 
   

 

   
 

 

 
   

 

 

     

3. After the last case has been processed, compute: 
Mean: 

Standard deviation: 
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Skewness: 
 

If          or       , then skewness is not calculated. 
 
Basic Variable Screening 

1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the 
variable from subsequent analysis. 

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the 
variable from subsequent analysis. 

3. For categorical variables, if the mode contains more cases than a specified percentage (default 
is 95%), then exclude the variable from subsequent analysis. 

4. If a string variable has more categories than a specified threshold (default is 100), then exclude the 
variable from subsequent analysis. 

 
Checkpoint 1: Exit? 

This checkpoint determines whether the algorithm should be terminated. If, after the screening 
step: 

1. The target (if specified) has been removed from subsequent analysis, or 
 

2. All predictors have been removed from subsequent analysis, 

then terminate the algorithm and generate an error. 

Measurement Level Recasting 
For each continuous variable, if the number of distinct values is less than a threshold (default 
is 5), then it is recast as an ordinal variable. 



   
   

. Check if 
an 
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For each numeric ordinal variable, if the number of categories is greater than a threshold (default 
is 10), then it is recast as a continuous variable. 

 
Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold. 

 
Outlier Identification and Handling 

In this section, we identify outliers in continuous variables and then set the outlying values to a 
cutoff or to a missing value. The identification is based on the robust mean and robust standard 
deviation which are estimated by supposing that the percentage of outliers is no more than 5%. 

 
Identification 

1. Compute the mean and standard deviation from the raw data. Split the continuous variable into 
non-intersecting intervals:                                                                                              , where 

                                  ,                                                          and                        . 
 

2. Calculate univariate statistics in each interval: 

, 
 

,   

3. Let , , and . 

4. Between two tail intervals  and , find one interval with the least number of cases. 

5. If , then 
is 0.05). If it does, then 

 
is less than a threshold (default 

d , go to step 4; otherwise, go to step 6. 

Else . Check if  is less than a threshold, .  If it is, then 
and , go to step 4; otherwise, go to step 6. 

6. Compute the robust mean and robust standard deviation   within the range 
.  See below for details. 

7. If satisfies the conditions: 

       or       

where cutoff is positive number (default is 3), then is detected as an outlier. 
 

Handling 
 

Outliers will be handled using one of following methods: 
 Trim outliers to cutoff values. If  then replace by 

, and if  then replace 
by . 

 Set outliers to missing values. 
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Update Univariate Statistics 
 

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous 
variable, including the number of missing values, minimum, maximum, mean, standard deviation, 
skewness, and number of outliers. 

 
Robust Mean and Standard Deviation 

 
Robust mean and standard deviation within the range  are calculated 
as follows: 

 

 

and 
 

 

where                      and                                            . 
 
Missing Value Handling 

Continuous variables. Missing values are replaced by the mean, and the following statistics are 
updated: 

 Standard deviation: , where                     . 
 

 Skewness: , where and 

 The number of missing values:   
 The number of valid values:    

 
Ordinal variables. Missing values are replaced by the median, and the following statistics are 
updated: 
 The number of cases in the median category: , where is the 

original number of cases in the median category. 
 The number of missing values:   
 The number of valid values:    

 
Nominal variables. Missing values are replaced by the mode, and the following statistics are 
updated: 
 The number of cases in the modal category: , where is the original 

number of cases in the modal category. 
 The number of missing values:   
 The number of valid values:    
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Continuous Predictor Transformations 
We transform a continuous predictor so that it has the  user-specified mean (default 
0) and standard deviation   (default 1) using the z-score transformation, or minimum 

 (default 0) and maximum (default 100) value using the min-max transformation. 

 
Z- score Transformation 

Suppose a continuous variable has mean and standard deviation sd. The z-score transformation is 
 
 
 
 

where is the transformed value of continuous variable X for case i. 
 

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values 
follow a normal distribution . 

 
Update univariate statistics 

 
After a z-score transformation, the following univariate statistics are updated: 
 Number of missing values:         
 Number of valid values:         

 Minimum value:  

 Maximum value:  

 Mean:  
 Standard deviation:  

 
 Skewness: 

 

Min-Max Transformation 

Suppose a continuous variable has a minimum value and a minimum value . The 
min-max transformation is 

 
 
 
 

where is the transformed value of continuous variable X for case i. 
 

Update univariate statistics 
 

After a min-max transformation, the following univariate statistics are updated: 
 The number of missing values: 



   

 

Automated Data Preparation Algorithms 
 

 The number of valid values:          

 Minimum value:  

 Maximum value:  

 Mean:  

 Standard deviation: 
 

 Skwness: 
 

Target Handling 

Nominal Target 
 

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on 
counts, then ties will be broken by ascending sort or lexical order of the data values. 

 
Continuous Target 

 
The transformation proposed by Box and Cox (1964) transforms a continuous variable into one 
that is more normally distributed. We apply the Box-Cox transformation followed by the z score 
transformation so that the rescaled target has the user-specified mean and standard deviation. 

 
Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed 
variable: 

 

 

where  are observations of variable Y, and c is a constant such that all values 
are positive.  Here, we choose . 

 
The parameter λ is selected to maximize the log-likelihood function: 

 

 
 

where and . 
 

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=−3, 
b=3, and s=0.5. 

 
The algorithm can be described as follows: 

1. Compute where j is an integer such that . 
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2. For each , compute the following statistics: 

Mean: 

Standard deviation: 
 

Skewness: 
 

Sum of logarithm transformation: 
 

3. For each , compute the log-likelihood function .  Find the value of j with the largest 
log-likelihood function, breaking ties by selecting the smallest value of . Also find the 
corresponding statistics , and  . 

 
4. Transform target to reflect user’s mean  (default is 0) and standard deviation  (default 

is 1): 
 
 
 
 
 

where and . 
 

Update univariate statistics. After Box-Cox and Z-score transformations, the following 
univariate statistics are updated: 
 Minimum value: 

 Maximum value: 
 Mean:  
 Standard deviation:   
 Skewness: 

 
Bivariate Statistics Collection 

For each target/predictor pair, the following statistics are collected according to the measurement 
levels of the target and predictor. 

 
Continuous target or no target and all continuous predictors 

 
If there is a continuous target and some continuous predictors, then we need to calculate the 
covariance and correlations between all pairs of continuous variables. If there is no continuous 
target, then we only calculate the covariance and correlations between all pairs of continuous 
predictors. We suppose there are there are m continuous variables, and denote the covariance 
matrix as , with element , and the correlation matrix as , with element . 

 
We define the covariance between two continuous variables X and Y as 
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where and are not missing   and 
                                    and are not missing . 

 
The covariance can be computed by a provisional means algorithm: 

1. Start with                                      . 

2. For j=1,..,n compute: 

                          and are not missing      

and are not missing 

 

 

 

 

After the last case has been processed, we obtain: 
 

3. Compute bivariate statistics between X and Y: 

Number of valid cases:    

Covariance: 

Correlation:  

Note: If there are no valid cases when pairwise deletion is used, then we let and . 
 

Categorical target and all continuous predictors 
 

For a categorical target Y with values and a continuous predictor X with values 
, the bivariate statistics are: 

Mean of X for each Y=i, i=1,...,J: 
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Sum of squared errors of X for each Y=i, i=1,...,J: 
 
 

 

 

 

 
 

 

 
 

Sum of frequency weight for each Y=i, i=1,...,J: 
 

                                               is not missing 
 
 

Number of invalid cases 
 
 

 
 

 
 

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,...,J: 
 

                                                    is not missing 
 
 
 

Continuous target and all categorical predictors 
 

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics 
include: 

 
Mean of Y conditional upon X: 

 

 
Sum of squared errors of Y: 

 
 

 

 

  
 

Mean of Y for each , i=1,...,J: 
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Sum of squared errors of Y for each , i=1,...,J: 
 
 

 

 

 
 

 

 
 

Sum of frequency weights for , i=1,...,J: 
 

                                               is not missing 
 
 

Sum of weights (frequency weight times analysis weight) for , i=1,...,J: 
 

                                                    is not missing 
 
 
 

Categorical target and all categorical predictors 
 

For a categorical target Y with values j=1,...,J and a categorical predictor X with values i=1,...,I, 
then bivariate statistics are: 

 
Sum of frequency weights for each combination of and : 

 
 

 

 

 

   
 

 

 
 

Sum of weights (frequency weight times analysis weight) for each combination of and 
: 

 
 

 

 

 

   
 

 

 
 

Categorical Variable Handling 
In this step, we use univariate or bivariate statistics to handle categorical predictors. 

 

Reordering Categories 

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on 
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field 
values start with 0 as the least frequent category. Note that the new field will be numeric even if 
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”, 
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2. 
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Identify Highly Associated Categorical Features 

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger 
than an alpha-level (default is 0.05). See “P-value Calculations” for details of 
computing these p-values. 

 
Since we use pairwise deletion to handle missing values when we collect bivariate statistics, 
we may have some categories with zero cases; that is,          for a category i of a categorical 
predictor. When we calculate p-values, these categories will be excluded. 

 
If there is only one category or no category after excluding categories with zero cases, we set the 
p-value to be 1 and this predictor will not be selected. 

 

Supervised Merge 

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a 
Chaid Tree with one level of depth. 

 
1. Exclude all categories with zero case count. 

 
2. If X has 0 categories, merge all excluded categories into one category, then stop. 

 
3. If X has 1 category, go to step 7. 

 
4. Else, find the allowable pair of categories of X that is most similar. This is the pair whose test 

statistic gives the largest p-value with respect to the target. An allowable pair of categories for an 
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note 
that for an ordinal predictor, if categories between the ith category and jth categories are excluded 
because of zero cases, then the ith category and jth categories are two adjacent categories. See 
“P-value Calculations” for details of computing these p-values. 

 
5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level 

(default is 0.05).  If it does, this pair is merged into a single compound category and 
at the same time we calculate the bivariate statistics of this new category. Then a new set of 
categories of X is formed.  If it does not, then go to step 6. 

 
6. Go to step 3. 

 
7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum 

values in ascending order.  Suppose we have r new categories, and the maximum values are: 
                      , then we get the merge rule as: the first new category will contain all original 

categories such that , the second new category will contain all original categories such that 
              ,…, and the last new category will contain all original categories such that . 

For a nominal predictor, all categories excluded at step 1 will be merged into the new category 
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken 
by selecting the category with the smallest value by ascending sort or lexical order of the original 
category values which formed the new categories with the lowest counts. 
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Bivariate statistics calculation of new category 
 

When two categories are merged into a new category, we need to calculate the bivariate statistics 
of this new category. 

 
Scale target. If the categories i and   can be merged based on p-value, then the bivariate statistics 
should be calculated as: 

 

 

 
 

 

 
Categorical target.  If the categories i and can be merged based on p-value, then the bivariate 
statistics should be calculated as: 

 

 

 
Update univariate and bivariate statistics 

 
At the end of the supervised merge step, we calculate the bivariate statistics for each new category. 
For univariate statistics, the counts for each new category will be sum of the counts of each 
original categories which formed the new category. Then we update other statistics according to 
the formulas in “Univariate Statistics Collection”, though note that the statistics only need to be 
updated based on the new categories and the numbers of cases in these categories. 

 
P-value Calculations 

Each p-value calculation is based on the appropriate statistical test of association between the 
predictor and target. 

 
Scale target 

 
We calculate an F statistic: 
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where                         . 
 

Based on F statistics, the p-value can be derived as 
 

 
is a random variable following a F distribution with and 

degrees of freedom. 

At the merge step we calculate the F statistic and p-value between two categories i and of X as 
 

 

 
where is the mean of Y for a new category merged by i and   : 

 

 

and is a random variable following a F distribution with  1 and 
                   degrees of freedom. 

 
Nominal target 

 
The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is 
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected 
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the 
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value: 

 

 
 

where                                                 is the observed cell frequency and  is the estimated  
expected cell frequency for cell following the independence model. If        , 
then .  How to estimate   is described below. 

 
The corresponding p-value is given by  , where  follows a chi-squared 
distribution with            degrees of freedom. 

 
When we investigate whether two categories i and of X can be merged, the Pearson chi-squared 
statistic is revised as 

where 
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and the p-value is given by        . 

 
Ordinal target 

 
Suppose there are I categories of X, and J ordinal categories of Y. Then the null hypothesis of 
the independence of X and Y is tested against the row effects model (with the rows being  the 
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected 
cell frequencies,   (under the hypothesis of independence) and   (under the hypothesis that 
the data follow a row effects model), are both estimated. The likelihood ratio statistic is 

 
 

  

 
 

where 
 

 
The p-value is given by        . 

 
Estimated expected cell frequencies (independence assumption) 

 
If analysis weights are specified, the expected cell frequency under the null hypothesis of 
independence is of the form 

 

 
where and are parameters to be estimated, and  if , otherwise . 

Parameter estimates , , and hence , are obtained from the following iterative procedure. 

1. ,               ,   

2.   
 

3.   

4. 
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5.   If (default is 0.001) or the number of iterations is larger  than a 

threshold (default is 100), stop and output and   as the final estimates 
. Otherwise, and go to step 2. 

 
Estimated expected cell frequencies (row effects model) 

 
In the row effects model, scores for classes of Y are needed.  By default,   (the order of a  
class of Y) is used as the class score. These orders will be standardized via the following linear 
transformation such that the largest score is 100 and the lowest score is 0. 

 

 
Where  and  are the smallest and largest order, respectively. 

The expected cell frequency under the row effects model is given by 
 

 
where , in which             ,  and , , and are unknown 
parameters to be estimated. 

 
Parameter estimates and hence  are obtained from the following iterative procedure. 

1. , , 

2.    
 

3.   

4. 
,
 

 

5. 
otherwise 

6. 
 

7.   If (default is 0.001) or the number of iterations is larger than a 

threshold (default is 100), stop and output and   as the final estimates 
. Otherwise, and go to step 2. 

 
Unsupervised Merge 

If there is no target, we merge categories based on counts. Suppose that X has I categories which 
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while 
for nominal predictor we rearrange categories from lowest to highest count, with ties broken 

   



 

Automated Data Preparation Algorithms 
 

by ascending sort or lexical order of the data values. Let be the number of cases for the ith 
category, and   be the total number of cases for X. Then we use the equal frequency method 
to merge sparse categories. 

 
1. Start with                  and g=1. 

 
2. If         , go to step 5. 

 
3. If                        , then ; otherwise the original categories  will 

be merged into the new category g and let                  ,          and , then go to step 2. 
 

4. If        , then merge categories using one of the following rules: 
 

i) If , then categories will be merged into category g and I will  be left 
unmerged. 

 
ii) If g=2, then will be merged into category g=2. 

 
iii) If g>2, then will be merged into category . 

 
If        , then go to step 3. 

 
5. Output the merge rule and merged predictor. 

 
After merging, one of the following rules holds: 
 Neither the original category nor any category created during merging has fewer than  

      cases, where b is a user-specified parameter satisfying (default is 
10) and [x] denotes the nearest integer of x. 

 The merged predictor has only two categories. 
 

Update univariate statistics.  When original categories are merged into one new 
category, then the number of cases in this new category will be  .  At the end of the 
merge step, we get new categories and the number of cases in each category. Then we update 
other statistics according to the formulas in “Univariate Statistics Collection”, though note that 
the statistics only need to be updated based on the new categories and the numbers 
of cases in these categories. 

 

Continuous Predictor Handling 
Continuous predictor handling includes supervised binning when the target is categorical, 
predictor selection when the target is continuous and predictor construction when the target is 
continuous or there is no target in the dataset. 

 
After handling continuous predictors, we collect univariate statistics for derived or constructed 
predictors according to the formulas in “Univariate Statistics Collection”. Any derived predictors 
that are constant, or have all missing values, are excluded from further analysis. 
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Supervised Binning 

If there is a categorical target, then we will transform each continuous predictor to an ordinal 
predictor using supervised binning. Suppose that we have already collected the bivariate statistics 
between the categorical target and a continuous predictor. Using the notations introduced in 
“Bivariate Statistics Collection”, the homogeneous subset will be identified by the Scheffe 
method as follows: 

 

If                                   then and will be a homogeneous subset, where if
  ; otherwise  ,  where 

and , . 
 

The supervised algorithm follows: 

1. Sort the means in ascending order, denote as . 

2. Start with i=1 and q=J. 

3. If , then can be considered a homogeneous subset. At the 
same time we compute the mean and standard deviation of this subset: and 

 
then set i = q + 1 and q = J; Otherwise q = q – 1. 

4. If , go to step 3. 

5. Else compute the cut point of bins.  Suppose we have homogeneous subsets and we 
assume that the means of these subsets are  , and standard deviations are 

, then the cut points between the ith and (i+1)th homogeneous subsets are 

computed as              . 

6. Output the binning rules. Category 1: ; Category 2: ;…; Category 
: . 

 
Feature Selection and Construction 

If there is a continuous target, we perform predictor selection using p-values derived from the 
correlation or partial correlation between the predictors and the target. The selected predictors are 
grouped if they are highly correlated. In each group, we will derive a new predictor using principal 
component analysis. However, if there is no target, we will do not implement predictor selection. 

 
To identify highly correlated predictors, we compute the correlation between a scale and a group as 
follows: suppose that X is a continuous predictor and continuous predictors form 
a group G. Then the correlation between X and group G is defined as: 

 

 
where is correlation between X and . 
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Let be the correlation level at which the predictors are identified as groups. The predictor 
selection and predictor construction algorithm is as follows: 

1. (Target is continuous and predictor selection is in effect ) If the p-value between a continuous 
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from 
the correlation matrix and covariance matrix.  See “Correlation and Partial Correlation”  
for details on computing these p-values. 

2. Start with and i=1. 

3. If , stop and output all the derived predictors, their source predictors and coefficient 
of each source predictor. In addition, output the remaining predictors in the correlation matrix. 

4. Find the two most correlated predictors such that their correlation in absolute value is larger than 
, and put them in group i. If there are no predictors to be chosen, then go to step 9. 

5. Add one predictor to group i such that the predictor is most correlated with group i and the 
correlation is larger than .  Repeat this step until the number of predictors in group i is 
greater than a threshold (default is 5) or there is no predictor to be chosen. 

6. Derive a new predictor from the group i using principal component analysis. For more 
information, see the topic “Principal Component Analysis”. 

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations 
between the other continuous predictors and the target, controlling for values of the new predictor. 
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation” 
for details on computing these p-values. If the p-value based on partial correlation between a 
continuous predictor and continuous target is larger than a threshold (default is 0.05), then 
remove this predictor from the correlation and covariance matrices. 

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to 
step 4. 

9. , then go to step 3. 
 

Notes: 
 If only predictor selection is needed, then only step 1 is implemented. If only predictor 

construction is needed, then we implement all steps except step 1 and step 7. If both predictor 
selection and predictor construction are needed, then all steps are implemented. 

 If there are ties on correlations when we identify highly correlated predictors, the ties will be 
broken by selecting the predictor with the smallest index in dataset. 

 
Principal Component Analysis 

Let be m continuous predictors. Principal component analysis can be described 
as follows: 

1. Input , the covariance matrix of . 

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and 
corresponding eigenvectors) in descending order,                          . 
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3. Derive new predictors. Suppose the elements of the first component are , then 
the new derived predictor is                     . 

 
Correlation and Partial Correlation 

 
Correlation and P-value 

 
Let be the correlation between continuous predictor X and continuous target Y, then the 
p-value is derived form the t test: 

 

 
where   is a random variable with a t distribution with         degrees of freedom, 
and   . If        , then set p=0; If , then set p=1. 

 
Partial correlation and P-value 

For two continuous variables, X and Y, we can calculate the partial correlation between them 
controlling for the values of a new continuous variable Z: 

 

 

Since the new variable Z is always a linear combination of several continuous variables, we 
compute the correlation of Z and a continuous variable using a property of the covariance rather 
than the original dataset. Suppose the new derived predictor Z is a linear combination of original 
predictors : 

 

 
Then for any a continuous variable X (continuous predictor or continuous target), the correlation 
between X and Z is 

 

 
where , and . 

 
If or is less than , let . If is larger than 1, then set it to 
1; If  is less than −1, then set it to −1. (This may occur with pairwise deletion).  Based on 
partial correlation, the p-value is derived from the t test 

 

 
where is a random variable with a t distribution with         degrees of freedom, 
and  . If , then set p=0; if        , then set p=1. 



 
 
Discretization of Continuous 
Predictors 
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Discretization is used for calculating predictive power and creating histograms. 
 

Discretization for calculating predictive power 
 

If the transformed target is categorical, we use the equal width bins method to discretize a 
continuous predictor into a number of bins equal to the number of categories of the target. 
Variables considered for discretization include: 
 Scale predictors which have been recommended. 
 Original continuous variables of recommended predictors. 

 
Discretization for creating histograms 

 
We use the equal width bins method to discretize a continuous predictor into a maximum of 400 
bins.  Variables considered for discretization include: 
 Recommended continuous variables. 
 Excluded continuous variables which have not been used to derive a new variable. 
 Original continuous variables of recommended variables. 
 Original continuous variables of excluded variables which have not been used to derive a 

new variable. 
 Scale variables used to construct new variables. If their original variables are also continuous, 

then the original variables will be discretized. 
 Date/time variables. 

 
After discretization, the number of cases and mean in each bin are collected to create histograms. 

 
Note: If an original predictor has been recast, then this recast version will be regarded as the 
“original” predictor. 

 
Predictive Power 

Collect bivariate statistics for predictive power 
 

We collect bivariate statistics between recommended predictors and the (transformed) target. If 
an original predictor of a recommended predictor exists, then we also collect bivariate statistics 
between this original predictor and the target; if an original predictor has a recast version, then 
we use the recast version. 

 
If the target is categorical, but a recommended predictor or its original predictor/recast version is 
continuous, then we discretize the continuous predictor using the method in “Discretization of 
Continuous Predictors” and collect bivariate statistics between the categorical target and the 
categorical predictors. 
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Bivariate statistics between the predictors and target are same as those described in “Bivariate 
Statistics Collection”. 

 
Computing predictive power 

 
Predictive power is used to measure the usefulness of a predictor and is computed with respect 
to the (transformed) target. If an original predictor of a recommended predictor exists, then we 
also compute predictive power for this original predictor; if an original predictor has a recast 
version, then we use the recast version. 

 
Scale target. When the target is continuous, we fit a linear regression model and predictive 
power is computed as follows. 

 Scale predictor:  

 Categorical predictor:  

 
Categorical target. If the (transformed) target is categorical, then we fit a naïve Bayes model 
and the classification accuracy will serve as predictive power.  We discretize continuous 
predictors as described in “Discretization of Continuous Predictors”, so we only consider the 
predictive power of categorical predictors. 

 
If   is the of number cases where  
  

 

 
 
 

where  
 

and Cramer’s V is defined as 
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Bayesian One-WAY ANOVA Models

The model 1 can be viewed as a special case of the general multiple linear regression model:

M1 : y = 1nα+Xβ + ε , (1)

where y = (y11, ..., y1n1
, . . . , yk1, ..., yknk

)T; n = n1+...+nk; α = µk; β = (µ1−µk, µ2−µk, . . . , µk−1−µk, 0)T;
and

X =

 1n1 0n1 . . . 0n1

...
...

...
...

0nk
0nk

. . . 1nk

 . (2)

Note that ε ∼ Normal(0, σ2I).
Let fi denote the frequency weight for the i-th case in the n observations. A non-integer fi is rounded

to the nearest integer. For those values less than 0.5 or missing, the corresponding case will not be used.
The effective sample in the data set is thus N =

∑n
i=1 fi. If no weights are present, N = n. Note that the

sufficient sample size to estimate is N > k.

Using Bayes Factor

Considering the multiple linear regression modelM1 in Equation 1, we would like to compare this full model
with a null model:

M0 : y = 1nα+ ε, (3)

and test the null hypothesis H0 : β = 0. Note that α is a common parameter in both M0 and M1. We are
interested in making inference on β, but need to place appropriate priors on all of the unknown parameters
including α, β, and σ2. In the following discussions, we let φ = 1/σ2, where φ denotes a precision parameter.

Note: The following sections are the same as the sections in the “Bayesian Inference on Multiple Linear
Regression Models” document. The only difference is substituting p with k − 1. Note that if we define

W =

 f1 0 . . . 0
...

...
...

...
0 0 . . . fn

 , (4)

then under one-way ANOVA setting, we have:

XTWX =

n1,f 0 . . . 0
...

...
...

...
0 0 . . . nk,f

 , (5)

where ni,f =
∑n1+...+ni

j=n1+...+ni−1+1 fj , for i = 1, ..., k.

Zellner’s Method

Zellner once suggested a g prior broadly discussed under M1 [Zellner, 1986]:

• p(α, φ|M1) = 1/φ.

• β|(φ, g,M1) ∼ Normal

(
0,
g

φ
(XTWX)−1

)
, where g is fixed.

Since g is fixed, Zellner’s g prior has the computational efficiency. Under these settings, the Bayes factor
suggested by Zellner between M1 and M0 has a closed form

∆z
10 = (1 + g)(N−k)/2

[
1 + g(1−R2)

]−(N−1)/2
, (6)

where g > 0, which is fixed and preset, and R2 is the unadjusted proportion of variance accounted for by
the factor which can be computed by applying the REGRESSION procedure on model 1.
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Zellner-Siow’s Method

Zellner and Siow proposed a Cauchy prior [Zellner and Siow, 1980], and can be represented as a mixture of
priors with an Inverse-Gamma(1/2, N/2) prior on g: Under these settings, the Bayes factor suggested by
Zellner and Siow between M1 and M0 is

∆s
10 =

∫ ∞
0

(1 + g)(N−k)/2
[
1 + g(1−R2)

]−(N−1)/2(√N/2
Γ(1/2)

g−3/2e−N/(2g)

)
dg , (7)

where Γ(1/2) =
√
π, and R2 is defined the same as in the ”Zellner’s Method” section.

Hyper-g Method

Liang et al introduced a family of priors on g by specifying

p(g) =
a− 2

2
(1 + g)−a/2 , (8)

where g > 0 and a > 2 for a proper distribution [Liang et al., 2012]: Under these settings, the Bayes factor
suggested by Liang et al between M1 and M0 is

∆h
10(a) =

a− 2

2

∫ ∞
0

(1 + g)(N−k−a)/2
[
1 + g(1−R2)

]−(N−1)/2
dg (9)

(10)

where a is preset, R2 is defined the same as in the ”Zellner’s Method” section.

Rouder’s Method

Under these settings, the Bayes factor suggested by Rouder and Morey between M′1 and M0 is

∆r
10(s) =

∫ ∞
0

(1 + g)(N−k)/2
[
1 + g(1−R2)

]−(N−1)/2(s√N/2
Γ(1/2)

g−3/2e−Ns2/(2g)

)
dg , (11)

where s > 0, Γ(1/2) =
√
π, and R2 is defined the same as in the ”Zellner’s Method” section.

Characterizing Posterior Distributions

The model 1 can also be viewed as another form of special case of the general multiple linear regression
model:

y = Xβ + ε , (12)

where y = (y11, ..., y1n1
, . . . , yk1, ..., yknk

)T; n = n1 + ...+ nk; β = (µ1, µ2, . . . , µk)T; and

X =

 1n1
0n1

. . . 0n1

...
...

...
...

0nk
0nk

. . . 1nk

 . (13)

Note that ε ∼ Normal(0, σ2I). In the following presentation, we would like to mainly discuss how to
make statistical inference on β, and σ2 by using Bayesian approaches.

We define the frequency weight fi and the matrix W the same way as in the ”Using Bayes Factor”
section. Thus, we still have:

XTWX =

n1,f 0 . . . 0
...

...
...

...
0 0 . . . nk,f

 , (14)

where ni,f =
∑n1+...+ni

j=n1+...+ni−1+1 fj , for i = 1, ..., k.
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Using Conjugate Prior

We place a conjugate prior by assuming that

• σ2 ∼ Inverse-Gamma(a0, b0),

• β|σ2 ∼ Normal
(
β0, σ

2V0

)
.

Group means β: Under the setting of model 12, β = (µ1, µ2, . . . , µk)T represents the means of the k
groups corresponding to the k categories of the factor. With the conjugate prior, the resulting marginal
posterior distribution β|X,y follows a scaled multivariate t distribution with ν degrees of freedom, where
ν = 2a0 +N .

Before finding the Bayes estimator of β, we define the following quantities:

β1 =
(
V −10 +XTWX)−1(V −10 β0 +XTWy

)
, (15)

V1 =
(
V −10 +XTWX

)−1
, (16)

a1 = a0 +
N

2
, (17)

b1 = b0 +
1

2

(
βT
0 V
−1
0 β0 + yTWy − βT

1 V
−1
1 β1

)
. (18)

Hence, assuming ν > 4, the mode and posterior mean of group means are both:

β̂ = E(β|X,y) = β1, (19)

and the variance-covariance matrix

C(β|X,y) =
ν

ν − 2

b1
a1
V1 , (20)

where V1, a1, and b1, are defined by Equations (16)-(18), and the diagonal elements are the variances of the
elements in β = (µ1, µ2, . . . , µk)T. Define

B∗ ≡


B∗11 B∗12 . . . B∗1k
B∗21 B∗22 . . . B∗2k

...
...

...
...

B∗k1 B∗k2 . . . B∗kk

 =
b1
a1
V1 , (21)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µi such that

µi ∈
(
µ̂i − IDF.T(1− c

2
, ν)
√
B∗ii , µ̂i + IDF.T(1− c

2
, ν)
√
B∗ii

)
, (22)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . , k, µ̂i is the ith element in β̂ = E(β|X,y),
B∗ii is the ith element on the diagonal of B∗, and IDF.T(·) is the IBM R© SPSS R© Statistics function for the
inverse cumulative t distribution.

Variance of error terms σ2: Under the setting of conjugate priors, the marginal posterior distribution
of σ2 is

σ2|X,y ∼ Inverse-Gamma(a1, b1) , (23)

where a1 and b1 are defined by Equations (17) and (18), respectively.
We may find the mode and posterior estimators of σ2 by computing the expected value

σ̂2 = E(σ2|X,y) =
b1

a1 − 1
, (24)

for a1 > 1, and the variance of the marginal posterior distribution of σ2|X,y

C(σ2|X,y) =
b21

(a1 − 1)2(a1 − 2)
, (25)
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for a1 > 2. We may also find a 100(1− c)% Bayesian credible interval with equal tail covering σ2 such that

σ2 ∈
(

IDF.GAMMA−1( 1− c

2
, a1, b1 ) , IDF.GAMMA−1(

c

2
, a1, b1 )

)
, (26)

with the probability of c, where c = 0.05 by default, and IDF.GAMMA(·) is the IBM R© SPSS R© Statistics
function for the inverse cumulative Gamma distribution.

Using Standard Noninformative Prior

By setting V −10 → 0, a0 = −k/2, and b0 = 0, it turns out that we place a reference (non-informative) prior
by assuming that

p(β, σ2) ∝ 1/σ2 . (27)

Group means β: Under the setting of Equation (27), the resulting marginal posterior distribution β|X,y
follows a scaled multivariate t distribution with ν = N − k degrees of freedom. We can also find the mode
and posterior estimators of β by computing the expected value

β̂ = E(β|X,y) =
(
XTWX

)−1
XTWy = (ȳ1, ..., ȳk)T , (28)

where ȳi =

∑n1+...+ni
j=n1+...+ni−1+1 fjyj∑n1+...+ni
j=n1+...+ni−1+1 fj

and the variance-covariance matrix

C(β|X,y) =
ν

ν − 2
s2
(
XTWX

)−1
=

ν

ν − 2
s2


1

n1,f
0 . . . 0

...
...

...
...

0 0 . . . 1
nk,f

 , (29)

where

s2 =
1

ν
(y −Xβ̂)TW (y −Xβ̂) =

1

ν

k∑
i=1

n1+...+ni∑
j=n1+...+ni−1+1

fj(yj − ȳi)2

=
1

ν
[

k∑
i=1

n1+...+ni∑
j=n1+...+ni−1+1

fjy
2
j −

k∑
i=1

ȳ2i ni,f ], (30)

and the diagonal elements are the variances of the elements in β = (µ1, µ2, . . . , µk)T.
We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µi such that

µi ∈

(
µ̂i − IDF.T(1− c

2
, ν)

√
s2

ni,f
, µ̂i + IDF.T(1− c

2
, ν)

√
s2

ni,f

)
, (31)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . , k, µ̂i is the ith element in β̂.

Variance of error terms σ2: Under the prior setting of (27), the marginal posterior distribution of σ2

is
σ2|X,y ∼ Inverse-χ2(ν, s2) , (32)

where ν = N − k, and s2 is defined by Equation (30).
We may find the mode and posterior estimators of σ2, when ν > 4, by computing the expected value

σ̂2 = E(σ2|X,y) =
ν

ν − 2
s2 , (33)

and the variance of the marginal posterior distribution of σ2|X,y

C(σ2|X,y) =
2ν2

(ν − 2)2(ν − 4)
s4 . (34)
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We may also find a 100(1− c)% Bayesian credible interval with equal tail covering σ2 such that

σ2 ∈
(

IDF.GAMMA−1(1− c

2
,
ν

2
,
ν

2
s2 ) , IDF.GAMMA−1(

c

2
,
ν

2
,
ν

2
s2 )

)
, (35)

with the probability of c, where c = 0.05 by default.
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Bayesian Inference for Pearson Correlation

Basic Statistics and Quantities in Estimating Sample Correlation Coefficient

Notations

The following notations defined in this section will be used for the subsequent sections.

N : Number of cases.

xi: Observed value of the scale variable X = (X1, X2, . . . , XN ) for the i -th case.

yi: Observed value of the scale variable Y = (Y1, Y2, . . . , YN ) for the i -th case

wi: Weight for the i -th case. Non-integer frequency weights are rounded to the nearest integer. For
values less than 0.5 or missing, the corresponding case will not be used.

Wx: Sum of weights of cases used in computation of statistics for variable X. Wx = N if no weights is
present.

Wy: Sum of weights of cases used in computation of statistics for variable Y . Wy = N if no weights is
present.

Wxy: Sum of weights of cases used in computation of statistics for variables X and Y . Wxy = N if no
weights is present.

Basic Statistics and Quantities

Suppose there are a set of N ordered pairs of observations. We assume that the pairs are independent of
each other, while the observations of the same pair, xi and yi may be correlated. To estimate the sample
correlation coefficient r, we may need to compute the following statistics.

Estimated sample mean: x̄ =
1

Wx

∑N

i=1
wixi . (1)

Estimated sample mean: ȳ =
1

Wy

∑N

i=1
wiyi . (2)

Estimated sample variance: s2x =
1

Wx − 1

[∑N

i=1
wix

2
i −

(∑N

i=1
wixi

)2

/Wx

]
. (3)

Estimated sample variance: s2y =
1

Wy − 1

[∑N

i=1
wiy

2
i −

(∑N

i=1
wiyi

)2

/Wy

]
. (4)

The estimated cross-product deviation for variables X and Y is

Cxy =

N∑
i=1

wixiyi −

(
N∑
i=1

wixi

)(
N∑
i=1

wiyi

)
/Wxy . (5)

The estimated covariance is thus

C(X,Y ) =
Cxy

Wxy − 1
, (6)

and the estimated Pearson correlation efficient is

rxy =
Cxy√
CxxCyy

, (7)
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It is also convenient to define

SXX =

N∑
i=1

wi(xi − x̄)2 , SY Y =

N∑
i=1

wi(yi − ȳ)2 , and SXY =

N∑
i=1

wi(xi − x̄)(yi − ȳ) . (8)

Hence, the estimated sample correlation coefficient is

rxy =
SXY√
SXXSY Y

. (9)

Bayesian Inference on the Correlation Coefficient

Using Bayes Factor

Bayes Factor Based on the JZS Prior

The Bayes factor suggested by [Wetzels and Wagenmakers, 2012] under the JZS prior is

∆10 =
(Wxy/2)1/2

Γ(1/2)

∫ ∞
0

(1 + g)(Wxy−2)/2[1 + (1− r2)g]−(Wxy−1)/2g−3/2e−Wxy/(2g) dg , (10)

where Γ(1/2) =
√
π, and r (|r| 6= 1) is the sample correlation coefficient which can be estimated by either

Equation (7) or Equation (9). Therefore, the Bayes factor in favor of the null hypothesis is ∆01 = 1/∆10,
with ∆10 defined by Equation (10). In case that the two variables have a perfect linear correlation, or |r| = 1,
the integral in Equation (7) does not converge. In this scenario, we do not estimate the Bayes factor based
on the JZS prior. Note that the sufficient sample size to estimate the Bayes factor is Wxy ≥ 2.

Fractional Bayes Factor

The Bayes factor suggested by [Kang et al., 2001] is

∆01 =
I1(x, y)

I2(x, y)
· I2(x, y; b)

I1(x, y; b)
, (11)

where

I1(x, y) =

∫ ∞
0

(1− ρ20)(Wxy−1)/2V −1
[
V −1/2 + V 1/2 − 2rρ0

]−(Wxy−1)
dV , (12)

I2(x, y) =

∫ 1

−1

∫ ∞
0

(1− ρ2)(Wxy−3)/2V −1
[
V −1/2 + V 1/2 − 2rρ

]−(Wxy−1)
dV dρ , (13)

I1(x, y; b) =

∫ ∞
0

(1− ρ20)(bWxy−1)/2V −1
[
V −1/2 + V 1/2 − 2rρ0

]−(bWxy−1)
dV , (14)

I2(x, y; b) =

∫ 1

−1

∫ ∞
0

(1− ρ2)(bWxy−3)/2V −1
[
V −1/2 + V 1/2 − 2rρ

]−(bWxy−1)
dV dρ , (15)

and r is defined by Equation (7). Note that the fraction b ∈ (0, 1), which is preset and specified by users.
Similar to what aforementioned in the previous section, in case that the two variables have a perfect linear
correlation, or |r| = 1, we do not estimate the Bayes factor the fractional Bayes factor.

Characterizing Posterior Distributions

The sufficient sample size to estimate the posterior distribution is Wxy ≥ 2. Suppose E(X) = λ, E(Y ) = µ,
V(X) = φ, and V(Y ) = ψ. We assume and place standard reference priors on λ, µ, φ, and ψ. To derive
the posterior density of ρ, we use the following substitution and approximation discussed in [Fisher, 1915]
by noting that

Pr(ρ|X,Y ) ∝ p(ρ)
(1− ρ2)(Wxy−1)/2

(1− ρr)Wxy−3/2
, (16)
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where p(ρ) is the prior density placed on ρ. The common choice of the prior has the form

p(ρ) ∝ (1− ρ2)c , (17)

where c = 0 and c = −3/2 are two popular choices. Theoretically, uses are allowed to specify any arbitrary
c ∈ (−∞,+∞).

After making the hyperbolic tangent transformation

ρ = tanh (ξ) and r = tanh (z) , (18)

where tanh (z) = sinh (z)/ cosh (z) = (ez − e−z)/(ez + e−z) and |r| 6= 1, we will finally have

ξ ∼ Normal (z, 1/Wxy) for large Wxy. (19)

We also suggest

ξ ∼ Normal

(
z − 5r

2Wxy
,

1

Wxy − 1.5 + 2.5(1− r2)

)
, (20)

which is a slightly better approximation when a uniform prior is placed on ρ. In practice, we can stick with
Equation (20).

To find the Bayes estimators, we can simulate ξ based on Equation (19) or (20), and then transform to
ρ by using ρ = tanh (ξ). Define

ρ∗ =
(
ρ(1), ρ(2), . . . , ρ(I)

)
, (21)

where I (I = 104 by default) is a larger integer input from syntax, denoting the posterior samples that we
finally collect. We may find the Bayes estimators of ρ by computing the mode

ρ̂ = max
ρ
{Pr(ρ|X,Y )} , (22)

the expected value

E(ρ|X,Y ) =

∫
ρ

ρPr(ρ|X,Y ) dρ ≈ E (ρ∗) =
1

I

I∑
i=1

ρ(i) , (23)

and the variance of the marginal posterior distribution

V(ρ|X,Y ) =

∫
ρ

ρPr(ρ|X,Y ) dρ− [E(ρ|X,Y )]
2 ≈ 1

I

I∑
i=1

(ρ(i))2 − [E(ρ|X)]
2
. (24)

We can compare the estimated E(ρ|X,Y ) and the null value to see whether there is a significant difference
between them. We may also use V(ρ|X,Y ) to evaluate the precision of the expected value we have computed
from the posterior distribution.

To maintain a more comprehensive Bayes estimator, we can construct a 100(1 − α)% highest density
region (HDR), which is the smallest interval with a mass of 100(1− α)% of the distribution. By definition,
that is to find a Bayesian confidence interval satisfying∫ Hα/2

Lα/2

Pr(ρ|X,Y ) dρ = 1− α , (25)

where the length of (Lα/2, Hα/2) is the shortest among all the candidate pairs.
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Two-Sample Bayesian Inference on Normal Distribution

Bayes-Factor Two-Sample Inference

Notations

The following notations defined in this section will be used for the subsequent sections.

k: Group index, k = 1, 2.

xki: Observed value of variable X for the i -th case in group k.

wki: Weight for the i -th case in group k. Non-integer frequency weights are rounded to the nearest
integer. For values less than 0.5 or missing, the corresponding case will not be used.

Nk: Number of cases in the data set for group k.

Wk: Sum of weights of cases in group k, Wk =
∑Nk

i=1 wki. Wk = Nk if no weights are present.

Basic Statistics for Two-Sample Unpaired t-Test

The Bayes factor for one-sample t-test can be extended to a two-sample unpaired design. Correspondingly,
the following statistics are computed in a conventional way.

Sample mean x̄k =
1

Wk

∑Nk

i=1
wkixki . (1)

Group mean difference d = x̄2 − x̄1 . (2)

Sample variance s2k =
1

Wk − 1

[∑Nk

i=1
wkix

2
ki −

(∑Nk

i=1
wkixki

)2

/Wk

]
. (3)

Sample standard deviation sk =
√
s2k . (4)

Pooled Test Statistics

Pooled variance of the mean difference s2p =
(W1 − 1)s21 + (W2 − 1)s22

W1 +W2 − 2
. (5)

Pooled standard deviation of the mean difference sp =
√
s2p . (6)

Pooled standard error of the difference sd = sp

√
1

W1
+

1

W2
. (7)

Observed t-statistic with pooled variance t =
d

sd
, with (W1 +W2 − 2) degrees of freedom. (8)

Pooled significance (2-tailed) Sig. (2-tailed) = 2 [1− CdfT(|t|,W1 +W2 − 2)] . (9)
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Unpooled Test Statistics

Unpooled standard error of the difference sd =

√
s21
W1

+
s22
W2

. (10)

Observed t-statistic with unpooled variance t =
d

sd
, with 1/(Z1 + Z2) degrees of freedom, where

(11)

Zk =

(
s2k/Wk

s21/W1 + s22/W2

)2

/(Wk − 1) . (12)

Unpooled significance (2-tailed) Sig. (2-tailed) = 2 [1− CdfT(|t|, 1/(Z1 + Z2))] . (13)

Rouder’s Method

The Bayes factor for two-sample unpaired t-test under the Rouder’s method is

rBF01 =

(
1 +

t2

ν

)−(ν+1)/2

∫ ∞
0

(1 +Ng)−1/2
(

1 +
t2

(1 +Ng)ν

)−(ν+1)/2

(2π)−1/2g−3/2e−1/(2g) dg

, (14)

where t is the pooled-variance two-sample t-statistic defined by Equation (8); N = W1W2/(W1 + W2);
ν = W1 +W2 − 2; and g is the variable to be integrated out.

Gönen’s Method

The Bayes factor for two-sample unpaired t-test under the Gönen’s method is

gBF01 =
Tν(t|0, 1)

Tν(t|
√
Nλ, 1 +Nσ2

δ )
=

PDF.T(t, ν)
√

1 +Nσ2
δ

NPDF.T

(
t/
√

1 +Nσ2
δ , ν,

√
Nλ/

√
1 +Nσ2

δ

) , (15)

where t is the pooled-variance two-sample t-statistic defined by Equation (8); ν = W1 + W2 − 2; N =
W1W2/(W1 +W2); λ and σ2

δ denote the prior mean and variance of (µ1−µ2)/σ; Tν(·) denotes the noncentral
t probability density function; and PDF.T(·) and NPDF.T are the IBM R© SPSS R© Statistics probability
density functions for the (noncentral) t distribution.

It is quite natural to assume that λ = 0. For the case where the prior mean of the effect size is assumed
to be zero, Equation (15) can be reduced to

gBF01,λ=0 =

(
1 + t2/ν

1 + t2/
[
ν(1 +Nσ2

δ )
])−(ν+1)/2√

1 +Nσ2
δ . (16)

The sufficient sample size to estimate is W1,W2 > 1.

Hyper-Prior Method

The Bayes factor for two-sample unpaired t-test under the hyper prior of σ2
δ is

pBF10,λ=0 =

∫ ∞
0

(
1 + t2/ν

1 + t2/ [ν(1 +Nσ2
δ )]

)(ν+1)/2 (
1 +Nσ2

δ

)−1/2
π(σ2

δ ) dσ2
δ . (17)

Set κ = N and b =
ν + 1

2
− a− 5

2
, Equation (17) can be reduced to a closed form

pBF10,λ=0 =
Γ(ν/2) Γ(a+ 3/2)

Γ
(
(ν + 1)/2

)
Γ(a+ 1)

(
1 +

t2

ν

)(ν−2a−2)/2

, (18)
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where Γ(·) denotes the Gamma function, t is the pooled-variance two-sample t-statistic defined by Equation
(8); ν = W1 +W2 − 2; a is input by users (a = −0.75 is the setting by default), and it is recommended that
the choice of a ∈ (−1,−1/2 ] [Wang and Liu, 2016]. Note that when we output the Bayes factor estimated
by using the Hyper-prior method, the value has to be in favor of H1 versus H0.

The sufficient sample size to estimate is W1,W2 > 1.

Bayesian Two-Sample Inference By Estimating Posterior Distributions

Bayesian Two-Sample Inference Using Conjugate and Noninformative Priors

Notations

The following notations defined in this section will be used for the subsequent sections.

X: A random variable to be tested whose values are observed for Group 1. We assumeX ∼ Normal(zµx , σ
2
x).

Y : A random variable to be tested whose values are observed for Group 2. We assume Y ∼ Normal(zµy
, σ2
y).

zµx
: Mean parameter of X.

zµy : Mean parameter of Y .

dµ: Mean parameter of Y −X, where dµ = zµy
− zµx

.

σx: Standard deviation parameter of X.

σy: Standard deviation parameter of Y .

Nx: Number of cases in the data set for group X.

Ny: Number of cases in the data set for group Y .

wxj : Weight for the j -th case in X. Non-integer frequency weights are rounded to the nearest integer.
For values less than 0.5 or missing, the corresponding case will not be used.

wyi: Weight for the i -th case in Y . Non-integer frequency weights are rounded to the nearest integer.
For values less than 0.5 or missing, the corresponding case will not be used.

Wx: Sum of weights of cases Wx =
∑Nx

i=1 wxi. Wx = Nx if no weights are present.

Wy: Sum of weights of cases Wy =
∑Ny

i=1 wyi. Wy = Ny if no weights are present.

Diffuse Priors with Known Variances

In this section, we assume that both σ2
x and σ2

y are known, and place the independent diffuse priors by noting
that p(zµx

|σ2
x) ∝ 1 and p(zµy

|σ2
y) ∝ 1.

Under this setting, we are interested in drawing inference on dµ. Thus, the marginal posterior distribution
of dµ is

dµ|(X,Y ) ∼ Normal(µn, σ
2
n) , (19)

where

µn = ȳ − x̄ =
1

Wy

Ny∑
i=1

wyiyi −
1

Wx

Nx∑
j=1

wxjxj , and σ2
n =

σ2
y

Wy
+

σ2
x

Wx
. (20)

We may find the Bayes estimators of dµ by computing the mode

d̂µ = ȳ − x̄ , (21)

the expected value
E [ dµ|(X,Y ) ] = ȳ − x̄ , (22)
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and the variance of the marginal posterior distribution of dµ|(X,Y )

V [ dµ|(X,Y ) ] = σ2
n . (23)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering dµ such that

dµ ∈
(

IdfNorm(
c

2
, µn,

√
σ2
n ) , IdfNorm(1− c

2
, µn,

√
σ2
n )
)

(24)

with the probability of c, where c = 0.05 by default.
The sufficient sample size to estimate is Wx,Wy > 0.

Normal Priors with Known Variances

In this section, we assume that both σ2
x and σ2

y are known, and place the independent normal priors zµx
∼

Normal(µx0
, σ2
x0

) and zµy
∼ Normal(µy0 , σ

2
y0).

Under this setting, we are interested in drawing inference on dµ. Thus, the marginal posterior distribution
of dµ is

dµ|(X,Y ) ∼ Normal
(
µyn − µxn

, σ2
yn + σ2

xn

)
, (25)

where

σ2
yn =

(
1

σ2
y0

+
Wy

σ2
y

)−1
, µyn = σ2

yn

(
µy0
σ2
y0

+
ȳWy

σ2
y

)
, (26)

and

σ2
xn

=

(
1

σ2
x0

+
Wx

σ2
x

)−1
, µxn

= σ2
xn

(
µx0

σ2
x0

+
x̄Wx

σ2
x

)
. (27)

The computation of x̄ and ȳ is the same as in Equation (20). We may find the Bayes estimators of dµ by
computing the mode

d̂µ = µyn − µxn
, (28)

the expected value
E(dµ|X,Y ) = µyn − µxn , (29)

and the variance of the marginal posterior distribution of dµ|(X,Y )

V(dµ|X,Y ) = σ2
yn + σ2

xn
. (30)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering dµ such that

dµ ∈
(

IdfNorm(
c

2
, µyn − µxn ,

√
σ2
yn + σ2

xn
) , IdfNorm(1− c

2
, µyn − µxn ,

√
σ2
yn + σ2

xn
)
)

(31)

with the probability of c, where c = 0.05 by default.
The sufficient sample size to estimate is Wx,Wy > 0.

Diffuse-Jeffreys Priors with Equal Variances

In this section, we assume that σ2
x = σ2

y = σ2, and p(σ2) ∝ 1/σ2. We place the diffuse priors by noting that
p(zµx |σ2) ∝ 1 and p(zµy |σ2) ∝ 1.

Under this setting, we are interested in drawing inference on dµ. Thus, the marginal posterior distribution
of dµ is

dµ|(X,Y ) ∼ tνn(µn, σ
2
n) , (32)

where
νn = Wx +Wy − 2 , (33)
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µn = ȳ − x̄ =
1

Wy

Ny∑
i=1

wyiyi −
1

Wx

Nx∑
j=1

wxjxj , (34)

and

σ2
n =

1

νn

Ny∑
i=1

wyi(yi − ȳ)2 +

Nx∑
j=1

wxj(xj − x̄)2

( 1

Wy
+

1

Wx

)
. (35)

We may find the Bayes estimators of dµ by computing the mode

d̂µ = ȳ − x̄ , (36)

the expected value
E [ dµ|(X,Y ) ] = ȳ − x̄ , (37)

and the variance of the marginal posterior distribution of µx|X

V [ dµ|(X,Y ) ] =
νn

νn − 2
σ2
n . (38)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(
µn − IdfT(1− c

2
, νn)

√
σ2
n , µn + IdfT(1− c

2
, νn)

√
σ2
n

)
(39)

with the probability of c, where c = 0.05 by default.
The sufficient sample size to estimate is Wx,Wy > 1.

Diffuse-Inverse Chi-Square Priors with Equal Variances

In this section, we assume that σ2
x = σ2

y = σ2 and σ2 ∼ Inverse-χ2(ν0, σ
2
0), and rewrite X ∼ Normal(zµx

, σ2)
and Y ∼ Normal(zµx

+ dµ, σ
2). We place the diffuse priors by noting that p(zµx

|σ2) ∝ 1 and p(zµy
|σ2) ∝ 1.

Under this setting, we are interested in drawing inference on dµ. Thus, the marginal posterior distribution
of dµ is

dµ|(X,Y ) ∼ tνn(µn, σ
2
n) , (40)

where

νn = ν0 +Wx +Wy − 2 , µn = ȳ − x̄ =
1

Wy

Ny∑
i=1

wyiyi −
1

Wx

Nx∑
j=1

wxjxj , (41)

and

σ2
n =

1

νn

ν0σ2
0 +

Ny∑
i=1

wyi(yi − ȳ)2 +

Nx∑
j=1

wxj(xj − x̄)2

( 1

Wy
+

1

Wx

)
. (42)

We may find the Bayes estimators of dµ by computing the mode

d̂µ = ȳ − x̄ , (43)

the expected value
E [ dµ|(X,Y ) ] = ȳ − x̄ , (44)

and the variance of the marginal posterior distribution of µx|X

V [ dµ|(X,Y ) ] =
νn

νn − 2
σ2
n . (45)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(
µn − IdfT(1− c

2
, νn)

√
σ2
n , µn + IdfT(1− c

2
, νn)

√
σ2
n

)
(46)

with the probability of c, where c = 0.05 by default.
The sufficient sample size to estimate is Wx,Wy > 1.
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Diffuse Priors with Unequal Variances

In this section, we do not make any assumptions on the equality of σ2
x and σ2

y. We place the diffuse priors
on all of the parameters by noting that p(zµx

, zµx
, σ2
x, σ

2
y) ∝ 1.

Define

ψ = arctan

(
sy/
√
Wy

sx/
√
Wx

)
, (47)

where

sy =

Ny∑
i=1

wyi(yi − ȳ)2/(Wy − 1)

1/2

, and sx =

Nx∑
j=1

wxj(xj − x̄)2/(Wx − 1)

1/2

. (48)

Note that

T =
dµ − (ȳ − x̄)√
s2x/Wx + s2y/Wy

= Ty sinψ − Tx cosψ , (49)

where

Tx =
zµx − x̄
sx/
√
Wx

∼ tWx−1 , Ty =
zµy − ȳ
sy/
√
Wy

∼ tWy−1 , (50)

and ψ is defined by Equation (47). Hence,

T ∼ Behrens-Fisher(Wy − 1,Wx − 1, ψ) . (51)

In practice, we have to approximate Equation (51) according to the dicussions in [Patil, 1965] by finding

η1 =

(
Wy − 1

Wy − 3

)
sin2 ψ +

(
Wx − 1

Wx − 3

)
cos2 ψ ,

η2 =
(Wy − 1)2

(Wy − 3)2(Wy − 5)
sin4 ψ +

(Wx − 1)2

(Wx − 3)2(Wx − 5)
cos4 ψ ,

η3 = 4 + η21/η2 , and η4 =
√
η1(η3 − 2)/η3 . (52)

Under this setting, the marginal posterior distribution of dµ is

dµ|(X,Y ) ∼ tνn(µn, σ
2
n) , (53)

where

νn = η3 , µn = ȳ − x̄ =
1

Wy

Ny∑
i=1

wyiyi −
1

Wx

Nx∑
j=1

wxjxj , and σ2
n = η24

(
s2x/Wx + s2y/Wy

)
. (54)

We may find the Bayes estimators of dµ by computing the mode

d̂µ = ȳ − x̄ , (55)

the expected value
E [ dµ|(X,Y ) ] = ȳ − x̄ , (56)

and the variance of the marginal posterior distribution of µx|X

V [ dµ|(X,Y ) ] =
νn

νn − 2
σ2
n . (57)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(
µn − IdfT(1− c

2
, νn)

√
σ2
n , µn + IdfT(1− c

2
, νn)

√
σ2
n

)
(58)

with the probability of c, where c = 0.05 by default.
The sufficient sample size to estimate is Wx,Wy > 5.
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Bayesian Inference for the Independence of Two Factors

General Notations

We desire to test the null hypothesis H0: No association between rows and columns versus H1: They are
associated. The following notations defined in this section will be used for the subsequent sections.

r: r = 1, 2, . . . , R denoting the non-empty row index, where R ≥ 2, and R is an integer.

s: s = 1, 2, . . . , S denoting the non-empty column index, where S ≥ 2, and S is an integer.

y∗∗: A matrix containing all of the observed cell counts with

y∗∗ ≡


y11 y12 . . . y1S
y21 y22 . . . y2S
...

...
...

...
yR1 yR2 . . . yRS

 , (1)

where yrs must be a nonnegative integer.

−→y : −→y = (y11, y12, . . . , yRS)T, a vectorized y∗∗ containing all of the observed cell counts.

yrs: Observed count data in the cell on the r-th row and the s-th column of the contingency table. Note
that yrs ≥ 0, and yrs is an integer.

yr.: yr. =
∑S
s=1 yrs, the marginal total of the r-th row.

y.s: y.s =
∑R
r=1 yrs, the marginal total of the s-th column.

Y : Y =
∑R
r=1

∑S
s=1 yrs, the total count of the cells.

ŷrs: Expected count in the cell on the r-th row and the s-th column of the contingency table. ŷrs =
yr.y.s/Y .

y.∗: y.∗ = (y.1, y.2, . . . , y.S)T, a vector containing marginal column sums, where S ≥ 2.

y∗.: y∗. = (y1., y2., . . . , yR.)
T, a vector containing marginal row sums, where R ≥ 2.

Bayesian Inference by Using Bayes Factors

To implement the following methods, we require the two factors both have the number of categories ≥ 2 to
formulate a valid two-way contingency table. Otherwise, we give a warning message, and do not conduct
any further Bayesian analyses.

Bayes Factors Based on Natural Conjugate Priors

[Gunel and Dickey, 1974] proposed a unified approach when considering the association between two factors
in a contingency table under the different model settings. The general idea is to assume conjugate gamma
priors for Poisson models, and then extend to the other further conditioned models.

We let a∗∗ denote a matrix of prior shape parameters with the same dimension as y∗∗

a∗∗ ≡


a11 a12 . . . a1S
a21 a22 . . . a2S
...

...
...

...
aR1 aR2 . . . aRS

 , (2)

where ars > 0. ars = 1 is the setting by default. Users can overwrite this setting by specifying different
values, the number of which must match that of y∗∗. We further define the following notations:
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−→a : −→a = (a11, a12, . . . , aRS)T, a vectorized a∗∗ containing all of the prior shape parameters.

A: A =
∑R
r=1

∑S
s=1 ars, the total count of the cells.

X: X = A− (R− 1)(S − 1).

a.∗: a.∗ = (a.1, a.2, . . . , a.S)T, a vector containing marginal column sums, where S ≥ 2.

a∗.: a∗. = (a1., a2., . . . , aR.)
T, a vector containing marginal row sums, where R ≥ 2.

ξ.∗: ξ.∗ = a.∗ − (R− 1), or subtracts (R− 1) from each element of a.∗.

ξ∗.: ξ∗. = a∗. − (S − 1), or subtracts (S − 1) from each element of a∗..

We also define the multivariate Beta function

B(α) =

∏R
r=1 Γ(αr)

Γ
(∑R

r=1 αr

) , (3)

where αr > 0.

Indepedent Poisson Sampling Models

The Bayes factor for independence under the Poisson sampling models is

BF01 =

(
1 +

1

b

)(R−1)(S−1)
Γ(Y +X)

Γ(X)

R∏
r=1

S∏
s=1

Γ(ars)

Γ(yrs + ars)

B(y∗. + ξ∗.)

B(ξ∗.)

B(y.∗ + ξ.∗)

B(ξ.∗)
, (4)

where R and S are determined by the numbers of categories found in the data sample; ars and b are specified
by users. Note that ars = 1 and b = R× S ×min(ars)/Y are the settings by default.

Joint Multinomial Sampling Models

Under this sampling scheme, the total number of observations Y is fixed. The cell counts are jointly multino-
mially distributed, or (y11, y12, . . . , yRS) ∼ Multinomial(Y, π11, π12, . . . , πRS), where

∑R,S
r=1,s=1 πrs = 1. The

prior distribution is the conjugate Dirichlet distribution (π11, π12, . . . , πRS) ∼ Dirichlet(a11, a12, . . . , aRS).
The Bayes factor for independence under the joint Multinomial sampling models is

BF01 =
B(y∗. + ξ∗.)

B(ξ∗.)

B(y.∗ + ξ.∗)

B(ξ.∗)

B(−→a )

B(−→y +−→a )
, (5)

where ars is specified by users. Note that ars = 1 is the setting by default.

Independent Multinomial Sampling Models

The Bayes factor for independence under the independent Multinomial sampling models when the row
margins are fixed is

BF01 =
B(y.∗ + ξ.∗)

B(ξ.∗)

B(y∗. + a∗.)

B(a∗.)

B(−→a )

B(−→y +−→a )
, (6)

where ars is specified by users. Note that ars = 1 is the setting by default. Note that when the column
margins are fixed, Equation (6) changes to

BF01 =
B(y∗. + ξ∗.)

B(ξ∗.)

B(y.∗ + a.∗)

B(a.∗)

B(−→a )

B(−→y +−→a )
. (7)

Similarly, if ξ∗. contains any components ≤ 0, we set BF01 to be missing, and give a warning message
indicating that “Bayes factor cannot appropriately be estimated because at least one component for the
prior is too small.”
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Bayes Factors Based on a Mixture of Symmetric Dirichlet Distributions

The Bayes factors presented in this section are based on the methods discussed by [Good, 1976]. The work
evaluated the independence in contingency tables by using a mixture of symmetric Dirichlet distributions.

In the following presentation, we define

Φ(mν , t, t
′) ≡ Y !∏

νmν !

∫ ∞
0

Γ(tk)
∏
ν Γ(mν + k)

(Γ(k))t Γ(Y + tk)
φ

(
k

t′

)
dk

t′

=
Y !∏
νmν !

Φ′(mν , t, t
′) , (8)

where

φ(k) =
1

k(π2 + log2 k)
, (9)

which is the specific log-Cauchy density function as a hyper prior suggested by [Good, 1976].

Under the null hypothesis H0, the probabilities of the interior of a contingency table given the marginals,
denoted by PF−Y , is

PF−Y ≡ P (y∗∗|yr., y.s, H0) =

∏R
r=1 yr.!

∏S
s=1 y.s!

Y !
∏R
r=1

∏S
s=1 yrs!

. (10)

Joint Multinomial Sampling Models

Under H0 when the total Y is fixed, the priors are Dirichlet(R,1) and Dirichlet(S,1) for πr. and π.s,
respectively. Note that Dirichlet(R,1) and Dirichlet(S,1) are assumed to be independent. Under H1, the
prior is Dirichlet(RS,1) for πrs. The proposed Bayes factor is

BF10 =
Φ(yrs, RS, 1)

Φ(yr., R, 1) Φ(y.s, S, 1)PF−Y
=

Φ′(yrs, RS, 1)

Φ′(yr., R, 1) Φ′(y.s, S, 1)
, (11)

where Φ′ denotes the integral part within Equation (8); Φ and PF−Y are defined by Equations (8) and (10),
respectively. We compute BF01 = 1/BF10 to output the Bayes factor in favor of the null hypothesis.

Independent Multinomial Sampling Models

Under H0 when the column sums are fixed, the prior is Dirichlet(S,1) for π.s. The proposed Bayes factor is

BF10 =
Φ(yrs, RS, 1)

Φ(yr., R, 1) Φ(y.s, S,R)PF−Y
=

Φ′(yrs, RS, 1)

Φ′(yr., R, 1) Φ′(y.s, S,R)
, (12)

where Φ′ denotes the integral part within Equation (8); Φ and PF−Y are defined by Equations (8) and (10),
respectively. We compute BF01 = 1/BF10 to output the Bayes factor in favor of the null hypothesis. By
symmetry, if the row sums are fixed, we can switch the columns and rows in the contingency table, and
apply Equation (12).

Bayes Factors Based on Intrinsic Priors

[Casella and Moreno, 2009] proposed the Bayes factors based on intrinsic priors and posterior probabilities.
Due to the computation hurdles, we only implement the methods discussed in this section for 2×2 contingency
tables with R = S = 2.

In the following presentation, we let z = {zrs} denote the possible design of a contingency table, and
let the sign

∑
z:
∑
zrs=Y

denote the summation over z with all possible designs of the contingency table of∑
zrs = Y .
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Joint Multinomial Sampling Models

The Bayes factor for independence based on the intrinsic prior under the joint Multinomial sampling models
is

BF10 =
(Y +RS − 1)!

(2Y +RS − 1)!

∑
z:
∑
zrs=Y

(
Y

z

)(∏R
r=1 zr.!

)(∏S
s=1 z.s!

)
(∏R

r=1 yr.!
)(∏S

s=1 y.s!
) R∏
r=1

S∏
s=1

(zrs + yrs)!

zrs!
, (13)

where (
Y

z

)
=

(
Y

z11, z12, z21, z22

)
=

Y !

z11! z12! . . . zRS !
. (14)

To conquer the computation hurdle, we introduce an additional parameter t to control the training sample
size, and rewrite Equation (13) to

BF10(t) =
(t+RS − 1)!

(t+ Y +RS − 1)!

Γ(Y +R)Γ(Y + S)

Γ(t+R)Γ(t+ S)

∑
z:
∑
zrs=t

(
t

z

)(∏R
r=1 zr.!

)(∏S
s=1 z.s!

)
(∏R

r=1 yr.!
)(∏S

s=1 y.s!
) R∏
r=1

S∏
s=1

(zrs + yrs)!

zrs!
,

(15)

where we set t = 500 for 2 by 2 contingency tables. If the observed grand total Y > t, we compute BF10(t),
and BF10, otherwise.

Finally, we compute BF01 = 1/BF10, or BF01(t) = 1/BF10(t), to output the Bayes factor in favor of the
null hypothesis. In case the contingency table under analysis has the dimension exceeding 2 by 2, we will
give a warning message, and compute the Bayes factor by using the method presented in the “Bayes Factors
Based on a Mixture of Symmetric Dirichlet Distributions” section.

Independent Multinomial Sampling Models

Under the null hypothesis, the default marginal distribution is given by

m0(y∗∗) =
Γ(S)

Γ(Y + S)

R∏
r=1

(
yr.
yr∗

)
×

S∏
s=1

y.s! , (16)

where (
yr.
yr∗

)
=

yr.!

yr1! yr2! . . . yrS !
. (17)

The intrinsic marginal distribution under the independent Multinomial sampling models when the row sums
are fixed is

mI(y∗∗) = Γ(S)

R∏
r=1

(
yr.
yr∗

)∏R
r=1 Γ(yr. + S)

Γ(Y + S)

∑
(z1∗,z2∗,...,zR∗):∑

s zrs=yr.

∏S
s=1 z.s!∏R

r=1

∏S
s=1 zij !

R∏
r=1

(
yr.
zr∗

)∏S
s=1(zrs + yrs)!

Γ(2yr. + S)
,

(18)

where (
yr.
zr∗

)
=

yr.!

zr1! zr2! . . . zrS !
. (19)

To conquer the computation hurdle, we may consider

mI(y∗∗; t) = Γ(S)

R∏
r=1

(
yr.
yr∗

)∏R
r=1 Γ(tr. + S)

Γ(t+ S)

∑
(z1∗,z2∗,...,zR∗):∑

s zrs=tr.

∏S
s=1 z.s!∏R

r=1

∏S
s=1 zij !

R∏
r=1

(
tr.
zr∗

)∏S
s=1(zrs + yrs)!

Γ(tr. + yr. + S)
,

(20)

where we set tr. = 5000, and consider four different conditions as follows for a certain 2 by 2 contingency
table design:
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• When y1. > t1. and y2. > t2., use Equation (20) by setting t = t1. + t2.;

• When y1. > t1. and y2. < t2., use Equation (20) by setting t = t1. + y2. and t2. = y2.;

• When y1. < t1. and y2. > t2., use Equation (20) by setting t = y1. + t2. and t1. = y1.;

• When y1. < t1. and y2. < t2., use Equation (18).

Thus, the desired Bayes factor is

BF01 =
m0(y∗∗)

mI(y∗∗)
or BF01 =

m0(y∗∗)

mI(y∗∗; t)
, (21)

depending on the setting of tr..
Note that the results are symmetrical in terms of the columns and the rows. If the column sums are

fixed, we can switch the rows and columns in the contingency table, and apply Equation (21). In case
the contingency table under analysis has the dimension exceeding 2 by 2, we will give a warning message,
and compute the Bayes factor by using the method presented in the “Independent Multinomial Sampling
Models” section with corresponding fixed row or column margins.

Bayes Factors Based on Nonparametric Bayesian Models

[Quintana, 1998] proposed the Bayes factors based on nonparametric models and Dirichlet process priors.
We only implement this method when R = 2 (or S = 2) with the row sums yr. (or column sums y.s)
fixed. Note that the priors are the Dirichlet processes. Under this particular situation, however, the prior
probabilities cancel out, which frees users from specifying prior information on weight.

Let λ = (λ1, λ1, . . . , λS), where λs > 0, and we define the Dirichlet prior

D(λ) =
Γ
(∑S

s=1 λs

)
∏S
s=1 Γ(λs)

. (22)

Thus, the Bayes factor is

BF01 =
L1(y∗∗)

L2(y∗∗)
, (23)

where

L1(y∗∗) =
D(λ)

D(λ+ y1∗ + y2∗)
, (24)

and

L2(y∗∗) =
D(λ)

D(λ+ y1∗)
× D(λ)

D(λ+ y2∗)
. (25)

Note that λ is specified by users. We set λ = 1 by default. The results are symmetrical in terms of the
columns and the rows. If the column sums are fixed, we can switch the columns and rows in the contingency
table, and apply Equation (23).

Bayesian Inference by Constructing Credible Intervals

In this section, we consider the model

πrs = A exp{αj + βk + γjk} , (26)

where j = 1, 2, . . . , R, k = 1, 2, . . . , S, and A−1 =
∑R
j=1

∑S
k=1 exp{αj + βk + γjk} with the restrictions

αR = βS = γjR = γRk = 0. To test the independence of two factors is equivalent to make inference on γjk,
where j = 1, 2, . . . , R− 1 and k = 1, 2, . . . , S − 1.

Based on the model, [Nandram and Choi, 2007] proposed to draw a random sample from Dirichlet(1), and
computed the posterior distribution of γjk. They finally applied the method discussed by [Besag et al., 1995]
to construct the desired simultaneous credible interval region which is a hyper-rectangular credible region
for (R − 1)(S − 1) interaction effects in a two-way contingency table. Inference can be made by checking
whether or not each interval contains 0.
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BAYES ONESAMPLE Algorithms

One-Sample Bayesian Inference on Normal Distribution

Notations

The following notations defined in this section will be used for the subsequent sections.

xi: Observed value of variable X for the i -th case.

yi: Observed value of variable Y for the i -th case

wi: Frequency weight for the i -th case. A non-integer frequency weight is rounded to the nearest integer.
For values less than 0.5 or missing, the corresponding case will not be used.

N : Number of cases in the data set.

W : Effective sample size W =
∑N
i=1 wi. W = N if no weights are present.

µ0: Test value specified by the null hypothesis.

Basic Statistics for One-Sample t-Test

The Bayes factor for one-sample t-test, proposed by [Rouder et al., 2009], actually relies on the conventional
t-statistic, the computation of which is discussed in this section. The following statistics are computed.

Sample mean x̄ =
1

W

∑N

i=1
wixi . (1)

Sample variance s2
x =

1

W − 1

∑N

i=1
wi (xi − x̄)

2
. (2)

Sample standard deviation sx =
√
s2
x . (3)

Standard error of the mean sx̄ =
sx√
W

. (4)

Mean difference d = x̄− µ0 . (5)

Observed t-statistic t =
d

sx̄
, with (W − 1) degrees of freedom. (6)

Significance (2-tailed) Sig. (2-tailed) = 2 [1− CdfT(|t|,W − 1)] . (7)



Basic Statistics for Two-Sample Paired t-Test

For Bayes factor two-sample paired t-test, the following statistics are computed.

Sample mean x̄ =
1

W

∑N

i=1
wixi . (8)

Sample mean ȳ =
1

W

∑N

i=1
wiyi . (9)

Difference of the sample means d = x̄− ȳ . (10)

Sample variance s2
x =

1

W − 1

[∑N

i=1
wix

2
i −

(∑N

i=1
wixi

)2

/W

]
. (11)

Sample variance s2
y =

1

W − 1

[∑N

i=1
wiy

2
i −

(∑N

i=1
wiyi

)2

/W

]
. (12)

Covariance between X and Y sxy =
1

W − 1

(∑N

i=1
wixiyi −

(∑N

i=1
wixi

)(∑N

i=1
wiyi

)
/W

)
.

(13)

Standard deviation of the mean difference sD =
√
s2
x + s2

y − 2sxy . (14)

Standard error of the mean difference sd =
√(

s2
x + s2

y − 2sxy
)
/W . (15)

Observed t-statistic for equality of means t =
d

sd
, with (W − 1) degrees of freedom. (16)

Significance (2-tailed) Sig. (2-tailed) = 2 [1− CdfT(|t|,W − 1)] . (17)

Bayes Factor for One-Sample and Two-Sample Paired t-Test with Known Variance

We can use the sufficient statistic X̄ to formulate the Bayes factor under this setting

B01 =
Pr(x̄|µ = µ0)

Pr(x̄|µ 6= µ0)

=

(2πσ2
x/W )−1/2 exp

[
−1

2
(x̄− µ0)2/(σ2

x/W )

]
(2π(ψ2 + σ2

x/W ))−1/2 exp

[
−1

2
(x̄− µ0)2/(ψ2 + σ2

x/W )

]
=
√

1 +Wg exp

[
−1

2
(x̄− µ0)2(σ2

x)−1W (1 + 1/(Wg))−1

]
, (18)

where µ0, σ2
x > 0 and g > 0 are specified a priori by users.

For two-sample paired t-test, we can replace x̄ with d = ȳ − x̄ (see Equation (10)), and σ2
x with σ2

d

(specified by users), respectively, in Equation (18) to estimate the desired Bayes factor.

Bayes Factor for One-Sample and Two-Sample Paired t-Test with Unknown Variance

Suppose Xi
iid∼ Normal(µ, σ2

x), i = 1, 2, . . . , N , where σ2
x is unknown, and we are interested in testing the null

hypothesis H0 : µ = 0 versus the alternative hypothesis H1 : µ 6= 0. We assume that µ ∼ Normal(µ0, ψ
2)

and p(σ2) = 1/σ2. In addition, we further specify the relationship between ψ2 and σ2
x by letting ψ2 = gσ2

x,
where g > 0. Thus, the Bayes factor under this setting is

B01 =

(
1 +

t2

ν

)−(ν+1)/2

(1 +Wg)−1/2

(
1 +

t2

(1 +Wg)ν

)−(ν+1)/2
, (19)
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where t is defined by Equation (7); ν = W − 1; and g > 0 is set a priori by users.
Note that Rouder et al proposed a more general approach we would like to consider here [Rouder et al., 2009].

To construct the Bayes factor, we have to choose and place priors on both µ and σ2. Let δ = µ/σ, denoting
the standardized effect size. It is then equivalent to test H0 : δ = 0. One way to set the alternative hypoth-
esis is to assume that H1 : δ ∼ Normal(0, σ2

δ ), where σ2
δ is specified a priori [Gönen et al., 2005]. A couple

of reasonable setting of σ2
δ may include σ2

δ = 1 or σ2
δ ∼ Inverse-χ2(1). In this document, we assume that

δ ∼ Cauchy, which is a t distribution with a single degree of freedom. For variance σ2, we apply a standard
setting of the Jeffreys prior with p(σ2) = 1/σ2 [Jeffreys, 1998]. Such a combination of the Cauchy on effect
size δ and the Jeffreys prior on variance σ2 is coined JZS prior in [Rouder et al., 2009].

Thus, the Bayes factor for one-sample t-test with the JZS prior is

B01 =

(
1 +

t2

ν

)−(ν+1)/2

∫ ∞
0

(1 +Wg)−1/2

(
1 +

t2

(1 +Wg)ν

)−(ν+1)/2

(2π)−1/2g−3/2e−1/(2g) dg

, (20)

where t is defined by Equation (7); ν = W − 1; and g is the variable to be integrated out.
For two-sample paired t-test, both Equation (19) and (20) apply with the substitution of t computed by

Equation (16).

Bayesian One-Sample Inference on Mean By Characterizing Posterior Distribu-
tions

Bayesian One-Sample Inference on Mean Using Conjugate and Noninformative Priors

Notations

The following notations defined in this section will be used for the subsequent sections.

X: A random variable to be tested whose values are observed. We assume X ∼ Normal(µx, σ
2
x), where

both µx and σ2
x are unknown.

µx: Mean parameter of X, with its prior distribution assumed in later discussions.

σ2
x: Variance parameter of X, with its prior distribution assumed in later discussions if unknown.

wi: Frequency weight for the i -th case. A non-integer frequency weight is rounded to the nearest integer.
For values less than 0.5 or missing, the corresponding case will not be used.

N : Number of cases in the data set.

W : Effective sample size W =
∑N
i=1 wi. W = N if no weights are present.

Normal Prior with Known Variance

In this section, we assume that the variance parameter σ2
x is known. Although this situation is not common

in practice, we consider it a nice example for a teaching perspective.
We place a normal prior on µx by assuming that µx ∼ Normal(µ0, σ

2
0), where µ0 and σ2

0 are specified by
users. Under this setting, the marginal posterior distribution of µx is

• µx|(X,σ2
x) ∼ Normal(µn, σ

2
n),

where σ2
n =

(
1

σ2
0

+
W

σ2
x

)−1

, and µn = σ2
n

(
µ0

σ2
0

+
Wx̄

σ2
x

)
. We may find the Bayes estimators of µx by

computing the mode
µ̂x = µn , (21)

the expected value
E(µx|X) = µn , (22)



and the variance of the marginal posterior distribution of µx|X

V(µx|X) = σ2
n . (23)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(

IdfNorm(
c

2
, µn,

√
σ2
n ) , IdfNorm(1− c

2
, µn,

√
σ2
n )
)

(24)

with the probability of c, where c = 0.05 by default.
For two-sample paired t-test, we can repeat the procedure by replacing σ2

x with σ2
d, and placing the prior

on the mean difference.

Diffuse Prior with Known Variance

In this section, we assume that the variance parameter σ2
x is known, and place a flat prior on µx by assuming

that p(µx) ∝ 1. Under this setting, the marginal posterior distribution of µx is

• µx|(X,σ2
x) ∼ Normal(x̄, σ2

x/W ).

We may find the Bayes estimators of µx by computing the mode

µ̂x = x̄ , (25)

the expected value
E(µx|X) = x̄ , (26)

and the variance of the marginal posterior distribution of µx|X

V(µx|X) = σ2
x/W . (27)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(

IdfNorm(
c

2
, x̄,

√
σ2
x/W ) , IdfNorm(1− c

2
, x̄,

√
σ2
x/W )

)
(28)

with the probability of c, where c = 0.05 by default.
For two-sample paired t-test, we can repeat the procedure by replacing σ2

x with σ2
d, and placing the prior

on the mean difference.

Normal-Inverse Chi-Square Priors

In this section, we assume and place the following priors

• σ2
x ∼ Inverse-χ2(ν0, σ

2
0)

• µx|σ2
x ∼ Normal(µ0,

1

κ0
σ2
x),

where σ2
x is conditioned on, and scaled by κ0 (κ0 > 0, and κ0 = 1 by default). Note that ν0, σ2

0 , µ0, and κ0

are specified by users. Under this setting, the marginal posterior distributions are

• σ2
x|X ∼ Inverse-χ2(νn, σ

2
n)

• µx|X ∼ tνn(µn,
1

κn
σ2
n),

where νn = ν0+W , κn = κ0+W , µn = µ0
κ0

κn
+x̄

W

κn
, and σ2

n =
1

νn

(
ν0σ

2
0 +

N∑
i=1

wi(xi − x̄)2 +W
κ0

κn
(x̄− µ0)2

)
.

We may find the Bayes estimators of µx by computing the mode

µ̂x = µn , (29)
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the expected value
E(µx|X) = µn , (30)

and the variance of the marginal posterior distribution of µx|X

V(µx|X) =
νn σ

2
n

(νn − 2)κn
. (31)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈

µn − IdfT
(

1− c

2
, νn

)√σ2
n

κn
, µn + IdfT

(
1− c

2
, νn

)√σ2
n

κn

 (32)

with the probability of c, where c = 0.05 by default.
For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the

variance of the difference between the two paired variables.

Normal-Inverse Gamma Priors

In this section, we assume and place the following priors

• σ2
x ∼ Inverse-Gamma(α0, β0)

• µx|σ2
x ∼ Normal(µ0,

1

κ0
σ2
x),

where σ2
x is conditioned on, and scaled by κ0 (κ0 > 0, and κ0 = 1 by default). Note that α0, β0, µ0,

and κ0 are specified by users. Under this setting, we can simply set ν0 = 2α0 and σ2
0 = 2β0/ν0. Thus,

σ2
x ∼ Inverse-χ2(2α0, 2β0/ν0). The same approach in the “Normal-Inverse Chi-Square Priors” section can

be repeated to compute the posterior distributions.
For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the

variance of the difference between the two paired variables.

Normal-Gamma Priors

In this section, we reparameterize σ2
x by letting τx = 1/σ2

x, which denotes the precision parameter. We
assume and place the following priors.

• τx ∼ Gamma(α0, β0)

• µx|τx ∼ Normal(µ0,
1

κ0τx
),

where τx is conditioned, and scaled by κ0 (κ0 > 0, and κ0 = 1 by default). Note that α0, β0, µ0, and κ0 are
specified by users. Under this setting, the marginal posterior distributions are

• τx|X ∼ Gamma(αn, βn)

• µx|X ∼ t2αn(µn,
βn
αnκn

),

where αn = α0 +
W

2
, βn = β0 +

1

2

N∑
i=1

wi(xi − x̄)2 +
κ0W (x̄− µ0)2

2(κ0 +W )
, µn = µ0

κ0

κn
+ x̄

W

κn
, and κn = κ0 +W .

We may find the Bayes estimators of µx by computing the mode

µ̂x = µn , (33)

the expected value
E(µx|X) = µn , (34)



and the variance of the marginal posterior distribution of µx|X

V(µx|X) =
βn

(αn − 1)κn
. (35)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈

(
µn − IdfT

(
1− c

2
, νn

)√ βn
αnκn

, µn + IdfT
(

1− c

2
, νn

)√ βn
αnκn

)
(36)

with the probability of c, where c = 0.05 by default, and νn = 2αn.
For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the

variance of the difference between the two paired variables.

Normal-Chi-Square Priors

In this section, we reparameterize σ2
x by letting τx = 1/σ2

x, which denotes the precision parameter. We
assume and place the following priors.

• τx ∼ χ2(λ)

• µx|τx ∼ Normal(µ0,
1

κ0τx
),

where τx is conditioned, and scaled by κ0 (κ0 > 0, and κ0 = 1 by default). Note that λ, µ0, and κ0 are spec-
ified by users. Under this setting, we can simply set α0 = λ/2 and β0 = 1/2. Thus, τx ∼ Gamma(λ/2, 1/2).
The same approach in the “Normal-Gamma Priors” section can be repeated to compute the posterior dis-
tributions.

For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the
variance of the difference between the two paired variables.

Jeffreys Priors

In this section, we assume and place the Jeffreys priors

• p(σ2
x) ∝ 1

σ4
x

[Yang and Berger, 1996] or p(σ2
x) ∝ 1

σ2
x

[Kass and Wasserman, 1996]

• p(µx|σ2
x) ∝ 1,

where there are two optional priors on σ2
x, and µx has a flat prior. Under this setting, the marginal posterior

distributions are

• σ2
x|X ∼ Inverse-Gamma(αn, βn)

• µx|X ∼ tνn(x̄, σ2
n),

where

for p(σ2
x) ∝ 1

σ4
x

, αn =
W + 1

2
, βn =

2∑N
i=1 wi(xi − x̄)2

, νn = W +1, and σ2
n =

1

W (W + 1)

N∑
i=1

wi(xi− x̄)2,

and

for p(σ2
x) ∝ 1

σ2
x

, αn =
W − 1

2
, βn =

2∑N
i=1 wi(xi − x̄)2

, νn = W −1, and σ2
n =

1

W (W − 1)

N∑
i=1

wi(xi− x̄)2.

We may find the Bayes estimators of µx by computing the mode

µ̂x = x̄ , (37)

the expected value
E(µx|X) = x̄ , (38)
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and the variance of the marginal posterior distribution of µx|X

V(µx|X) =
νn

νn − 2
σ2
n . (39)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(
x̄− IdfT(1− c

2
, νn)

√
σ2
n , x̄+ IdfT(1− c

2
, νn)

√
σ2
n

)
(40)

with the probability of c, where c = 0.05 by default.
For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the

variance of the difference between the two paired variables.

Diffuse Priors

In this section, we assume and place the diffuse priors

• p(σ2
x) ∝ 1

• p(µx|σ2
x) ∝ 1, where both µx and σ2

x have a flat prior.

Under this setting, the marginal posterior distributions are

• σ2
x|X ∼ Inverse-Gamma(αn, βn)

• µx|X ∼ tνn(x̄, σ2
n),

where αn =
W − 3

2
, βn =

2∑N
i=1 wi(xi − x̄)2

, νn = W − 3, and σ2
n =

1

W (W − 3)

N∑
i=1

wi(xi − x̄)2.

We may find the Bayes estimators of µx by computing the mode

µ̂x = x̄ , (41)

the expected value
E(µx|X) = x̄ , (42)

and the variance of the marginal posterior distribution of µx|X

V(µx|X) =
νn

νn − 2
σ2
n . (43)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering µx such that

µx ∈
(
x̄− IdfT(1− c

2
, νn)

√
σ2
n , x̄+ IdfT(1− c

2
, νn)

√
σ2
n

)
(44)

with the probability of c, where c = 0.05 by default.
For two-sample paired t-test, we can repeat the procedure by placing the priors on the mean and the

variance of the difference between the two paired variables.
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One-Sample Bayesian Inference on Binomial Distribution

Using Bayes-Factor

Notations

The following notations defined in this section will be used for the subsequent sections.

X: X = (X1, X2, . . . , XN ), a realization of Bernoulli trials with p(Xi = 1) = π and p(Xi = 0) = 1− π.
X is observed by x = (x1, x2, . . . , xN ), where xi is either 0 or 1. Note that we can handle any
categorical variables with two different levels, either numeric (4 and 5) or string (Yes and No), which
will be recoded to 0 or 1.

N : A total fixed number of cases (trials) in the data set.

f : f = (f1, f2, . . . , fN ), a frequency or replication weight for X. Non-integer frequency weights are
rounded to the nearest integer. For values less than 0.5 or missing, the corresponding case will not
be used.

Nf : Nf =
∑N

i=1 fi. If there is no frequencies present, Nf = N .

Y : Y =
∑N

i=1 fiXi ∼ Binomial(Nf , π), where Y is observed by y.

π0: A population proportion parameter under the null hypothesis H0. We assume that π0 ∼ Beta(a0, b0).

π1: A population proportion parameter under the alternative hypothesis H1. We assume that π1 ∼
Beta(a1, b1).

Bayes-Factor Based on Beta-Binomial Distribution

The Bayes factor based on the Beta-Binomial distribution is

∆01 =
Pr(Y |H0)

Pr(Y |H1)
=
B(a0 + y, b0 +Nf − y)B(a1, b1)

B(a1 + y, b1 +Nf − y)B(a0, b0)
, (1)

where B is the beta function defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
. (2)

Using Conjugate and Noninformative Priors

Notations

The following notations defined in this section will be used for the subsequent sections.

X: X = (X1, X2, . . . , XN ), a realization of Bernoulli trials with p(Xi = 1) = π and p(Xi = 0) = 1− π.
X is observed by x = (x1, x2, . . . , xN ), where xi is either 0 or 1. Note that we can handle any
categorical variables with two different levels, either numeric (4 and 5) or string (Yes and No), which
will be recoded to 0 or 1.

N : A total fixed number of cases (trials) in the data set.

f : f = (f1, f2, . . . , fN ), a frequency or replication weight for X. Non-integer frequency weights are
rounded to the nearest integer. For values less than 0.5 or missing, the corresponding case will not
be used.

Nf : Nf =
∑N

i=1 fi. If there is no weights present, Nf = N .

Y : Y =
∑N

i=1 fiXi ∼ Binomial(Nf , π), where Y is observed by y.

π: A population proportion parameter, with its prior distribution assumed in later discussions.
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Beta Prior

In this section, we place a conjugate prior placed on π by assuming that π ∼ Beta(a, b), where a, b > 0. The
sufficient sample size to estimate is Nf ≥ 1.

Under this setting, the marginal posterior distribution of π is

• π|Y ∼ Beta(a+ y, b+Nf − y).

Note that this also applies to the following two special cases:

• Uniform prior, when a = b = 1,

• Jeffreys prior, when a = b = 0.5.

We may find the Bayes estimators of π by computing the expected value

E(π|Y ) =
a+ y

a+ b+Nf
, (3)

and the variance of the marginal posterior distribution of π|Y

V(π|Y ) =
(a+ y)(b+Nf − y)

(a+ b+Nf )2(a+ b+Nf + 1)
. (4)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering π such that

π ∈
(

IdfBeta(
c

2
, a+ y, b+Nf − y ) , IdfBeta(1− c

2
, a+ y, b+Nf − y )

)
(5)

with the probability of c, where c = 0.05 by default.
To find the mode of π|Y needs a few more discussions on the parameter support.

• If a+ y > 1 and b+Nf − y > 1,

π̂ =
a+ y − 1

a+ b+Nf − 2
. (6)

• If a+ y < 1 and b+Nf − y < 1, the left mode is 0, the right mode is 1, and we define the anti-mode

π̃ =
a+ y − 1

a+ b+Nf − 2
. (7)

In the output design, we may indicate that this is the “anti-mode”.

• If a+ y < 1 and b+Nf − y ≥ 1, or if a+ y = 1 and b+Nf − y > 1, π̂ = 0.

• If a+ y ≥ 1 and b+Nf − y < 1, or if a+ y > 1 and b+Nf − y = 1, π̂ = 1.

• Note that if a+ y = b+Nf − y = 1, the posterior distribution is actually a uniform distribution with
the mode equal to any value in the range [0, 1].

Haldane’s Prior

The density function of the Haldane’s prior is p(π) = π−1(1−π)−1, which is an improper prior distribution.
It can be treated as a special Beta distribution with a = b = 0. The preceding statistics derived from
the posterior distribution still apply. Hence, we can allow a conjugate prior placed on π by assuming that
π ∼ Beta(a, b), where a, b > 0, together with a special case of a = b = 0 to handle the Haldane’s prior.

Define “Success” for Variables

To include the scale variables and the categorical variables with more than two levels, we discuss several
ways to define the “success” category, recode and dichotomize the variables.



BAYES ONESAMPLE Algorithms

Numerical Variables

To dichotomize a numerical variable with two or more than two values, we offer the following options to
define “success”:

• Using the last value found in the category after sorted in an ascending order, which is the setting by
default.

• Using the first value found in the category after sorted in an ascending order.

• Using the values ≥ the midpoint which is the average of the minimum and maximum sample data.

• Using the values ≥ a specified cutoff value.

• Using the specified values (can be more than 1) in the sample data.

String Variables

To recode a string variable with more than two levels, we offer the following options to define “success”:

• Using the last level found in the category after sorted in an ascending order, which is the setting by
default.

• Using the first level found in the category after sorted in an ascending order.

• Using the specified levels (can be more than 1) in the sample data.
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One-Sample Bayesian Inference On Poisson Distribution

Using Bayes-Factor

Notations

The following notations defined in this section will be used for the subsequent sections.

X: X = (X1, X2, . . . , XN ), a random sample from Poisson distribution of mean λ, or Xi ∼ Poisson(λ).
Xi = 0, 1, 2, . . . , which takes a nonnegative integer.

N : A total number of cases (events) in the data set.

f : f = (f1, f2, . . . , fN ), a frequency or replication weight for X. Non-integer frequency weights are
rounded to the nearest integer. For values less than 0.5 or missing, the corresponding case will not
be used.

Nf : Nf =
∑N
i=1 fi. If there is no frequencies present, Nf = N .

Y : Y =
∑N
i=1 fiXi ∼ Poisson(Nfλ), where Y is observed by y. Note that Y is a sufficient statistic.

λ0: A population rate parameter under the null hypothesis H0. We assume that λ0 ∼ Gamma(a0, b0).

λ1: A population rate parameter under the alternative hypothesisH1. We assume that λ1 ∼ Gamma(a1, b1).

Bayes-Factor Based on Gamma-Poisson Distribution

Consider the probability density function for Gamma prior defined by

p(λ|a, b) =
ba

Γ(a)
λa−1e−bλ , (1)

where a, b > 0. If b0 and b1 are rate parameters, the Bayes factor based on the Gamma-Poisson distribution
is

∆01 =
Pr(Y |H0)

Pr(Y |H1)
=
ba00 (b1 +Nf )a1+y Γ(a0 + y) Γ(a1)

ba11 (b0 +Nf )a0+y Γ(a1 + y) Γ(a0)
, (2)

where Γ is the gamma function defined by

Γ(k) =

∫ ∞
0

tk−1e−t dt . (3)

Using Conjugate and Reference Priors

Notations

The following notations defined in this section will be used for the subsequent sections.

X: X = (X1, X2, . . . , XN ), a random sample from Poisson distribution of mean λ, or Xi ∼ Poisson(λ).
Xi = 0, 1, 2, . . . , which takes a nonnegative integer.

f : f = (f1, f2, . . . , fN ), a frequency or replication weight for X. Non-integer frequency weights are
rounded to the nearest integer. For values less than 0.5 or missing, the corresponding case will not
be used.

Nf : Nf =
∑N
i=1 fi. If there is no frequencies present, Nf = N .

Y : Y =
∑N
i=1 fiXi ∼ Poisson(Nfλ), where Y is observed by y. Note that Y is a sufficient statistic.

λ: A population rate or intensity parameter, with its prior distribution assumed in later discussions.
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Gamma Prior

In this section, we place a conjugate prior on λ by assuming that λ ∼ Gamma(a0, b0), where a0, b0 > 0, and
b0 is the rate parameter. The probability density function of the prior is thus

p(λ|a0, b0) =
ba00

Γ(a0)
λa0−1e−b0λ . (4)

Under this setting, the marginal posterior distribution of λ is

• λ|Y ∼ Gamma(aN , bN ),

where aN =
∑N
i=1 fixi+a0 = y+a0, and bN = Nf +b0. We may find the Bayes estimators of λ by computing

the expected value
E(λ|Y ) = aN/bN , (5)

and the variance of the marginal posterior distribution of λ|Y

V(λ|Y ) = aN/b
2
N . (6)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering λ such that

λ ∈
(

IdfGam(
c

2
, aN , bN ) , IdfGam(1− c

2
, aN , bN )

)
(7)

with the probability of c, where c = 0.05 by default.
To find the mode of λ|Y needs a few more discussions on the parameter support.

• If aN ≥ 1,
λ̂ = (aN − 1)/bN . (8)

• If 0 < aN < 1, mode does not exist. The density curve forms an asymptote near y = 0.

Uniform Prior

In this section, we place a reference prior on λ by assuming that λ ∼ Uniform(0, 1). Actually this prior
follows a special case as discussed in the “Gamma Prior” section with a0 = 1 and b0 = 0. Under this setting,
the marginal posterior distribution of λ is

• λ|Y ∼ Gamma(aN , bN ),

where aN =
∑N
i=1 fixi + 1 = y+ 1, and bN = Nf . We may find the Bayes estimators of λ by computing the

expected value
E(λ|Y ) = aN/bN = (y + 1)/Nf , (9)

and the variance of the marginal posterior distribution of λ|Y

V(λ|Y ) = aN/b
2
N = (y + 1)/N2

f . (10)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering λ such that

λ ∈
(

IdfGam(
c

2
, y + 1, Nf ) , IdfGam(1− c

2
, y + 1, Nf )

)
(11)

with the probability of c, where c = 0.05 by default.
Similarly, the mode of λ|Y depends on the parameter support.

• If aN ≥ 1,
λ̂ = (aN − 1)/bN = y/Nf . (12)

• If 0 < aN < 1, mode does not exist. The density curve forms an asymptote near y = 0.
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Jeffreys Prior

In this section, we place the Jeffreys prior on λ by assuming that p(λ) ∝ λ−1/2. Actually this prior follows
a special case as discussed in the “Gamma Prior” section with a0 = 1/2 and b0 = 0. Under this setting, the
marginal posterior distribution of λ is

• λ|Y ∼ Gamma(aN , bN ),

where aN =
∑N
i=1 fixi + 1/2 = y+ 1/2, and bN = Nf . We may find the Bayes estimators of λ by computing

the expected value
E(λ|Y ) = aN/bN = (y + 1/2)/Nf , (13)

and the variance of the marginal posterior distribution of λ|Y

V(λ|Y ) = aN/b
2
N = (y + 1/2)/N2

f . (14)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering λ such that

λ ∈
(

IdfGam(
c

2
, y + 1/2, Nf ) , IdfGam(1− c

2
, y + 1/2, Nf )

)
(15)

with the probability of c, where c = 0.05 by default.
Similarly, the mode of λ|Y depends on the parameter support.

• If aN ≥ 1,
λ̂ = (aN − 1)/bN = (y − 1/2)/Nf . (16)

• If 0 < aN < 1, mode does not exist. The density curve forms an asymptote near y = 0.
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BAYES REGRESSION Algorithms

Bayesian Inference on Multiple Linear Regression Models

Bayesian Inference on the Linear Regression Models

Let qi denote the regression weight for the i -th case in the n observations. If there is no regression weight
specified, qi = 1. If qi ≤ 0 or missing, the corresponding case is not used. Let fi denote the frequency
weight for the i -th case in the n observations. A non-integer fi is rounded to the nearest integer. For
fi ≤ 0.5 or missing, the corresponding case will not be used. We further define wi ≡ qifi, and W ≡
diag(w1, w2, . . . , wn) = diag(q1f1, q2f2, . . . , qnfn), or

W =


q1f1 0 · · · 0

0 q2f2 · · · 0
...

...
...

...
0 0 · · · qnfn


n×n

. (1)

Note that the effective sample is N =
∑n
i=1 fi. N = n if no frequency weights are present.

Using Bayes Factor

Zellner’s Method

Zellner once suggested a g prior broadly discussed under M1 [Zellner, 1986]:

• p(α, φ|M1) = 1/φ.

• β|(φ, g,M1) ∼ Normal

(
0,
g

φ
(XTWX)−1

)
, where g is fixed.

Since g is fixed, Zellner’s g prior has the computational efficiency. Under these settings, the Bayes factor
suggested by Zellner between M1 and M0 has a closed form

∆z
10 = (1 + g)(N−p−1)/2

[
1 + g(1−R2)

]−(N−1)/2
, (2)

where g > 0, which is fixed and preset, and R2 is the unadjusted proportion of variance accounted for by
the covariate which can be similarly computed by the REGRESSION algorithm.

Jeffreys-Zellner-Siow’s (JZS) Method

The Bayes factor suggested by Zellner and Siow between M1 and M0 is

∆s
10 =

∫ ∞
0

(1 + g)(N−1−p)/2
[
1 + g(1−R2)

]−(N−1)/2(√N/2
Γ(1/2)

g−3/2e−N/(2g)

)
dg , (3)

where Γ(1/2) =
√
π, and R2 is the unadjusted proportion of variance accounted for by the covariate which

can be similarly computed by the REGRESSION algorithm.

Hyper-g Method

The Bayes factor suggested by Liang et al between M1 and M0 is

∆h
10(a) =

a− 2

2

∫ ∞
0

(1 + g)(N−1−p−a)/2
[
1 + g(1−R2)

]−(N−1)/2
dg (4)

(5)

where a is preset, R2 is the unadjusted proportion of variance accounted for by the covariate which can be
similarly computed by the REGRESSION algorithm.
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Rouder’s Method

The Bayes factor suggested by Rouder and Morey between M1 and M0 is

∆r
10(s) =

∫ ∞
0

(1 + g)(N−p−1)/2
[
1 + g(1−R2)

]−(N−1)/2(√Ns2/2
Γ(1/2)

g−3/2e−Ns
2/(2g)

)
dg , (6)

where s (s > 0) is specified by users, Γ(1/2) =
√
π, and R2 is the unadjusted proportion of variance accounted

for by the predictors which can be similarly computed by the REGRESSION algorithm.

Full model based Bayes factors

Although most of the approaches are based on the comparison of M1 with the null model M0, it is still
necessary and tractable to derive a full model based Bayes factor. The full mode can be expressed by

MF : y = 1nα+Xβ +Zγ + ε . (7)

The null hypothesis we desire to test is H0 : γ = 0. To construct the Bayes factor based on the user-
defined full model, we may follow the similar procedures aforementioned in the previous sections. Thus, the
Bayes factors between M1 and MF by different methods are

Zellner: ∆z
1F (g) = (1 + g)−(N−P−1)/2

[
1 + g

(
1−R2

F

1−R2
1

)](N−p−1)/2
, (8)

JZS: ∆s
1F (g) =

∫ ∞
0

(1 + g)−(N−P−1)/2
[
1 + g

(
1−R2

F

1−R2
1

)](N−p−1)/2(√
N/2

Γ(1/2)
g−3/2e−N/(2g)

)
dg ,

(9)

Hyper-g : ∆h
1F (a) =

a− 2

2

∫ ∞
0

(1 + g)−(N−1−P+a)/2

[
1 + g

(
1−R2

F

1−R2
1

)](N−p−1)/2
dg , (10)

Rouder: ∆r
1F (s) =

∫ ∞
0

(1 + g)−(N−P−1)/2
[
1 + g

(
1−R2

F

1−R2
1

)](N−p−1)/2(
s
√
N/2

Γ(1/2)
g−3/2e−Ns

2/(2g)

)
dg ,

(11)

where R2
1 and R2

F are the unadjusted proportion of variance accounted for by the covariate of the models
M1 and MF . The integrals in the Equations (8)-(11) can be numerically approximated by feeding in the
correct input f(g).

Characterizing Posterior Distributions

In this section, we still consider Model M1 represented by Equation (??). In the following discussions, we
define θT = (α,βT), and

A = [1,X] = [1,X1,X2, . . . ,Xp] =


1 x11 x21 · · · xp1
1 x12 x22 · · · xp2
...

...
...

...
...

1 x1n x2n · · · xpn


n×(p+1)

. (12)

Note that the columns of A must be linearly independent, and rank(A) = p+ 1. In practice, we can release
this restriction. From the following presentation, we let (ATWA)−1 denote the generalized inverse of ATA,
and do not assume that ATWA is nonsingular.

Recall from the conventional statistical analysis on multiple linear regression models, the unbiased esti-
mates of the regression parameters are

θ̃ =
(
ATWA

)−1
ATWy , (13)

and the variance of the error terms

σ̃2 =
1

N − (p+ 1)

(
y −Aθ̃

)T
W
(
y −Aθ̃

)
. (14)
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Using Conjugate Priors

We place a conjugate prior by assuming that

• σ2 ∼ Inverse-Gamma(a0, b0),

• θ|σ2 ∼ Normal
(
θ0, σ

2V0

)
.

Note that V0 must be positive definite, and specified with a correct size dimension. Otherwise, the output
will give a warning message, and use the identity matrix Ip+1 to continue the analysis. In case that redundant
columns are identified in the design matrix, we will not do any estimating, but assign 0 to the estimated
coefficients. For Bayesian prediction, we will zero out the corresponding elements in θ0 and, columns and
rows in V0.

Regression parameters θ: Under this setting, the resulting marginal posterior distribution θ|X,y follows
a scaled multivariate t distribution with ν degrees of freedom, where ν = 2a0 +N .

Before finding the Bayes estimator of θ, we define the following quantities:

θ1 =
(
V −10 +ATWA

)−1 (
V −10 θ0 +ATWy

)
, (15)

V1 =
(
V −10 +ATWA

)−1
, (16)

a1 = a0 +
N

2
, (17)

b1 = b0 +
1

2

(
θT0 V

−1
0 θ0 + yTWy − θT1 (V −10 +ATWA)θ1

)
. (18)

Hence, assuming that ν > 4, we compute the mode

θ̂ = θ1 =
(
V −10 +ATWA

)−1 (
V −10 θ0 +ATWy

)
, (19)

the expected value

E(θ|X,y) = θ1 =
(
V −10 +ATWA

)−1 (
V −10 θ0 +ATWy

)
, (20)

and the variance-covariance matrix

C(θ|X,y) =
ν

ν − 2

b1
a1
V1 , (21)

where V1, a1, and b1, are defined by Equations (16)-(18), and the diagonal elements are the variances of the
elements in θ = (α, β1, β2, . . . , βp)

T. Define

B∗ ≡


B∗11 B∗12 · · · B∗1p+1

B∗21 B∗22 · · · B∗2p+1
...

...
...

...
B∗p+11 B∗p+12 · · · B∗p+1p+1

 =
b1
a1
V1 . (22)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering α and βi such that

α ∈
(
θ̂1 − IdfT(1− c

2
, ν)
√
B∗11 , θ̂1 + IdfT(1− c

2
, ν)
√
B∗11

)
, and (23)

βi ∈
(
θ̂i+1 − IdfT(1− c

2
, ν)
√
B∗i+1i+1 , θ̂i+1 + IdfT(1− c

2
, ν)
√
B∗i+1i+1

)
, (24)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . , p, θ̂i is the i-th element in θ̂, and B∗i+1i+1

is the (i + 1)-th element on the diagonal of B∗. Note that we only need to evaluate the diagonal elements
of B∗.



BAYES REGRESSION Algorithms

Error variance σ2: Under the setting of conjugate priors, the marginal posterior distribution of σ2 is

σ2|X,y ∼ Inverse-Gamma(a1, b1) , (25)

where a1 and b1 are defined by Equations (17) and (18), respectively.
We may find the Bayes estimators of σ2 by computing the mode

σ̂2 =
b1

a1 + 1
, (26)

the expected value

E(σ2|X,y) =
b1

a1 − 1
, (27)

for a1 > 1, and the variance of the marginal posterior distribution of σ2|X,y

V(σ2|X,y) =
b21

(a1 − 1)2(a1 − 2)
, (28)

for a1 > 2. We may also find a 100(1− c)% Bayesian credible interval with equal tail covering σ2 such that

σ2 ∈
(

1/IdfGam( 1− c

2
, a1, b1 ) , 1/IdfGam(

c

2
, a1, b1 )

)
, (29)

with the probability of c, where c = 0.05 by default.

Predicted Value ỹ: Suppose we have observed a new m × (p + 1) matrix of regressors Ã, and we are
interested in predicting the corresponding outcome ỹ. Given θ and σ2, it follows that

ỹ|Ã,θ, σ2 ∼ Normal
(
Ãθ, σ2Im

)
. (30)

The marginal posterior distribution of ỹ is

ỹ|Ã,y ∼ t2a1
(
Ãθ1,

b1
a1

(Im + ÃV1Ã
T

)
, (31)

where a1, b1, and V1 are defined in Equations (17), (18), and (16), respectively. We may find the Bayes
estimators of ỹ by computing the mode

ˆ̃y = Ãθ1 , (32)

the expected value
E(ỹ|Ã,y) = Ãθ1 , (33)

and the variance-covariance matrix

C(ỹ|Ã,y) =
b1

a1 − 1

(
Im + ÃV1Ã

T
)
. (34)

Define

D∗ ≡


D∗11 D∗12 · · · D∗1m
D∗21 D∗22 · · · D∗2m

...
...

...
...

D∗m1 D∗m2 · · · D∗mm

 =
b1
a1

(
Im + ÃV1Ã

T
)
. (35)

We may also find a 100(1−c)% Bayesian credible interval with equal tail covering ỹ = (ỹ1, ỹ2, . . . , ỹm)
T

such
that

ỹi ∈
(

ˆ̃yi − IdfT(1− c

2
, 2a1)

√
D∗ii ,

ˆ̃yi + IdfT(1− c

2
, 2a1)

√
D∗ii

)
, (36)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . ,m, ˆ̃yi is the i-th element in ˆ̃y, and D∗ii is
the i-th element on the diagonal of D∗. Note that we only need to evaluate the diagonal elements of D∗.
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A subset of θ: If we desire to make statistical inference on θ = c by including all the regression parameters,
we may construct a Bayesian F -statistic by computing

F(θ) =
(θ1 − c)TV −11 (θ1 − c)

2b1
∗ 2a1
p+ 1

∼ Fp+1,2a1 , (37)

where θ1, V1, a1, and b1 are defined by Equations (15)-(18), respectively, p denotes the number of non-
redundant parameters excluding the intercept term, and c is a vector of testing values specified by users
with it number of elements equal to the number of parameters under estimating. By default, c = 0. The
associated p-value is thus 1− CDF.F(F, p+ 1, 2a1), where CDF.F is the IBM R© SPSS R© Statistics function
for the cumulative F distribution.

Furthermore, it is not an uncommon scenario in which we are interested in a subset of k non-redundant
parameter(s) in θ, where 1 ≤ k ≤ p+1. Note that the redundant parameter(s) specified by users, if any, will
be removed before the F -statistic is estimated. Let θ′ denote such k parameter(s) to be tested. To make
inference on θ′, we rewrite the null hypothesis as H0 : Lθ = c by constructing an appropriate Lk×(p+1)

matrix such that its element on the i-th row and the i′-th column is equal to 1 with the rest elements equal
to 0, where i (1 ≤ i ≤ k) and i′ (1 ≤ i′ ≤ p + 1) are the position index of the parameter(s) in θ′ and θ,
respectively. For instance, if θ′ = (β1, β3)T, the L matrix would be

L =

(
0 1 0 0 0 · · · 0
0 0 0 1 0 · · · 0

)
2×(p+1)

. (38)

The F -statistic can be formulated by

F(θ′) =
(Lθ1 − c)T

[
LV1L

T
]−1

(Lθ1 − c)
2b1

∗ 2a1
k
∼ Fk,2a1 . (39)

The associated p-value is thus 1−CDF.F(F, k, 2a1), where CDF.F is the IBM R© SPSS R© Statistics function
for the cumulative F distribution. Note that Equation (37) is a special case of Equation (39) when L =
I(p+1)×(p+1).

Using Standard Reference Priors

By setting V −10 → 0, a0 = −(p+ 1)/2, and b0 = 0, it turns out that we place a reference prior by assuming
that

p(θ, σ2) ∝ 1/σ2 . (40)

Regression parameters θ: Under the setting of Equation (40), the resulting marginal posterior distri-
bution θ|X,y follows a scaled multivariate t distribution with ν = N − (p+ 1) degrees of freedom. We can
also find the Bayes estimators of θ, assuming that ATA is nonsingular, by computing the mode

θ̂ =
(
ATWA

)−1
ATWy , (41)

the expected value

E(θ|X,y) =
(
ATWA

)−1
ATWy , (42)

and the variance-covariance matrix

C(θ|X,y) =
ν

ν − 2
s2
(
ATWA

)−1
, (43)

where

s2 =
1

ν
(y −Aθ̂)TW (y −Aθ̂) =

1

ν

[
yTWy − yTWA(ATWA)−1ATWy

]
, (44)
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and the diagonal elements are the variances of the elements in θ = (α, β1, β2, . . . , βp)
T. Define

A∗ ≡


A∗11 A∗12 · · · A∗1p+1

A∗21 A∗22 · · · A∗2p+1
...

...
...

...
A∗p+11 A∗p+12 · · · A∗p+1p+1

 = s2
(
ATWA

)−1
. (45)

We may also find a 100(1− c)% Bayesian credible interval with equal tail covering α and βi such that

α ∈
(
θ̂1 − IdfT(1− c

2
, ν)
√
A∗11 , θ̂1 + IdfT(1− c

2
, ν)
√
A∗11

)
, and (46)

βi ∈
(
θ̂i+1 − IdfT(1− c

2
, ν)
√
A∗i+1i+1 , θ̂i+1 + IdfT(1− c

2
, ν)
√
A∗i+1i+1

)
, (47)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . , p, θ̂i is the i-th element in θ̂, and A∗i+1i+1

is the (i + 1)-th element on the diagonal of A∗. Note that we only need to evaluate the diagonal elements
of A∗.

Error Variance σ2: Under the prior setting of (40), the marginal posterior distribution of σ2 is

σ2|X,y ∼ Inverse-χ2(ν, s2) = Inverse-Gamma(ν/2, νs2/2) , (48)

where ν = N − (p+ 1), and s2 is defined by Equation (44).
We may find the Bayes estimators of σ2 by computing the mode

σ̂2 =
ν

ν + 2
s2 , (49)

the expected value

E(σ2|X,y) =
ν

ν − 2
s2 , (50)

for ν > 2, and the variance of the marginal posterior distribution of σ2|X,Y

V(σ2|X,y) =
2ν2

(ν − 2)2(ν − 4)
s4 , (51)

for ν > 4. We may also find a 100(1− c)% Bayesian credible interval with equal tail covering σ2 such that

σ2 ∈
(

1/IdfGam(1− c

2
,
ν

2
,
ν

2
s2 ) , 1/IdfGam(

c

2
,
ν

2
,
ν

2
s2 )

)
, (52)

with the probability of c, where c = 0.05 by default.

Predicted Value ỹ: Suppose we have observed a new m × (p + 1) matrix of regressors Ã, and we are
interested in predicting the corresponding outcome ỹ. Given θ and σ2, it follows that

ỹ|Ã,θ, σ2 ∼ Normal
(
Ãθ, σ2Im

)
. (53)

The marginal posterior distribution of ỹ is

ỹ|Ã,y ∼ tN−(p+1)

(
Ã(ATWA)−1ATWy, s2(Im + Ã(ATWA)−1ÃT)

)
, (54)

where s2 is defined by Equations (44). We may find the Bayes estimators of ỹ by computing the mode

ˆ̃y = Ã(ATWA)−1ATWy = Ãθ̂ , (55)

the expected value
E(ỹ|Ã,y) = Ã(ATWA)−1ATWy = Ãθ̂ , (56)
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and the variance-covariance matrix

C(ỹ|Ã,y) =
ν

ν − 2
s2
(
Im + Ã(ATWA)−1ÃT

)
, (57)

where ν = N − (p+ 1). Define

F ∗ ≡


F ∗11 F ∗12 · · · F ∗1m
F ∗21 F ∗22 · · · F ∗2m

...
...

...
...

F ∗m1 F ∗m2 · · · F ∗mm

 = s2
(
Im + Ã(ATWA)−1ÃT

)
. (58)

We may also find a 100(1−c)% Bayesian credible interval with equal tail covering ỹ = (ỹ1, ỹ2, . . . , ỹm)
T

such
that

ỹi ∈
(

ˆ̃yi − IdfT(1− c

2
, ν)
√
F ∗ii ,

ˆ̃yi + IdfT(1− c

2
, ν)
√
F ∗ii

)
, (59)

with the probability of c, where c = 0.05 by default, i = 1, 2, . . . ,m, ˆ̃yi is the i-th element in ˆ̃y, and F ∗ii is
the i-th element on the diagonal of F ∗. Note that we only need to evaluate the diagonal elements of F ∗.

A subset of θ: If we desire to make statistical inference on θ = c by including all the regression parameters,
we may construct a Bayesian F -statistic by computing

F(θ) =
(θ̃ − c)TATWA(θ̃ − c)
yTWy − θ̃TATWAθ̃

∗ ν

p+ 1
∼ Fp+1,ν , (60)

where ν = N − (p + 1), θ̃ is defined by Equation (13), p denotes the number of non-redundant parameters
excluding the intercept term, and c is a vector of testing values specified by users with it number of elements
equal to the number of parameters under estimating. By default, c = 0. The associated p-value is thus 1−
CDF.F(F, p+1, ν), where CDF.F is the IBM R© SPSS R© Statistics function for the cumulative F distribution.

Furthermore, it is not an uncommon scenario in which we are interested in a subset of k non-redundant
parameter(s) in θ, where 1 ≤ k ≤ p+1. Note that the redundant parameter(s) specified by users, if any, will
be removed before the F -statistic is estimated. Let θ′ denote such k parameter(s) to be tested. To make
inference on θ′, we rewrite the null hypothesis as H0 : Lθ = c by constructing an appropriate Lk×(p+1)

matrix such that its element on the i-th row and the i′-th column is equal to 1 with the rest elements equal
to 0, where i (1 ≤ i ≤ k) and i′ (1 ≤ i′ ≤ p + 1) are the position index of the parameter(s) in θ′ and θ,
respectively. For instance, if θ′ = (β1, β3)T, the L matrix would be

L =

(
0 1 0 0 0 · · · 0
0 0 0 1 0 · · · 0

)
2×(p+1)

. (61)

The F -statistic can be formulated by

F(θ′) =
(Lθ̃ − c)T

[
L(ATWA)−1LT

]−1
(Lθ̃ − c)

yTWy − θ̃TATWAθ̃
∗ ν
k
∼ Fk,ν . (62)

The associated p-value is thus 1 − CDF.F(F, k, ν), where CDF.F is the IBM R© SPSS R© Statistics function
for the cumulative F distribution. Note that Equation (60) is a special case of Equation (62) when L =
I(p+1)×(p+1).
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Bayesian One-way Repeated Measures Anova Models

Introduction

In Bayesian one-way analysis of variance (ANOVA) models, we assume that there is a single measurement 
per subject. However, this assumption is not always true. It is not uncommon that a study design aims 
to investigate mean responses over multiple time points or conditions. Repeated measures ANOVA features 
such a design as the levels of one or more factors are measured from the same subject at each distinct time 
point or condition. The ANOVA models with repeated measures are also coined within-subject ANOVAs 
due to the fact that the levels are expressed within each subject.

The one-way repeated measures ANOVA model contains one factor and allows subjects to be crossed 
within the levels. Moreover, we assume that each subject has a single observation for each time point or 
condition, and thus we do not account for the subject-treatment interaction. A one-way ANOVA model with 
repeated measures designs contains two factors with one modeling treatment effect and the other subject 
effect, the latter of which tends to be treated as a random term.

In the following discussion, we present different Bayesian methods to draw statistical inference about one-
way ANOVA models with repeated measures designs, and describe theprocedure features.

General Notations

The following notations defined in this section will be used for the subsequent sections unless otherwise stated.

n: Number of distinct subjects in the data set. It is an integer, and n ≥ 1. Each subject represents a
single case.

i: i = 1, 2, . . . , n denoting the index of the n subject.

k: Number of repeated measurements, or variables, per subject. It is an integer, and k ≥ 2.

j: j = 1, 2, . . . , k denoting the index of the k repeated measurements or variables.

Y : An n × k numeric matrix of dependent variables to be modeled. Its observed components are repre-
sented by

Y =


y11 y12 · · · y1k
y21 y22 · · · y2k
...

...
. . .

...
yn1 yn2 · · · ynk


n×k

. (0.0.1)

qi: Regression weight for the i-th subject. If there are no regression weights specified, we set qi = 1. If
either qi ≤ 0 or qi is missing, the corresponding subject is not used.

fi: Frequency weight for the i-th subject. A noninteger fi is rounded to the nearest integer. If either
fi ≤ 0.5 or fi is missing, the corresponding subject is not used.

N : Number of effective subjects. It is an integer, and N =
∑n
i=1 fi I(qi > 0), where I(qi > 0) = 1 if

qi > 0, and 0 otherwise. If there are no frequency or regression weights, we set N = n.

Estimating Bayes Factor

There are two methods for estimating the Bayes factor for assessing statistical evidence in the one-way
ANOVA models with repeated measures designs. The first method is based on the approximation of Bayesian
information criterion (BIC), and has a closed form expression. The second method is more general for
ANOVA designs, but relies on numerical methods.

Bayesian Information Criterion Approximation Method

Based on the discussions in [Wagenmakers, 2007], Nathoo and Masson made an extension of the BIC ap-
proximation to the repeated measures design for estimating Bayes factors. They derived the effective sample
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size accounting for repeated measures correlation, and suggested an improved penalty term when estimating
the BIC for the selection between two competing models [Nathoo and Masson, 2016].

In this section, we consider the testing model

Mb
1 : Yij = µj + bi + εij , (0.0.2)

where i = 1, 2, . . . , n; j = 1, 2, . . . , k; µj is the j-th treatment, or within-subject effect; bi
iid∼ Normal(0, σ2

b ),

which is the i-th subject effect; and εij
iid∼ Normal(0, σ2

ε ), which denotes the error term. Note that bi and εij
are assumed to be independent. The null model for comparison is the one containing the subject effect only,
or

Mb
0 : Yij = µ+ bi + εij . (0.0.3)

This is equivalent to test H0 : µ1 = µ2 = . . . = µk = µ versus H1 : µj 6= µ for at least one j, where
j = 1, 2, . . . , k.

Before estimating the BIC and the Bayes factor, it would be convenient to define the following quantities:

wi = qifi , W =

n∑
i=1

wi , ȳ.. =
1

Wk

n∑
i=1

k∑
j=1

wiyij , ȳi. =
1

k

k∑
j=1

yij , and ȳ.j =
1

W

n∑
i=1

wiyij .

(0.0.4)
We further compute the total sum of squares

SST =

n∑
i=1

k∑
j=1

wi(yij − ȳ..)2 , (0.0.5)

the between-subject sum of squares

SSS = k

n∑
i=1

wi(ȳi. − ȳ..)2 , (0.0.6)

and the effect sum of squares

SSC = W

k∑
j=1

(ȳ.j − ȳ..)2 . (0.0.7)

Based on the maximum likelihood estimates, the expression suggested by [Nathoo and Masson, 2016] for
estimating ∆BIC10 = BIC(Mb

1) − BIC(Mb
0) in terms of the one-way repeated measures ANOVA by using

Equations (0.0.4)-(0.0.7) is:

• If kSSS > SST ,

∆BIC10 = W (k − 1) log

(
SST − SSC − SSS

SST − SSS

)
+ (k + 2) log

[
W (SST − SSC)

SSS

]
− 3 log

(
W SST
SSS

)
.

(0.0.8)

• If SST − SSC < kSSS ≤ SST ,

∆BIC10 = W log

(
SSS
W

)
+W (k − 1)× log

(
SST − SSC − SSS

W (k − 1)

)
−Wk log

(
SST
Wk

)
− 3 log(Wk)

+ (k + 2) log

[
W (SST − SSC)

SSS

]
. (0.0.9)

• If kSSS ≤ SST − SSC ,

∆BIC10 = Wk log

(
SST − SSC

SST

)
+ (k − 1) log(Wk) . (0.0.10)
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Thus, the desired Bayes factor, suggested by [Wagenmakers, 2007], can be approximated by

Bb10 ≈
1

exp (∆BIC10/2)
, (0.0.11)

where ∆BIC10 is estimated by Equations (0.0.8), (0.0.9), or (0.0.10) depending on the conditions aforemen-
tioned.

Rouder’s Method for Mixed Designs

In this section, we reparametrize the dependent variable to be modeled by letting

y = (y11, y12, . . . , y1n, y21, y22, . . . , y2n, . . . . . . , yk1, yk2, . . . , ykn)T , (0.0.12)

where, for each observed component of y, the first index of the subscription expression denotes the repeated
measure, and the second index the subject.

[Rouder et al., 2012] suggested an approach to implementing the constraints by projecting the space of
k dimensions into a space of dimension (k − 1) with the property that the marginal prior on all k effects is
identical. To do this, we let

Σk = Ik − Jk/k , (0.0.13)

where Ik is an identity matrix of size k, and Jk = 1k 1T
k , which is a square matrix of size k with the entries

all equal to 1. Note that Σk has (k − 1) eigenvalues all equal to 1 and one equal to 0. Since Σk is real and
symmetric, we can eigendecompose it by

Σk = Qk I(k−1)Q
T
k , (0.0.14)

where Qk is an orthogonal k × (k − 1) matrix composed of the (k − 1) linearly independent eigenvectors of
unit length corresponding to the nonzero eigenvalues of Σk, and I(k−1) is an identity matrix of size (k − 1).

Finally, we can set
X∗ = XQk , (0.0.15)

which is an (kn)× (k − 1) design matrix, and

β∗ = QT
k β , (0.0.16)

which is a vector of length (k− 1). With this advanced reparameterization and keeping the subject effect b,
the testing model in Equation (??) now becomes

Mr∗
1 : y = µ1 + σε (X∗β∗ +Zb) + ε , (0.0.17)

where X∗ and β∗ are defined by Equations (0.0.15) and (0.0.16), respectively.
To estimate the desired Bayes factor, we consider the following prior structures: β∗|g1 ∼ Normal(0, g1I(k−1))

with g1 ∼ Inverse-χ2(1), and b|g2 ∼ Normal(0, g2In) with g2 ∼ Inverse-χ2(1). Due to a high computational
hurdle, we only support regression weights for the procedure when the Rouder’s mixed design is requested
by users. Any frequency weights, if specified by users, are ignored, and we give a warning message to reflect
this. By defining W =

∑n
i=1 qi, the weight matrix containing only regression weights

W = Ik ⊗ diag (q1, q2, . . . , qn) , (0.0.18)

the augmented design matrix

H =
(
W 1/2X∗,W 1/2Z

)
, (0.0.19)

and the g-prior matrix

G = diag
(
g11

T
(k−1), g21

T
n

)
, (0.0.20)

we can compute the following quantities:

P0 = 1(kn) 1T
(kn)/(kn) , (0.0.21)
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ȳ = 1T
(kn)Wy/(kW ) , (0.0.22)

ỹ =
(
I(kn) − P0

)
W 1/2y , (0.0.23)

H̃ =
(
I(kn) − P0

)
H , (0.0.24)

and
Vg = H̃TH̃ +G−1 , (0.0.25)

and further estimate

S(g1, g2) =
1

|G|1/2|Vg|1/2

(
yTWy − kW ȳ2

ỹTỹ − ỹTH̃V −1g H̃Tỹ

)(kW−1)/2

, (0.0.26)

where |G| and |V | denote the determinant of G and V , respectively. Thus, the Bayes factor comparingMr∗
1

in Equation (0.0.17) with the model
Mr

0 : y = µ1 + ε (0.0.27)

is

BF r10(g1, g2) =

∫ ∞
0

∫ ∞
0

S(g1, g2) p(g1) p(g2) dg1 dg2 , (0.0.28)

where g1 and g2 are assumed to be independent, and both follow inverse-χ2(1) with the probability den-

sity function defined by p(g1) = (2π)−1/2g
−3/2
1 e−1/(2g1) and p(g2) = (2π)−1/2g

−3/2
2 e−1/(2g2), respectively.

[Rouder et al., 2012] suggested using the Monte-Carlo sampling to evaluate the multidimensional integral in
Equation (0.0.28), and argued that if S(g1, g2) is relatively diffuse, the evaluation might be accurate and
efficient. To implement this, rewrite

BF r10(g1, g2) = E(g1,g2) [S(g1, g2)] ≈ 1

L

L∑
l=1

S(g(l)) , (0.0.29)

where L is the number of samples specified by users, and we set L = 30, 000 by default; g(l) is the l-th two-
dimensional random vector sampled from the joint inverse-χ2(1). In this particular case, g1 ∼ inverse-χ2(1)
and g2 ∼ inverse-χ2(1) are independently sampled. Note that to sample an inverse-χ2 random variable, we
can first generate a random sample X ∼ χ2(1) by using rvgam(0.5, 0.5), and then take the reciprocal of X
to obtain 1/X ∼ Inverse-χ2(1).

In one-way ANOVA models with repeated-measures designs, we are not normally interested in the subject
effect b. To obtain an appropriate Bayes factor to test the treatment effect β, we need to compute an
auxiliary Bayes factor which compares a model containing only the subject effect with the null model stated
in Equation (0.0.27). Consider the model

Maux
1 : y = µ1 + σεZb+ ε , (0.0.30)

and redefine
H ′ = W 1/2Z , (0.0.31)

which is a design matrix excluding the first (k − 1) columns in Equation (0.0.19), and

G′ = diag
(
g21

T
n

)
, (0.0.32)

which is a g-prior matrix excluding the first (k−1) columns in Equation (0.0.20). Correspondingly, Equation
(0.0.24) becomes

H̃ ′ =
(
I(kn) − P0

)
H ′ , (0.0.33)

where P0 is the same as in Equation (0.0.21), and Equation (0.0.25) becomes

V ′g = H̃ ′TH̃ ′ +G′−1 . (0.0.34)
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Thus,

S(g2) =
1

|G′|1/2|V ′g |1/2

(
yTWy − kW ȳ2

ỹTỹ − ỹTH̃ ′V ′−1g H̃ ′Tỹ

)(kW−1)/2

, (0.0.35)

where ȳ and ỹ remain the same as in Equations (0.0.22) and (0.0.23), respectively, and S does not depend
on g1 any more.

The auxiliary Bayes factor comparing Maux
1 in Equation (0.0.30) with the null model is

BF aux10 (g2) =

∫ ∞
0

S(g2) p(g2) dg2 , (0.0.36)

which is also numerically approximated by the Monte-Carlo sampling

BF aux10 (g2) = E(g2) [S(g2)] ≈ 1

L

L∑
l=1

S(g
(l)
2 ) , (0.0.37)

where g2 ∼ inverse-χ2(1). Note that we can recycle the random sample of g2 previously generated in Equation
(0.0.29).

Finally, the desired Bayes factor, suggested by [Rouder et al., 2012] for a mixed ANOVA design, is

Br10 =
BF r10(g1, g2)

BF aux10 (g2)
, (0.0.38)

where BF r10(g1, g2) and BF aux10 (g2) are estimated by Equation (0.0.29) and (0.0.37), respectively.

Characterizing Posterior Distributions

In addition to estimating the Bayes factors for model selection, [Nathoo and Masson, 2016] also derived
a closed form for the posterior distribution of the mean parameters µ = (µ1, µ2, . . . , µk)T based on the
Bayesian central limit theorem. This large sample approximation actually does not depend on any prior
distributions placed on the conditional mean parameters, and can be expressed in terms of the statistics
estimated in previous discussions.

To derive the posterior distributions, we define

µ̂ = ȳ = (ȳ1, ȳ2, . . . , ȳk)T , (0.0.39)

where

ȳj =
1

W

n∑
i=1

wiyij . (0.0.40)

The large sample normal approximation to the posterior distribution of µ is

µ|y approx.∼ Normal
(
µ̂, Σ̂/W

)
, (0.0.41)

where

Σ̂ =


SST − SSC − SSS

W (k − 1)
Ik +

kSSS − SST + SSC
Wk(k − 1)

1k 1T
k , if kSSS − SST + SSC > 0

SST − SSC
Wk

Ik , otherwise .

(0.0.42)

Note that in Equation (0.0.42) Ik denotes a k × k identity matrix; 1k is a k × 1 vector with its components
all equal to 1; and SST , SSS , and SSC are defined by Equations (0.0.5), (0.0.6), and (0.0.7), respectively.

We may find the Bayes estimators of µj , where j = 1, 2, . . . , k, by computing the mode

M(µj |y) = µ̂j , (0.0.43)
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the expected value
E(µj |y) = µ̂j , (0.0.44)

and the variance based on the posterior distribution of µ|y

V(µj |y) = Σ̂jj/W , (0.0.45)

where µ̂j is the j-th component of µ̂, and Σ̂jj is the j-th element on the diagonal of Σ̂. We may also find a
100(1− c)% Bayesian credible interval with equal tail covering µj such that

µj ∈
[

IdfNorm

(
c

2
, µ̂j ,

√
Σ̂jj/W

)
, IdfNorm

(
1− c

2
, µ̂j ,

√
Σ̂jj/W

)]
(0.0.46)

with the probability of c, where c = 0.05 by default.
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Bootstrapping Algorithms 
Bootstrapping is a method for deriving robust estimates of standard errors and confidence 
intervals for estimates such as the mean, median, proportion, odds ratio, correlation coefficient 
or regression coefficient.  It may also be used for constructing hypothesis tests. Bootstrapping 
is most useful as an alternative to parametric estimates when the assumptions of those methods 
are in doubt (as in the case of regression models with heteroscedastic residuals fit to small 
samples), or where parametric inference is impossible or requires very complicated formulas 
for the calculation of standard errors (as in the case of computing confidence intervals for the 
median, quartiles, and other percentiles). 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 11-1 
Notation 
Notation Description 
K Number of distinct records in the dataset. 

The kth distinct record, k=1,..,K. 

                                          Frequency weight of the kth record. 

N Number of records, . 
B Number of bootstrap samples. 

                                         Generated frequency weight for the kth record of the bth bootstrap sample. 

T Statistic to bootstrap. 
                                         The bth bootstrap copy of statistic T. 

                               Ordered bootstrap values. 

 
Sampling 

The following sampling methods are available. 
 

Jackknife Sampling 

Jackknife sampling is used in combination with bootstrap sampling to approximate influence 
functions that are used in computing BCa confidence intervals. The algorithm is performed by 
leaving out one record at a time, and outputs the following frequency weights: 

 
 

 

  
 

 ...  

 
 

    ...  

 

... ... ... ... 
 

 
 

 ...    
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Case Resampling 

In the context of bootstrapping, case resampling means to randomly sample with replacement 
from the original dataset. This creates bootstrap samples of equal size to the original dataset. The 
algorithm is performed iteratively over k=1,..,K and b=1,...,B to generate frequency weights: 

 
 

 

 
 
Stratified Sampling 

When subpopulations vary considerably, it is advantageous to sample each subpopulation 
(stratum) independently. Stratification is the process of grouping members of the population into 
relatively homogeneous subgroups before sampling. The strata should be mutually exclusive: 
every element in the population must be assigned to only one stratum. The strata should also be 
collectively exhaustive: no population element can be excluded. Then simple case resampling is 
applied within each stratum to generate frequency weights  . 

 
Residual Sampling 

Residual sampling supports bootstrapping of regression models. In this case, the predicted 
variable for each record will be adjusted with a residual that is randomly sampled in the residual 
set with replacement. This adjusted variable will be used as the dependent variable in the new 
bootstrap sample. Residual sampling assumes homoscedastic residuals. 

 
The following notation applies to residual sampling: 
Table 11-2 
Notation 
Notation Description 

Data pairs used to build regression models. 

                                          Predicted values under the fitted model. 

                                             Residuals,                    . 

Data pairs for the bth bootstrap sample. 
 
 

For i=1,..,N, the algorithm sets: 
 

 
where k(i) maps i to k based upon ; that is, if f1=3 and f2=5, then k(1)=k(3)=1, k(4)=k(8)=2, 
and so on. 



 

Bootstrapping Algorithms 
 

For i=1,..,N and b=1,...,B, the algorithm sets: 
 

rv.multinomial 
 

where    is the 1×k matrix of residuals and rv.multinomial produces a k×1 matrix 
representing a single draw from a multinomial distribution with relative frequencies . 

 
Wild Bootstrap Sampling 

Wild bootstrap is similar to residual sampling, but the sign of the bootstrap residual for each 
record is randomly reversed. Wild bootstrap is useful in the presence of heteroscedastic residuals 
and small sample sizes. 

 
For i=1,..,N, the algorithm sets: 

 

 
where k(i) maps i to k based upon ; that is, if f1=3 and f2=5, then k(1)=k(3)=1, k(4)=k(8)=2, 
and so on. 

 
For i=1,..,N and b=1,...,B, the algorithm sets: 

 

rv.bernoulli rv.multinomial 
 

where    is the 1×k matrix of residuals and rv.multinomial produces a k×1 matrix 
representing a single draw from a multinomial distribution with relative frequencies . 

 
Pooling 

The following pooling methods are available: bootstrap estimates and percentile-t pivotal tests. 
 

Bootstrap Estimates 

Bias 
 

The bias of statistic T can be estimated by the following equation 
 
 

 
 

  
 

 

 
 

Standard error 
 

The standard error of statistic T can be estimated by the standard deviation of the bootstrap values 
with the following equation 
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Percentile confidence interval 
 

Suppose that T estimates a scalar , that we want an interval with left- and right-tail errors both 
equal to   , and that bootstrap values are ordered as                .  The basic percentile 
confidence interval is 

 

       ,   

If is not an integer, then interpolation can be used. A simple method that works well for 
approximately normal estimators is linear interpolation on the normal quantile scale. For example, 
suppose the integer part of is k, then we define 

 

 
where    is the inverse normal(0,1) distribution.  Similarly, if             is not an 
integer, the same interpolation can be used by replacing with in the equation above. 
Clearly such interpolations fail if k=0, B or B+1. If this happens, we quote the extreme value and 
the implied level of error equal to . 

BCa confidence interval 
 

The influence value of the th record in the sth stratum is approximated by 
 

 
where   is the estimate calculated from the original data but with the frequency         for 
the th record in the sth stratum.  It is reasonable to assume the empirical influence values 

. 

Defining                      , the BCa confidence interval is given as 

       ,   

where 
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Interpolation will be used as in the Percentile confidence interval. 
 

Percentile-t Pivotal 
Tests 
Suppose the null hypothesis is            

. Scalar T 

Let and                          , where SE and   are the standard errors of T 
and , respectively. We estimate the standard error from the standard errors calculated within  
the procedure. 

 
The alternative hypothesis can be            ,            , or          , which correspond 
to right-sided, left-sided, and two-sided p-values, respectively. The bootstrap right-sided p-value 
is calculated as 

 

The bootstrap left-sided p-value is calculated as 
 

The bootstrap two-sided p-value is calculated as . 
 

Vector T 
 

Let and                                                  , where 
and are the covariance matrices of T and , respectively. We estimate the 

covariance matrix from the covariance matrix calculated within the procedure. 
 

The alternative hypothesis is          , and the bootstrap p-value can be calculated as 
 

The percentile-t pivotal tests can also support bootstrap testing for the null 
hypothesis of                  where L is a matrix of linear  combinations. 
In  this case, let and 

. The alternative hypothesis is            , 
and nd the bootstrap p-value can be calculated as 
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CATPCA Algorithms 
The CATPCA procedure quantifies categorical variables using optimal scaling, resulting in 
optimal principal components for the transformed variables. The variables can be given mixed 
optimal scaling levels and no distributional assumptions about the variables are made. 

 
In CATPCA, dimensions correspond to components (that is, an analysis with two dimensions 
results in two components), and object scores correspond to component scores. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 12-1 
Notation 
Notation Description 
n Number of analysis cases (objects) 

Weighted number of analysis cases: 

Total number of cases (analysis + supplementary) 

Weight of object i; if cases are unweighted; if object i is 
supplementary. 

W Diagonal matrix, with on the diagonal. 
m Number of analysis variables 

Weighted number of analysis variables ( ) 
 

Total number of variables (analysis + supplementary) 

m1 Number of analysis variables with multiple nominal scaling level. 
m2 Number of analysis variables with non-multiple scaling level. 

Weighted number of analysis variables with multiple nominal scaling level. 

Weighted number of analysis variables with non-multiple scaling level. 

J Index set recording which variables have multiple nominal scaling level. 
H The data matrix (category indicators),  of order , after 

discretization, imputation of missings , and listwise deletion, if applicable. 
p Number of dimensions 

 
For variable j; 
Table 12-2 
Notation 
Notation Description 

Variable weight; if weight for variable j is not specified or if variable 
j is supplementary 

                                          Number of categories of variable j (number of distinct values in  , thus, 
including supplementary objects) 

                                         Indicator matrix for variable j, of order  
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The elements of are defined as 
 

 
  

 
Table 12-3 
Notation 

when the  th object is in the   th category of variable 
when the  th object is not in the   th category of variable 

Notation Description 
                                         Diagonal         matrix, containing the weighted univariate marginals; i.e., 

the weighted column sums of   (  ) 
                                        Diagonal matrix, with diagonal elements defined as 

 
 

 
 

Table 12-4 
Notation 

when the  th observation is missing and missing strategy variable    is passive 
when the  th object is in   th category of variable   and   th category is only 
used by supplementary objects  i.e. when         
otherwise 

Notation Description 

                                          I-spline basis for variable j, of order                    (see Ramsay (1988) 
for details) 

                                          Spline coefficient vector, of order 

                                             Spline intercept. 

Degree of polynomial 

                                           Number of interior knots 
 
 

The quantification matrices and parameter vectors are: 
Table 12-5 
Notation 
Notation Description 
X Object scores, of order 

Weighted object scores ( ) 

n X normalized according to requested normalization option 

                                         Centroid coordinates, of order        .  For variables with optimal 
scaling level multiple nominal, this are the category quantifications 
Category quantifications for variables with non-multiple scaling level, of 
order  

Component loadings for variables with non-multiple scaling level, of order p 

n normalized according to requested normalization option 

                                          Collection of category quantifications (centroid coordinates) for variables 
with multiple nominal scaling level  ), and vector coordinates  for 
non-multiple scaling level ( ). 
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Note:  The matrices W, , , , and   are exclusively notational devices; they are 
stored in reduced form, and the program fully profits from their sparseness by replacing matrix 
multiplications with selective accumulation. 

 
Discretization 

Discretization is done on the unweighted data. 
 

Multiplying 
 

First, the original variable is standardized. Then the standardized values are multiplied by 10 and 
rounded, and a value is added such that the lowest value is 1. 

 
Ranking 

 
The original variable is ranked in ascending order, according to the alphanumerical value. 

 
Grouping into a specified number of categories with a normal distribution 

 
First, the original variable is standardized. Then cases are assigned to categories using intervals 
as defined in Max (1960). 

 
Grouping into a specified number of categories with a uniform distribution 

 
First the target frequency is computed as divided by the number of specified categories, rounded. 
Then the original categories are assigned to grouped categories such that the frequencies of the 
grouped categories are as close to the target frequency as possible. 

 
Grouping equal intervals of specified size 

 
First the intervals are defined as lowest value + interval size, lowest value + 2*interval size, etc. 
Then cases with values in the kth interval are assigned to category k. 

 
Imputation of Missing Values 

When there are variables with missing values specified to be treated as active (impute mode or 
extra category), then first the ’s for these variables are computed before listwise deletion. Next 
the category indicator with the highest weighted frequency (mode; the smallest if multiple modes 
exist), or  (extra category) is imputed. Then listwise deletion is applied if applicable. And 
then the ’s are adjusted. 

 
If an extra category is imputed for a variable with optimal scaling level Spline Nominal, Spline 
Ordinal, Ordinal or Numerical, the extra category is not included in the restriction according to 
the scaling level in the final phase. 

 
For more information, see the topic “Objective Function Optimization”. 
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Configuration 
CATPCA can read a configuration from a file, to be used as the initial configuration or as a 
fixed configuration in which to fit variables. 

 
For an initial configuration see step 1 in “Objective Function Optimization ” 

 
A fixed configuration X is centered and orthonormalized as described in the optimization 
section in step 3 (with X instead of Z) and step 4 (except for the factor ), and the result is 
postmultiplied with   (this leaves the configuration unchanged if it is already centered and 
orthogonal). The analysis variables are set to supplementary and variable weights are set to one. 
Then CATPCA proceeds as described in “Supplementary Variables”. 

 
Objective Function 

The CATPCA objective is to find object scores X and a set of  (for j=1,...,m) — the underlining 
indicates that they may be restricted in various ways — so that the function 

 

tr 
 

where c is p if and c is 1 if j  J. 
 

is minimal, under the normalization restriction   (I is the p×p identity 
matrix). The inclusion of   in ensures that there is no influence of passive missing 
values (missing values in variables that have missing option passive, or missing option not 
specified). contains the number of active data values for each object. The object scores are 
also centered; that is, they satisfy  with u denoting an n-vector with ones. 

 
Optimal Scaling Levels 

The following optimal scaling levels are distinguished in CATPCA: 
 

Multiple Nominal.         (equality restriction only). 

Nominal.                  (equality and rank – one restrictions). 

Spline Nominal.                   and               (equality, rank – one, and spline restrictions). 

Spline Ordinal.  and        (equality, rank – one, and monotonic spline 
restrictions), with restricted to contain nonnegative elements (to guarantee monotonic I-splines). 

 
Ordinal.                   and (equality, rank – one, and monotonicity restrictions). The 
monotonicity restriction  means that must be located in the convex cone of all 

-vectors with nondecreasing elements. 

Numerical.                  and  (equality, rank – one, and linearity restrictions). The linearity        
restriction means that  must be located in the subspace of all -vectors that are a linear 
transformation of the vector consisting of successive integers. 
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For each variable, these levels can be chosen independently. The general requirement for all 
options is that equal category indicators receive equal quantifications. The general requirement 
for the non-multiple options is ; that is,  is of rank one; for identification purposes, 

is always normalized so that . 
 
Objective Function Optimization 

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Update category quantifications 

3. Update object scores 

4. Orthonormalization 

5. Convergence test: repeat (2) through (4) or continue 

6. Rotation and reflection 
 

The first time (for the initial configuration) initialization I is used and variables that do not have 
optimal scaling level Multiple Nominal or Numerical are temporarily treated as numerical, 
the second time (for the final configuration) initialization II is used. Steps (1) through (6) are 
explained below. 

 
Initialization 

 
I. If an initial configuration is not specified, the object scores X are initialized with 
random numbers.  Then X is orthonormalized (see step 4)  so that and 

, yielding . The initial component loadings are computed as the cross 
products of   and the centered original variables , rescaled 
to unit length. 

 
II. All relevant quantities are copied from the results of the first cycle. 

 
Update category quantifications; loop across analysis variables 

With fixed current values   the unconstrained update of   is 

  

Multiple nominal: . 
 

For non-multiple scaling levels first an unconstrained update is computed in the same way: 
 

 

next one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for computing a rank-one 
decomposition of , with restrictions on the left-hand vector, resulting in 
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Nominal: . 

For the next four optimal scaling levels, if variable j was imputed with an extra category,   is 
inclusive category  in the initial phase, and is exclusive category  in the final phase. 

 
Spline nominal and spline ordinal:      . 

 
The spline transformation is computed as a weighted regression (with weights the diagonal 
elements of ) of  on the I-spline basis . For the spline ordinal scaling level the elements of 

  are restricted to be nonnegative, which makes   monotonically increasing 

Ordinal:  ← ) .  

The notation WMON( ) is used to denote the weighted monotonic regression process, which 
makes   monotonically increasing. The weights used are the diagonal elements of   and the 
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964; 
Barlow et al., 1972). 

 
Numerical:  ← ). 

The notation WLIN( ) is used to denote the weighted linear regression process. The weights 
used are the diagonal elements of . 

Next   is normalized (if variable j was imputed with an extra category,   is inclusive category 
  from here on): 

 

Then we update the component loadings: 
 

 

Finally, we set . 

Update object scores 

First the auxiliary score matrix Z is computed as 
 

and centered with respect to W and : 
 

These two steps yield locally the best updates when there would be no orthogonality constraints. 

Orthonormalization 
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To find an -orthonormal that is closest to in the least squares sense, 
we use for the Procrustes rotation (Cliff, 1966) the singular value decomposition 

, then yields -orthonormal weighted 
object scores:                                                                                   , and . The calculation of L 
and Λ is based on tridiagonalization with Householder transformations followed by the implicit 
QL algorithm (Wilkinson, 1965). 

 
Convergence test 

 
The difference between consecutive values of the quantity 

TFIT = tr  

is compared with the user-specified convergence criterion ε - a small positive number. It can be 
shown that TFIT = .  Steps (2) through (4) are repeated as long as the 
loss difference exceeds ε. 

 
After convergence TFIT is also equal to tr  , with Λ as computed in the Orthonormalization 
step during the last iteration. (See also “Model Summary ” and variable correlations “Correlations 
and Eigenvalues ” for interpretation of ). 

 
Rotation and reflection 

 
To achieve principal axes orientation, is rotated with the matrix L. In addition the sth column 
of is reflected if for dimension s the mean of squared loadings with a negative sign is higher 
than the mean of squared loadings with a positive sign. Then step (2) is executed, yielding the 
rotated and possibly reflected quantifications and loadings. 

 
Supplementary  Objects 

To compute the object scores for supplementary objects, after convergence the category 
quantifications and object scores are again updated (following the steps in “Objective Function 
Optimization ”), with the zero’s in W temporarily set to ones in computing  Z and . If a 
supplementary object has missing values, passive treatment is applied. 

 
Supplementary  Variables 

The quantifications for supplementary variables are computed after convergence. For 
supplementary variables with multiple nominal scaling level, the Update Category Quantification 
step is executed once.  For non-multiple supplementary variables, an initial is computed as 
in the Initialization step. Then the rank-one and restriction substeps of the Update Category 
Quantification step are repeated as long as the difference between consecutive values  of 

exceeds .00001, with a maximum of 100 iterations. For more information, see the topic 
“Objective Function Optimization ” on p.  85. 
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Diagnostics 
The procedure produces the following diagnostics. 

 
Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank pmax indicates the maximum number of dimensions that can be computed 
for any dataset.  In general 

 

if there are variables with optimal scaling level multiple nominal without missing values to be 
treated as passive. If variables with optimal scaling level multiple nominal do have missing values 
to be treated as passive, the maximum rank is 

 

with m3 the number of variables with optimal scaling level multiple nominal without missing 
values to be treated as passive. 

 
Here  is exclusive supplementary objects (that is, a category only used by supplementary objects 
is not counted in computing the maximum rank). Although the number of nontrivial dimensions 
may be less than pmax when m=2, CATPCA does allow dimensionalities all the way up to pmax. 
When, due to empty categories in the actual data, the rank deteriorates below the specified 
dimensionality, the program stops. 

 
Descriptives 

The descriptives tables gives the weighted univariate marginals and the weighted number of 
missing values (system missing, user defined missing, and values less than or equal to 0) for 
each variable. 

 
Fit and Loss Measures 

When the HISTORY option is in effect, the following fit and loss measures are reported: 
 

Total fit (VAF). This is the quantity TFIT as defined in the Convergence Test step. 
 

Total loss. This is , computed as the sum of multiple loss and single loss defined below. 
 

Multiple loss.  This measure is computed as 

TMLOSS tr                       tr  

Single loss. This measure is computed only when some of the variables are 

single: SLOSS tr 



 
 
Model 
Summary 
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Model summary information consists of Cronbach’s alpha and the variance accounted for. 
 

Cronbach’s Alpha 
 

Cronbach’s Alpha per dimension (s=1,...,p): 
 

Total Cronbach’s Alpha is 
 

with the sth diagonal element of Λ as computed in the Orthonormalization step during the last 
iteration. 

 
Variance Accounted For 

 
Variance Accounted For per dimension (s=1,...,p): 

Multiple Nominal variables: 

VAF1 tr  , (% of variance is VAF1 ), 

Non-Multiple variables: 

VAF2 , (% of variance is VAF2 ). 
 

Eigenvalue per dimension: 

=VAF1  +VAF2 , 

with the sth diagonal element of Λ as computed in the Orthonormalization step during the 
last iteration. (See also the Convergence Test step and variable correlations “Correlations and 
Eigenvalues ” for interpretation of ). 

 
The Total Variance Accounted For for multiple nominal variables is the mean over dimensions, 
and for non-multiple variables the sum over dimensions. So, the total eigenvalue is 

 
tr  = VAF1  +   sVAF2 . 

If there are no passive missing values, the eigenvalues  are those of the correlation matrix 
(see “Correlations and Eigenvalues ”) weighted with variable weights: 
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If there are passive missing values, then the eigenvalues are those of the matrix c c, 
with c , (see “Correlations and Eigenvalues ”) which 
is not necessarily a correlation matrix, although it is positive semi-definite. This matrix is 
weighted with variable weights in the same way as R. 

 

Variance Accounted For 

The Variance Accounted For table gives the VAF per dimension and per variable for centroid 
coordinates, and for non-multiple variables also for vector coordinates (see “Quantifications”). 

 
Centroid Coordinates 

VAF tr  

 
Vector Coordinates 

 
VAF , for 

 
Correlations and Eigenvalues 

Before Transformation 
 

c c, with c weighted centered and normalized H. For  the eigenvalue 
decomposition of R (to compute the eigenvalues), first row j and column j are removed from R if j 
is a supplementary variable, and then is multiplied by . 

 
If passive missing treatment is applicable for a variable, missing values are imputed with the 
variable mode, regardless of the passive imputation specification. 

 
After Transformation 

 
When all analysis variables are non-multiple, and there are no missing values, specified to be 
treated as passive, the correlation matrix is: 

 

, with . 
 

The first p eigenvalues of R equal . (See also the Convergence Test step and “Model 
Summary” for interpretation of ). When there are multiple nominal variables in the analysis, 
p correlation matrices are computed (s=1,...,p): 

 

, 

with for non-multiple variables and  for 
multiple nominal variables. 
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Usually, for the higher eigenvalues, the first eigenvalue of   is equal to (see “Model 
Summary ”). The lower values of  are in most cases the second or subsequent eigenvalues of 

 . 
 

If there are missing values, specified to be treated as passive, the mode of the quantified variable 
or the quantification of an extra category (as specified in syntax; if not specified, default (mode) is 
used) is imputed before computing correlations. Then the eigenvalues of the correlation matrix do 
not equal  (see Model Summary section). The quantification of an extra category for multiple 
nominal variables is computed as 

 

, 
 

with I an index set recording which objects have missing values. 
 

For the quantification of an extra category for non-multiple variables first is computed 
as above, and then 

 
. 

 

For the eigenvalue decomposition of R (to compute the eigenvalues), first row j and column j are 
removed from R if j is a supplementary variable, and then is multiplied by . 

 

Object Scores and Loadings 

If all variables have non-multiple scaling level, normalization partitions the first p singular values 
of  divided by over the objects scores X and the loadings A, with Q the 
matrix of quantified variables (see “Correlations and Eigenvalues”), and V a diagonal matrix with 
elements . The singular value decomposition of is 

 
SVD  . 

 
With  (the subscript p denoting the first p columns of K) and ,   gives 
the best p-dimensional approximation of . 

 
The first p singular values   equal , with Λ as computed in the Orthonormalization 
step during the last iteration. (See also the Convergence Test step and “Model Summary ” for 
interpretation of ). 

 
For partitioning the first p singular values we write 

 
                                                               , (a+b=1, see below). 

During the optimization phase, variable principal normalization is used. Then, after convergence 
and . 
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If variable principal normalization is requested, n and n , else n and 
n with a=(1+q)/2, b=(1−q)/2, and q any real value in the closed interval [-1,1], 

except for independent normalization: then there is no q value and a=b=1. q=−1 is equal to 
variable principal normalization, q=1 is equal to object principal normalization, q=0 is equal to 
symmetrical normalization. 

 
When there are multiple nominal variables in the analysis, there are p matrices        , s=1,...p, (see 
“Correlations and Eigenvalues ”). Then one of the singular values of equals 

. 
 

If a variable has multiple nominal scaling level, the normalization factor is reflected in the 
centroids: n . 

 
Quantifications 

For variables with non-multiple scaling level the quantifications are displayed, the vector 
coordinates n   , and the centroid coordinates: with variable principal normalization, 

n with one of the other normalization options. For multiple nominal variables the 
quantifications are the centroid coordinates n. 

If a category is only used by supplementary objects (i.e. treated as a passive missing), only 
centroid coordinates are displayed for this category, computed as n for 

variables with non-multiple scaling level and for variables with 

multiple nominal scaling level, where is the rth row of , is the number of objects that 
have category r, and I is an index set recording which objects are in category r. 

 

Residuals 

For non-multiple variables, Residuals gives a plot of the quantified variable j(Gjyj)the 
approximation, .  For multiple nominal variables plots per dimension are produced of 

n against the approximation   n. 

 
Projected Centroids 

The projected centroids of variable l on variable j,     , are 
 



 

 

Scaling factor Biplot, triplot, and loading plot 
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In plots including both the object scores or centroids and loadings (loading plot including 
centroids, biplot with objects and loadings, and triplot with objects, centroids and loadings), the 
object scores and centroids are rescaled using the following scaling factor: 

 
 

Scalefactor 
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CATREG (Categorical regression with optimal scaling using alternating least squares) quantifies 
categorical variables using optimal scaling, resulting in an optimal linear regression equation  
for the transformed variables. The variables can be given mixed optimal scaling levels and no 
distributional assumptions about the variables are made. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of analysis cases (objects) 

Weighted number of analysis cases: 
 

Total number of cases (analysis + supplementary) 

Weight of object i; if cases are unweighted; if object i is 
supplementary. 

W Diagonal matrix, with on the diagonal. 
p Number of predictor variables 
m Total number of analysis variables 
r Index of response variable 

                                          Index set of predictor variables 

H The data matrix (category indicators), of order , after discretization, 
imputation of missings , and listwise deletion, if applicable. 

p Number of dimensions 
λ1 Lasso penalty 
λ2 Ridge penalty 

 

For variable j; 
 

 
 

 

 
 

Number of categories of variable j (number of distinct values in  , thus, 
including supplementary objects) 
Indicator matrix for variable j, of order 

 
 

The elements of   are defined as 

when the  th object is in the   th category of variable 
when the  th object is not in the   th category of variable 

 

                                         Diagonal         matrix, containing the weighted univariate marginals; i.e., 
the weighted column sums of   (  ) 

f Vector of degrees of freedom for the predictor variables, of order p 
                                          I-spline basis for variable j, of order                     (see Ramsay (1988) 

for details) 
                                          Spline coefficient vector, of order 

                                             Spline intercept. 
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Degree of polynomial 

                                           Number of interior knots 
 
 

The quantification matrices and parameter vectors are: 

Category quantifications for the response variable, of order  

Category quantifications for predictor variable j, of order   

b Regression coefficients for the predictor variables, of order p 
v Accumulated contributions of predictor variables: 

 
 

Note: The matrices W, , and   are exclusively notational devices; they are stored in reduced 
form, and the program fully profits from their sparseness by replacing matrix multiplications 
with selective accumulation. 

 
Discretization 

Discretization is done on the unweighted data. 
 

Multiplying 
 

First, the original variable is standardized. Then the standardized values are multiplied by 10 and 
rounded, and a value is added such that the lowest value is 1. 

 
Ranking 

 
The original variable is ranked in ascending order, according to the alphanumerical value. 

 
Grouping into a specified number of categories with a normal distribution 

 
First, the original variable is standardized. Then cases are assigned to categories using intervals 
as defined in Max (1960). 

 
Grouping into a specified number of categories with a uniform distribution 

 
First the target frequency is computed as divided by the number of specified categories, rounded. 
Then the original categories are assigned to grouped categories such that the frequencies of the 
grouped categories are as close to the target frequency as possible. 

 
Grouping equal intervals of specified size 

 
First the intervals are defined as lowest value + interval size, lowest value + 2*interval size, etc. 
Then cases with values in the kth interval are assigned to category k. 



 
 

 
Imputation of Missing Values 
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When there are variables with missing values specified to be treated as active (impute mode or 
extra category), then first the ’s for these variables are computed before listwise deletion. Next 
the category indicator with the highest weighted frequency (mode; the smallest if multiple modes 
exist), or  (extra category) is imputed. Then listwise deletion is applied if applicable. And 
then the ’s are adjusted. 

 
If an extra category is imputed for a variable with optimal scaling level Spline Nominal, Spline 
Ordinal, Ordinal or Numerical, the extra category is not included in the restriction according to 
the scaling level in the final phase. 

 
For more information, see the topic “Objective Function Optimization”. 

 
Objective Function 

The CATREG objective is to find the set of , b, and , , so that the function 
 

is minimal, under the normalization restriction .  The quantifications of the 
response variable are also centered; that is, they satisfy  with u denoting an 
n-vector with ones. 

 
With regularization, the loss function is subjected to: 

for Ridge, 

for Lasso, 
  

 

and for Elastic Net. 
    

 

The constrained loss functions can also be written as penalized loss functions: 
 

ridge 
 
 

lasso sign 
 

e-net sign 
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Optimal Scaling Levels 
The following optimal scaling levels are distinguished in CATREG: 

 
Nominal.  Equality restrictions only. 

 
Spline Nominal.   (equality and spline restrictions). 

 
Spline Ordinal. (equality and monotonic spline restrictions), with aj restricted to 
contain nonnegative elements (to guarantee monotonic I-splines). 
 
Ordinal.   (equality and monotonicity restrictions).  The monotonicity restriction 

means that must be located in the convex cone of all -vectors with nondecreasing 
elements. 

 
Numerical.   (equality and linearity restrictions). The linearity restriction   means 
that must be located in the subspace of all -vectors that are a linear transformation of the 
vector consisting of   successive integers. 

For each variable, these levels can be chosen independently. The general requirement for all 
options is that equal category indicators receive equal quantifications. For identification purposes, 

is always normalized so that . 
 
Objective Function Optimization 

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Update category quantifications response variable 

3. Update category quantifications and regression coefficients predictor variables 

4. Convergence test: repeat (2) through (3) or continue 

Steps (1) through (4) are explained below. 

Initialization 
 

I. Random 
 

The initial category quantifications      (for j= 1, ..., m) are defined as the   category indicators 
of variable j, normalized such that and           , and the initial regression 
coefficients are the correlations with the response variable. 

 
II. Numerical 

 
In this case, the iteration scheme is executed twice. In the first cycle, (initialized with initialization 
I) all variables are treated as numerical. The second cycle, with the specified scaling levels, starts 
with the category quantifications and regression coefficients from the first cycle. 
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III. Multistart (ALL) 
 

Choosing all multiple systematic starts guarantees obtaining the global optimal solution when 
the spline ordinal or ordinal scaling level is specified for one or more predictors (Van der Kooij, 
Meulman, and Heiser, 2006).  When this option is chosen, the iteration scheme is executed  

times, where s is the number of predictor variables with (spline) ordinal scaling level and is 
the number of all possible sign patterns for the regression coefficients of the predictor variables 
with (spline) ordinal scaling level. Each execution of the iteration scheme starts with the same 
initial category quantifications and regression coefficients (initialized with initialization I), but 
with different sign patterns for the coefficients. In the iteration process, the signs are held fixed. 
Finally, the iteration scheme is executed one more time using the optimal sign pattern (the pattern 
resulting in the highest R2, or RSQregu if regularization is applied). 

IV. Multistart (value) 
 

When a threshold value is specified with the multiple systematic starts option, the iteration scheme 
is executed twice for a selection of sign patterns for the regression coefficients of the predictor 
variables with (spline) ordinal scaling level. The sign patterns are selected by a combination of a 
percentage of loss of variance strategy and a hierarchical strategy (Van der Kooij, Meulman, and 
Heiser, 2006). 

 
The maximum number of sign patterns with this option is . 

 
In the first cycle (initialized with initialization I) all variables are treated as nominal. The second 
cycle, with the specified scaling levels, starts with the category quantifications and regression 
coefficients from the first cycle. After one iteration in the second cycle, the decrease in variance 
going from the last iteration in the first cycle to the first iteration in the second cycle is determined 
for predictors with (spline) ordinal scaling level. If the percentage of decrease for a predictor is 
above the specified threshold value, the predictor is allowed to have a negative sign. Then the 
second cycle continues a number of times: one time with the regression coefficient for all (spline) 
ordinal predictor positive and q times with the regression coefficient for one (spline) ordinal 
predictor negative, where q is the number of predictors with (spline) ordinal scaling level that are 
allowed to have a negative sign. If the ‘all positive’ sign pattern gives a better result (higher R2, or 
RSQregu if regularization is applied) then the ‘one negative’ signs patterns, the iteration scheme is 
executed one more time using the ‘all positive’ sign pattern. Else, if one of the ‘one negative’ 
signs patterns gives a better result than the ‘all positive’ sign pattern, the best ‘one negative’ signs 
pattern is selected and the second cycle is repeated for the ‘two negatives’ signs patterns: the 
patterns formed by adding one more negative sign to the best ‘one negative’ signs pattern. 
Then, the results of the ‘two negatives’ signs patterns are compared to the ‘one negative’ signs 
pattern and the ‘one negative’ signs pattern is selected if its result is better. Else, the second cycle 
is repeated for the ‘three negatives’ signs patterns, and so on. 

 
V. Fixsigns 

 
In this case, the iteration scheme is executed twice. In the first cycle, (initialized with initialization 
I) all variables are treated as nominal.  The second cycle, with the specified scaling levels,  
starts with the category quantifications and regression coefficients from the first cycle and fixed 
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signs (read from a user-specified file) for the regression coefficients of the predictor variables 
with (spline) ordinal scaling level. 

 
Update category quantifications response variable 

 
With fixed current values ,  the unconstrained update of is 

 

Nominal:          
 

For the next four optimal scaling levels, if variable j was imputed with an extra category,   is 
inclusive category  in the initial phase, and is exclusive category  in the final phase. 

 
Spline nominal and spline ordinal:              . 

 
The spline transformation is computed as a weighted regression (with weights the diagonal 
elements of ) of  on the I-spline basis . For the spline ordinal scaling level the elements of 

are restricted to be nonnegative, which makes   monotonically increasing 

Ordinal:  ← ) .  

The notation WMON( ) is used to denote the weighted monotonic regression process, which 
makes   monotonically increasing. The weights used are the diagonal elements of  and the 
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964; 
Barlow et al., 1972). 

 
Numerical:  ← ). 

 
The notation WLIN( ) is used to denote the weighted linear regression process. The weights 
used are the diagonal elements of . 

 
Next  is normalized (if the response variable was imputed with an extra category,  is inclusive 
category   from here on): 

 

 

Update category quantifications and regression weights predictor variables 
 

For updating a predictor variable j, , first the contribution of variable j is removed from 
v: Then the unconstrained update of is 

 

Next   is restricted and normalized as in step (2) to obtain . 

Finally, we update the regression coefficient 

 

  w 
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Regularized regression coefficients are obtained as 
 

        for Ridge, 

if and if for Lasso, and 
 

                                                 if        and               for Elastic Net (van der 
Kooij, 2007). 

 
Convergence test 

 

The difference between consecutive values of the apparent Prediction Error is compared with the 
user-specified convergence criterion ε a small positive number. 

 
The difference between consecutive values of the quantity 

 
 

APE 
  

 

Without regularization, APE is equal to 1 minus the squared multiple regression coefficient. Steps 
(2) and (3) are repeated as long as the APE difference exceeds ε. 

 
Diagnostics 

The procedure produces the following diagnostics. 
 
Descriptive Statistics 

The descriptives tables gives the weighted univariate marginals and the weighted number of 
missing values (system missing, user defined missing, and values less than or equal to 0) for 
each variable. 

 
Fit and error measures 

The squared multiple regression coefficient and the Apparent Prediction Error for each iteration 
are reported in the History table. Also, the decrease in APE for each iteration is reported. 

 
Summary Statistics 

The following model summary statistics are available. 
 

Multiple R 
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Multiple R Square 
 

 
Adjusted Multiple R Square 

 

with u a p-vector of ones. 
 

Regularization “R Square” (1-Error) 

RSQregu APE 

Without regularization, RSQregu is equal to R2. 
 

Apparent Prediction Error 

APE as computed in the convergence step in the last iteration of the optimization algorithm. For 
more information, see the topic “Objective Function Optimization”. 

 
Expected Prediction Error 

The expected prediction error is computed for the standardized (quantified) data. Only when for 
all variables the numeric scaling level is specified, the EPE is computed for the raw data as well. 

 
Supplementary objects (test cases) 

 
The expected prediction error for the training data (active cases) is 

 
 

EPEtrain    
 
 

and the standard error is 
 

SEtrain EPEtrain  

For the test data (supplementary objects), the expected prediction error is 
 

EPEtest       
 

 

 
where S is the index set of supplementary objects. 
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SEtest    EPE test  _ EPEtest 
 

 
For the estimation of the quantification of a supplementary category (a category only occurring 
with supplementary cases), see the Quantification section below. 

Multiplying EPEtrain, SEtrain, EPEtest, and SEtest with 
 
 
 
 
 

(the variance of the response variable for the active cases) yields the EPE and SE for the raw data. 
 

Resampling, .632 Bootstrap 
 

Bootstrap datasets are created by randomly drawing (with replacement) n times from the active 
objects (training data), including the object (case) weights. 

EPEboot Err err OP 

where the optimism is estimated as 
 

OP 
 

and Err , the leave-one-out bootstrap estimate of prediction error, is 
 

Err for  
 
 

where  is the set of indices of the bootstrap samples that 
 

(a) do not contain observation i, 
 

(b) do contain the categories that apply to observation i for variables with nominal or ordinal 
transformations, 

 
(c) do not require extrapolation for observation I for variables with spline transformations. 

 
  is the number of observations for which    . (The set may become empty 

if, for example, observation i has one of the extreme categories on a variable with a  spline 
transformation, and this category has a frequency of one. Then each bootstrap sample that does 
not contain this observation, also does not contain the extreme category; thus for observation i 
all bootstrap samples are excluded.) 

Err err 



 
 

Err 
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The Standard Error is computed as 
 

SEboot 
 
 
 

Adding multiplication with the variance of the response variable for the cases in bootstrap sample 
b in the computation of Err (...  (...)), yields the EPE and SE for the raw data. 

 
Resampling, Cross-validation 

 
The data are randomly divided into K disjoint subsets of the active objects (training data), 
including the object (case) weights. 

 
 

EPECV    
 
 
 

where indexes the kth subset and the remaining part of the data. 

The Standard Error is computed as 

SECV EPECV  

Adding multiplication with the variance of the response variable for the cases with the kth part 
removed in the computation of EPECV(... (...)), yields the EPE and SE for the 
raw data. 

 
Quantifications of categories that do not occur in a bootstrap sample or in the data with the kth 
part removed, are estimated as for supplementary categories (see “Quantifications ”). 

 

ANOVA Table 
 

Sum of Squares df Mean Sum of Squares 
Regression 
 
Residual 

w  
 

w       

 

 
 

w 

w  
 

w  

 

 

w 

 
F = MSreg/MSres 

Err 
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Correlations and Eigenvalues 

Before transformation 
 

c c , with c weighted centered and normalized H excluding the response 
variable. 

 
After transformation 

 
, the columns of Q are , . 

 
Statistics for Predictor Variables 

The following statistics are produced for each predicted variable. 
 

Beta 

The standardized regression coefficient is Betaj= . 
 

Standard Error Beta 

The standard error of Betaj is estimated from 1000 bootstrap samples. 
 

Degrees of Freedom 

The degrees of freedom for a variable depend on the optimal scaling level: 
 

Numerical. fj = 1. 

Spline ordinal, spline nominal.  fj = sj + tj minus the number of elements equal to zero in aj. 

Ordinal, nominal.  fj = the number of distinct values in yj minus 1.
F-Value 

 
 

 
 

Beta   SE  Beta 
 

Zero-order correlation 

Correlations between the transformed response variable   and the transformed predictor 
variables : 

 

 
Partial correlation 

PartialCorrj 
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with   the tolerance for variable j (see “Tolerance”). 
 

When a regularization method is applied, the OLS coefficients are computed as 
 

 
with R the correlation matrix after transformation and   is computed using the eigenvectors 
and eigenvalues of , where  is the correlation matrix of the predictors that have regression 
coefficients > 0, and R2 is computed as 

 

 
Part correlation 

PartCorrj      

with   the tolerance for variable j (see “Tolerance”). 
 

For computation of the OLS coefficients if regularization is applied, see “Partial correlation”. 
 

Importance 

Pratt’s measure of relative importance (Pratt, 1987) 

Impj 

The relative importance is only displayed if no regularization is applied. 
 

Tolerance 
 

The tolerance for the optimally scaled predictor variables is given by 
 

with the jth diagonal element of , where  is the correlation matrix of predictors that 
have regression coefficients > 0. 

 
The tolerance for the original predictor variables is also reported and is computed in the same 
way, using the correlation matrix for the original predictor variables, discretized, imputed, and 
listwise deleted, if applicable. 

 
Quantifications 

The quantifications are     , j=1,...,m. 
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Supplementary objects 
 

The category indicators of supplementary objects are replaced by the quantification of the 
categories if these categories also appear in the active data. If a category is only used by 
supplementary objects, the category quantification is estimated by interpolation for variables  
with numeric or spline scaling level if the supplementary category lies within the range of the 
categories in the active data. If the variable has numeric scaling level and the non-occurring 
category lies outside the range of categories in the active data, then extrapolation is applied. In all 
other cases, the category indicator is replaced by a system-missing value. 

 

Predicted and residual values 

There is an option to save the predicted values v and the residual values        . 
 

Whether for a supplementary object the predicted and residual value can be computed, depends on 
whether all categories of the object are quantified (which is the case if all categories also appear 
with the active objects) or can be estimated by inter- or extrapolation (see “Quantifications”). 

 

Residual Plots 

The residual plot for predictor variable j displays two sets of points: unnormalized quantifications (
) against category indicators, and residuals when the response variable is predicted from all 

predictor variables except variable j                         ) against category indicators. 
 

Regularization 
If regularization is specified, all above diagnostics apply to the selected or specified regularized 
model. If more than one model is specified (more than one penalty value), diagnostics for each 
model can be requested. 

 
Statistics 

 
APE (see “Apparent Prediction Error”), EPE (see “Expected Prediction Error”), and the 
Standardized sum of coefficients for each model. 

 
The standardized sum of coefficients are computed as 

 

 
for Ridge 
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sign 

 

 
 
 

 

for Lasso and Elastic Net 
sign 

 

Coefficients 
 

The regularized standardized coefficients for each model. 
 

Paths 
 

The regularized standardized coefficients are plotted on the y-axis against the standardized sum 
of coefficients for each model on the x-axis. For the Elastic net, multiple plots are produced: a 
Lasso paths plot for each specified value of the ridge penalty. 
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CCF Algorithms 
CCF computes the cross-correlation functions of two or more time series. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 14-1 
Notation 
Notation Description 
X, Y Any two series of length n 

Sample cross correlation coefficient at lag k 

                                          Standard deviation of series X 

                                          Standard deviation of series Y 

Sample cross covariance at lag k 
 
 
Cross Correlation 

The cross correlation coefficient at lag k is estimated by 
 

 

where 
 
 

 
 
 

 

The cross correlation function is not symmetric about . 

Approximate standard error of is 
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The standard error is based on the assumption that the series are not cross correlated and one of 
the series is white noise. (The general formula for the standard error can be found in (Box and 
Jenkins, 1976), p.  376, 11.1.7.) 
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CLUSTER Algorithms 
CLUSTER produces hierarchical clusters of items based on distance measures of dissimilarity or 
similarity. 

 
Cluster Measures 

For more information, see the topic “Proximities Measures”. 
 
Clustering Methods 

The cluster method defines the rules for cluster formation. For example, when calculating the 
distance between two clusters, you can use the pair of nearest objects between clusters or the pair 
of furthest objects, or a compromise between these methods. 

 
Notation 

The following notation is used unless otherwise stated: 
Table 15-1 
Notation 
Notation  Description 
S Matrix of similarity or dissimilarity measures 

Similarity or dissimilarity measure between cluster i and cluster j 

Number of cases in cluster i 
 
 

General Procedure 

Begin with N clusters each containing one case. Denote the clusters 1 through N. 
 Find the most similar pair of clusters p and         . Denote this similarity . If a 

dissimilarity measure is used, large values indicate dissimilarity. If a similarity measure 
is used, small values indicate dissimilarity. 

 Reduce the number of clusters by one through merger of clusters p and q. Label the new 
cluster    and update similarity matrix (by the method specified) to reflect revised 
similarities or dissimilarities between cluster t and all other clusters. Delete the row and 
column of S corresponding to cluster p. 

 Perform the previous two steps until all entities are in one cluster. 
 For each of the following methods, the similarity or dissimilarity matrix S is updated to reflect 

revised similarities or dissimilarities  between the new cluster t and all other clusters r 
as given below. 

 

Average Linkage between Groups 

Before the first merge, let         for to N. Update by 

 111 
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Update   by 

 

 

and then choose the most similar pair based on the value 
 

 
Average Linkage within Groups 

Before the first merge, let         and        for to N. Update by 
 

 
Update   and   by 

 

 

 
and choose the most similar pair based on 

 

 

Single Linkage 

Update by 
 

 
 

  

 
 
 

if is a dissimilarity matrix 
if is a similarity matrix 

Complete Linkage 

Update by 
 
 

 
 
 

if is a dissimilarity matrix 
if is a similarity matrix 

 
Centroid Method 

Update by 
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Median Method 

Update by 
 

 
 
Ward’s Method 

Update by 
 

 

Update the coefficient W by 
 

 
Note that for Ward’s method, the coefficient given in the agglomeration schedule is really the 
within-cluster sum of squares at that step. For all other methods, this coefficient represents the 
distance at which the clusters p and q were joined. 
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Cluster Evaluation Algorithms 
This document describes measures used for evaluating clustering models. 
 The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which 

contain tightly cohesive clusters) and cluster separation (favoring models which contain 
highly separated clusters). It can be used to evaluate individual objects, clusters, and models. 

 The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of 
squares between (SSB) is a measure of prototype-based separation. 

 Predictor importance indicates how well the variable can differentiate different clusters. For 
both range (numeric) and discrete variables, the higher the importance measure, the less  
likely the variation for a variable between clusters is due to chance and more likely due to 
some underlying difference. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Continuous variable k in case i (standardized). 

The sth category of variable k in case i (one-of-c coding). 

N Total number of valid cases. 
                                         The number of cases in cluster j. 

Y Variable with J cluster labels. 
The centroid of cluster j for variable k. 

                                        The distance between case i and the centroid of cluster j. 

                                         The distance between the overall mean and the centroid of cluster j. 
 
 

Goodness  Measures 

The average Silhouette coefficient is simply the average over all cases of the following calculation 
for each individual case: 

 
 

 
 

where A is the average distance from the case to every other case assigned to the same cluster and 
B is the minimal average distance from the case to cases of a different cluster across all clusters. 

 
Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use 
the following definitions of A and B: 
 A is the distance from the case to the centroid of the cluster which the case belongs to; 
 B is the minimal distance from the case to the centroid of every other cluster. 
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Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average 
range between −1, indicating a very poor model, and 1, indicating an excellent model. As found 
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable 
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure. 

 
Data Preparation 

Before calculating Silhouette coefficient, we need to transform cases as follows: 

1. Recode categorical variables using one-of-c coding. If a variable has c categories, then it is 
stored  as c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., 
and the final category (0,0,...,0,1). The order of the categories is based on the ascending sort or 
lexical order of the data values. 

2. Rescale continuous variables. Continuous variables are normalized to the interval [−1, 1] using 
the transformation [2*(x−min)/(max−min)]−1. This normalization tries to equalize the 
contributions of continuous and categorical features to the distance computations. 

 
Basic Statistics 

The following statistics are collected in order to compute the goodness measures: the centroid 
of variable k for cluster j, the distance between a case and the centroid, and the overall mean u. 

 
For with an ordinal or continuous variable k, we average all standardized values of variable 
k within cluster j. For nominal variables, is a vector of probabilities of occurrence 
for each state s of variable k for cluster j. Note that in counting , we do not consider cases with 
missing values in variable k.  If the value of variable k is missing for all cases within cluster j, 

is marked as missing. 
 

The distance   between case i and the centroid of cluster j can be calculated in terms of the 
weighted sum of the distance components  across all variables; that is 

 

where denotes a weight.  At this point, we do not consider differential  weights, thus 
equals 1 if the variable k in case i is valid, 0 if not. If all equal 0, set        . 

The distance component  is calculated as follows for ordinal and continuous variables 
 

 
For binary or nominal variables, it is 
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where variable k uses one-of-c coding, and  is the number of its states. 
 

The calculation of  is the same as that of , but the overall mean u is used in place of and 
is used in place of . 

 

Silhouette Coefficient 

The Silhouette coefficient of case i is 
 

 
where  denotes cluster labels which do not include case i as a member, while is the cluster 
label which includes case i. If equals 0, the Silhouette of case i is 
not used in the average operations. 

 
Based on these individual data, the total average Silhouette coefficient is: 

 

 
 

Sum of Squares Error (SSE) 

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order 
to compare between models, we will use the averaged form, defined as: 

 
Average SSE 

 
 

Sum of Squares Between (SSB) 

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In 
order to compare between models, we will use the averaged form, defined as: 

 
Average SSB 

 
 

Predictor Importance 
The importance of field i is defined as 
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where denotes the set of predictor and evaluation fields,   is the significance   or 
p-value computed from applying a certain test, as described below.  If   equals  zero, set 

                         , where MinDouble is the minimal double value. 
 

Across Clusters 
 

The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by 
 

p-value =Prob(        ), 

where 

  

 
 

 

 
 

where                        . 
 If , the importance is set to be undefined or unknown; 
 If         , subtract one from I for each such category to obtain  ; 
 If        , subtract one from J for each such cluster to obtain  ; 
 If          or         , the importance is set to be undefined or unknown. 

 
The degrees of freedom are                . 

The p-value for continuous fields is based on an F test. It is calculated by 
 

p-value = Prob{         }, 
 

where 
 
 

 
 

 
 

 
 

  
 

 

 

 If N=0, the importance is set to be undefined or unknown; 
 If        , subtract one from J for each such cluster to obtain  ; 
 If          or  , the importance is set to be undefined or unknown; 
 If the denominator in the formula for the F statistic is zero, the importance is set to be 

undefined or unknown; 
 If the numerator in the formula for the F statistic is zero, set p-value = 1; 

The degrees of freedom are . 
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Within Clusters 
 

The null hypothesis for categorical fields is that the proportion of cases in the categories in 
cluster j is the same as the overall proportion. 

 
The chi-square statistic for cluster j is computed as follows 

 

 
 

If        , the importance is set to be undefined or unknown; 
 

If , subtract one from I for each such category to obtain  ; 

If         , the importance is set to be undefined or unknown. 

The degrees of freedom are        . 
 

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall 
mean. 

 
The Student’s t statistic for cluster j is computed as follows 

 

 

with         degrees of freedom. 
 

If          or , the importance is set to be undefined or unknown; 

If the numerator is zero, set p-value = 1; 

Here, the p-value based on Student’s t distribution is calculated as 
 

p-value = 1 − Prob{ }. 
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Model 

 
CNLR is used to estimate the parameters of a function by minimizing a smooth nonlinear loss 
function (objective function) when the parameters are subject to a set of constraints. 

 

Consider the model 
 

 

where is a p×1 parameter vector, is an independent variable vector, and f is a function 
of and   . 

 

Goal 
 

Find the estimate of such that minimizes 
 

 
subject to 

 
 
 
 
 
 

where F is the smooth loss function (objective function), which can be specified by the user.   

is an   matrix of linear constraints, and    is an   vector of nonlinear 

constraint functions.  , where  , , and represent the lower bounds, 

linear constraints and nonlinear constraints, respectively. The upper bound is defined similarly. 
 

 
Algorithm 

CNLR uses the algorithms proposed and implemented in NPSOL by Gill, Murray, Saunders, and 
Wright. A description of the algorithms can be found in the User’s Guide for NPSOL, Version 4.0 
(Gill, Murray, Saunders, and Wright, 1986). 

The method used in NPSOL is a sequential quadratic programming (SQP) method. For an 
overview of SQP methods, see (Gill, Murray, and Saunders, 1981), pp. 237–242. 

The basic structure of NPSOL involves major and minor iterations. Based on the given initial 
value of the algorithm first selects an initial working set that includes bounds or general 
inequality constraints that lie within a crash tolerance (CRSHTOL). At the kth iteration, the 
algorithm starts with 
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Minor Iteration 

This iteration searches for the direction , which is the solution of a quadratic subproblem; 
that is,   is found by minimizing 

 

 

subject to 
 
 
 
 
 

where is the gradient of F at , the matrix   is a positive-definite quasi-Newton 
approximation to the Hessian of the Lagrangian function,   is the Jacobian matrix of the 
nonlinear-constraint vector C evaluated at , and 

 

 

 

 

 

 

 

 

 

The linear feasibility tolerance, the nonlinear feasibility tolerance, and the feasibility tolerance are 
used to decide if a solution is feasible for linear and nonlinear constraints. 

Once the search direction  is found, the algorithm goes to the major iteration. 
 

Major Iteration 

The purpose of the major iteration is to find a non-negative scalar such that 
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satisfies the following conditions: 
 produces a “sufficient decrease” in the augmented Lagrangian merit function 

 

The summation terms involve only the nonlinear constraints. The vector is an estimate of 
the Lagrange multipliers for the nonlinear constraints.  The non-negative slack variables 

allow nonlinear inequality constraints to be treated without introducing discontinuities. 
The solution of the QP subproblem defined in “Minor Iteration ” provides a vector triple that 
serves as a direction search for   , and   . The non-negative vector of penalty  parameters 

 

 is initialized to zero at the beginning of the first major iteration. Function precision criteria 
are used as a measure of the accuracy with which the functions F and can be evaluated. 

 is close to a minimum of F along .  The criterion is 
 

where is the Line Search Tolerance and . The value of determines the accuracy 
with which approximates a stationary point of F along . A smaller value of produces a 
more accurate line search. 

 The step length is in a certain range; that is, 
Step Limit 

 

Convergence Tests 

After is determined from the major iteration, the following conditions are checked: 
 k+1 ≤ Maximum number of major iterations 

 The sequence converged at ; that is, 
 

 satisfies the Kuhn-Tucker conditions to the accuracy requested; that is, 
 

and 
res FTOL for all j, 

where is the projected gradient, g is the gradient of F with respect to the free parameters, 
res is the violation of the jth nonlinear constraint, FTOL is the Nonlinear Feasibility 
Tolerance, and r is the Optimality Tolerance. 

 
If none of these three conditions are satisfied, the algorithm continues with the Minor Iteration to 
find a new search direction. 
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Termination 

The following are termination conditions. 
 Underflow. A single underflow will always occur if machine constants are computed 

automatically. Other floating-point underflows may occur occasionally, but can usually 
be ignored. 

 Overflow. If the printed output before the overflow error contains a warning about serious 
ill-conditioning in the working set when adding the jth constraint, it may be possible to avoid 
the difficulty by increasing the magnitude of FTOL, LFTOL, or NFTOL and rerunning the 
program. If the message recurs after this change, the offending linearly dependent constrains 
(with index “j”) must be removed from the problem. 

 Optimal solution found. 
 Optimal solution found, but the requested accuracy could not be achieved, NPSOL terminates 

because no further improvement can be made in the merit function. This is probably caused 
by requesting a more accurate solution than is attainable with the given precision of the 
problem (as specified by FPRECISION). 

 No point has been found that satisfies the linear constraints. NPSOL terminates without 
finding a feasible point for the given value of LFTOL. The user should check that there are no 
constraint redundancies and ensure that the value of LFTOL is greater than the precision of 
parameter estimates. 

 No point has been found which satisfies the nonlinear constraints. There is no feasible point 
found in QP subproblems. The user should check the validity of constraints. If the user is 
convinced that a feasible point does exist, NPSOL should be restarted at a different starting 
point. 

 Too many iterations. If the algorithm appears to be making progress, increase the value of 
ITER and rerun NPSOL. If the algorithm seems to be “bogged down”, the user should check 
for incorrect gradients. 

 Cannot improve on current point. A sufficient decrease in the merit function could not be 
attained during the final line search. This sometimes occurs because an overly stringent 
accuracy has been requested; for example, Optimality Tolerance is too small or a too-small 
step limit is given when the parameters are measured on different scales. 

 
Please note the following: 
 Unlike the other procedures, the weight function is not treated as a case replicate in CNLR. 
 When both weight and loss function are specified, the algorithm takes the product of these 

two functions are the loss function. 
 If the loss function is not specified, the default loss function is a squared loss function and 

the default output in NLR will be printed. However, if the loss function is not a squared loss 
function, CNLR prints only the final parameter estimates, iteration history, and termination 
message. In order to obtain estimates of the standard errors of parameter estimates and 
correlations between parameter estimates, the bootstrapping method can be requested. 



 
 

 
Bootstrapping Estimates 
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Bootstrapping is a nonparametric technique of estimating the standard error of a parameter 
estimate using repeated samples from the original data. This is done by sampling with 
replacement. CNLR computes and saves the parameter estimates for each sample generated. 
This results, for each parameter, in a sample of estimates from which the standard deviation is 
calculated.  This is the estimated standard error. 

Mathematically, the bootstrap covariance matrix S for the p parameter estimates is 
 

 

where 
 

 
and  is the CNLR parameter estimate of  for the kth bootstrap sample and m is the number 
of samples generated by the bootstrap. By default, . The standard error for the jth 
parameter estimate is estimated by 

 

and the correlation between the ith and jth parameter estimates is estimated by 
 

 

The “95% Trimmed Range” values are the most extreme values that remain after trimming from 
the set of estimates for a parameter, the g largest, and the g smallest estimates, where g is the 
largest integer not exceeding 0.025m. 
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CONJOINT Algorithms 
This procedure performs conjoint analysis using ordinary least squares. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n The total number of regular cards in the PLAN file. 
p The total number of factors. 
d The number of discrete factors. 
l The number of linear factors. 
q The number of quadratic factors. 

The number of levels of levels of the ith discrete factor. 

The jth level of the ith discrete factor i=1,...,d. 

The ith linear factor, i=1,...,l. 

The ith ideal or anti-ideal factor, i=1,...,q. 

The response for the ith card, i=i,...,n. 

t The total number of subjects being analyzed at the same time.  (When 
/SUBJECT is specified, t is usually 1.) 

 
 
Model 

The model for the response for the ith card from a subject is 
 

 
 

where is the utility (part worth) associated with the th level of the jth factor on the ith card. 

 
Design Matrix 

A design matrix X is formed from the values in the PLAN file. There is one row for each card 
in the PLAN file. The columns of the matrix are defined by each of the factor variables in the 
following manner: 
 There is a column of 1s for the constant. This column is used for the estimate of . 
 For each discrete factor containing levels, columns are formed. Each column 

represents the deviation of one of the factor levels from the overall mean. There is a 1 in the 
column if that level of the factor was observed, a−1 if the last level of the factor was observed, 
or a 0 otherwise. These columns are used to estimate the values of . 
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 For each linear factor, there is one column which is the centered value of that factor           
.These columns are used to estimate the values for . 

 For each quadratic factor there are two columns, one which contains the centered value of the 
factor           , the next which contains the square of the centered factor value             
.These columns are used to estimate the values of . 

 
Converting Card Numbers to Ranks 

If the observations are card numbers, they are converted to ranks. If card number i has a value of 
k, then . 

 
Estimation 

The estimates 
 

 

are computed by using a QR decomposition (see MANOVA) where 
 

if responses are scores 
if responses are ranks 

 
The variance-covariance matrix of these estimates is 

 

 

where 
 
 

  

 
 

 
 

 
 

 
 

 
 

 

 
 

The values of  are computed by 
 

 
and 

 

 
with variances 

 

 
and 
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where 
 

 

The value for   is calculated by 
 

 
with variance 

 

 

where 
 

 
and 

 

 
 
 

Utility (Part Worth) Values 
 

Discrete Factors 
 

 
Linear Factors 

 

 
Ideal or Anti-ideal 
Factors 

 

for 

for 
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Standard Errors of Part Worths 
The standard error of part worth where is defined below: 

 
Discrete Factors 

 

 
Linear Factors 

 

 
 

Ideal or Anti-ideal Factors 
 

 

Importance Scores 
The importance score for factor i is 
 

 
 

where  is the highest minus lowest utility for factor i. If there is a SUBJECT command, 
the importance for each factor is calculated separately for each subject, and these are then 
averaged. 

 
Predicted Scores 

 

 
where is the estimated utility (part worth) associated with the th level of the jth factor. 
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Correlations 
Pearson and Kendall correlations are calculated between predicted    and the observed 

responses. See the CORRELATIONS and NONPAR CORR chapters for algorithms. Pearson 
correlations for holdouts are not calculated. 

 
Simulations 

Each person is assigned a probability for each simulation i. The probabilities are all computed 
based on the predicted score for that product. The probabilities are computed as follows: 

 

Max Utility 
 

 
 

 

 

 
 

if  
otherwise 

 
 

BTL 
 

 
Logit 

 
 

 
 

 
 

Probabilities are averaged across respondents for the grouped simulation results. For the BTL and 
Logit methods, only subjects having all positive  values are used. 
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The user-specified treatment for missing values is used for computation of all statistics except, 
under certain conditions, the means and standard deviations. 

 
Notation 

The following notation is used throughout this section unless otherwise specified: 
Table 19-1 
Notation 
Notation Description 
N Number of cases 

Value of the variable k for case l 

Weight for case l 

Sum of weights of cases used in computation of statistics for variable k 

         Sum of weights of cases used in computation of statistics for variables k and j 
 
 
Statistics 

The following statistics are available. 
 
Means and Standard Deviations 

 
 

 
 

 
 

Note: If no treatment for missing values is specified (default is pairwise), means and standard 
deviations are computed based on all nonmissing values for each variable. If missing values are to 
be included or listwise is chosen, that option is used for means and standard deviations as well. 

 
Cross-product Deviations and Covariances 

The cross-product deviation for variables i and j is 
 

 

The covariance is 

  



 
 

CORRELATIONS Algorithms 
 
 

 
Pearson Correlation 

 

 
Significance Level of r 

The significance level for is based on 
 

 
which, under the null hypothesis, is distributed as a t with         degrees of freedom. By default, 
the significance level is two-tailed. 
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Introduction

This section discusses the interval estimation of the bivariate correlations in terms of Pearson’s product-
moment correlation, Spearman’s rank-order correlation, and Kendall’s rank correlation. Fisher’s transformation
is used to construct the confidence intervals. For the Pearson’s correlation, we also support the exact method
to calculate the confidence limits. Both two- and one-tailed bounds are supported, and integrated into the
existing CORRELATIONS and NONPAR CORR procedure.

Pearson’s Product-moment Correlation

Notations

The following notations will be used in Section unless otherwise stated.

ρ: Pearson product-moment correlation parameter.

N : Number of cases in the active data set.

l: Case index, and l = 1, 2, . . . , N .

xkl: Observed value of the variable Xk for the l -th case.

wl: Frequency weight for the l -th case.

Wk: Effective sample size for the variable Xk, and Wk =
∑N
l=1 wl.

Wkj : Sum of weights of cases used in computation of statistics for the variables Xk and Xj .

α: The significance level to reflect the type I error, and α ∈ (0, 1). Note that in the syntax design,
CILEVEL resets the level of confidence intervals, and α = 1− CILEVEL/100.

The following statistics have already been computed by the existing CORRELATIONS algorithm.

Sample mean:

x̄k =
1

Wk

∑N

l=1
wlxkl . (0.0.1)

Sample standard deviation:

Sk =

√(∑N

l=1
wlx2kl − x̄2kWk

)
/(Wk − 1) . (0.0.2)

Cross-product deviation for the variables Xi and Xj :

Cij =
∑N

l=1
wlxilxjl −

(∑N

l=1
wlxil

)(∑N

l=1
wlxjl

)
/Wij . (0.0.3)

Pearson correlation:

rij =
Cij√
CiiCjj

. (0.0.4)

Note that if no treatment for missing values is specified (default is pairwise), means and standard deviations 
are computed based on all nonmissing values for each variable. If missing values are to be included or listwise 
is chosen, the option is used for means and standard deviation.

Interval Estimation

To simplify the notation, we omit the subscript of rij and Wij , and let r denote the sample Pearson product-
moment correlation coefficient estimated for an arbitrary pair of variables, and W the sum of weights of 
cases.
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Fisher’s Large-sample Confidence Interval

[Fisher, 1921] suggested a z -transformation by using an inverse hyperbolic tangent function

ζ̂ = tanh-1(r) =
1

2
log

(
1 + r

1− r

)
, (0.0.5)

where we do not allow r = 1 or −1. Under a large sample size, ζ̂ asymptotically follows a normal distribution.

Two-tailed confidence interval

Provided that W > 3, we consider two ways to estimate the confidence limits. With no bias adjustment, the
lower and upper confidence limits of ζ are1

ζ̂l = ζ̂ − IDF.NORMAL(1− α/2, 0, 1) se(ζ̂) and ζ̂u = ζ̂ + IDF.NORMAL(1− α/2, 0, 1) se(ζ̂) , (0.0.6)

where ζ̂ is estimated by Equation (0.0.5), and the standard error

se(ζ̂) =

(
1

W − 3

)1/2

. (0.0.7)

Alternatively, if the bias term is taken into account, the confidence limits become

ζ̂l = ζ̂− b(r)− IDF.NORMAL(1−α/2, 0, 1) se(ζ̂) and ζ̂u = ζ̂− b(r) + IDF.NORMAL(1−α/2, 0, 1) se(ζ̂) ,
(0.0.8)

where
b(r) =

r

2(W − 1)
. (0.0.9)

We then transform back, for either Equation (0.0.6) or (0.0.8), to estimate the lower and upper confidence
limits of ρ by

rl = tanh(ζ̂l) and ru = tanh(ζ̂u) , (0.0.10)

where

tanh(ζ̂) =
e2ζ̂ − 1

e2ζ̂ + 1
. (0.0.11)

One-tailed confidence bound

For the estimation of the one-tailed confidence bound, if r ≤ 0, we estimate the upper confidence limit of ζ

ζ̂u = ζ̂ + IDF.NORMAL(1− α, 0, 1) se(ζ̂) , (0.0.12)

or
ζ̂u = ζ̂ − b(r) + IDF.NORMAL(1− α, 0, 1) se(ζ̂) (0.0.13)

if considering the bias adjustment, where ζ̂ is estimated by Equation (0.0.5); se(ζ̂) is estimated by Equation
(0.0.7); and b(r) is estimated by Equation (0.0.9). We then transform back, for either Equation (0.0.12) or
(0.0.13), to estimate the lower and upper confidence limits of ρ by

rl = −1 and ru = tanh(ζ̂u) . (0.0.14)

Similarly, if r > 0, we estimate the lower confidence limit of ζ

ζ̂l = ζ̂ − IDF.NORMAL(1− α, 0, 1) se(ζ̂) , (0.0.15)

or
ζ̂l = ζ̂ − b(r)− IDF.NORMAL(1− α, 0, 1) se(ζ̂) (0.0.16)

if considering the bias adjustment. We then transform back, for either Equation (0.0.15) or (0.0.16), to
estimate the lower and upper confidence limits of ρ by

rl = tanh(ζ̂l) and ru = 1 . (0.0.17)
1 IDF.NORMAL(prob, mean, stddev) returns the value from the normal distribution, with specified mean and standard 

deviation, for which the cumulative probability is prob.
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Exact Confidence Interval

The method presented in this section is not scheduled for SPSS Statistics 27.0.1.0. [Shieh, 2006] argued that
the method based on the Fisher’s transformation is not sufficiently close to the true distribution of r. The
author suggested conducting the exact interval estimation based on a two-stage distribution. To demonstrate
the exact method, we define, provided that W ≥ 3,

t∗ =
r
√
W − 2√
1− r2

, (0.0.18)

and
λ(r) =

r√
1− r2

, (0.0.19)

where r is estimated by Equation (0.0.4).

Two-tailed confidence interval

Considering the upper limit of ρ, or ru, we aim to find ru that satisfies2∫ ∞
0

[
1−NCDF.T(t∗,W − 2, λ(ru)

√
κ)
]
f(κ) dκ = 1− α/2 , (0.0.20)

where t∗ is defined by Equation (0.0.18); λ(ru) is Equation (0.0.19) evaluated at ru; κ ∼ χ2(W − 1); and3

f(κ) = PDF.CHISQ(κ,W − 1) . (0.0.21)

Based on Equation (0.0.20), we define an intermediate integral

I(κ; ru) =

∫ ∞
0

[
1−NCDF.T(t∗,W − 2, λ(ru)

√
κ)
]
f(κ) dκ (0.0.22)

and
h(ru; I) = I(κ; ru)− 1 + α/2 , (0.0.23)

and aim to find the root of h(ru; I) = 0 lying between -1 and 1. By noting that

h(−1; I) = −1 + α/2 < 0 and h(1; I) = α/2 > 0 , (0.0.24)

we pass Equation (0.0.23) to the argument ∗function of the RTBIS routine, and follow Algorithm 1 to
solve h(ru; I) = 0 in terms of ru. The intermediate metric I(κ; ru), defined by Equation (0.0.22), is passed
to the argument ∗integral of the AGL routine, and evaluated by Algorithm 2, which applies the adaptive
Gauss-Lobatto quadrature to numerically approximate the integral.

For the lower limit of ρ, or rl, we would like to find rl satisfying∫ ∞
0

NCDF.T(t∗,W − 2, λ(rl)
√
κ)f(κ) dκ = α/2 , (0.0.25)

where t∗ is defined by Equation (0.0.18); λ(rl) is Equation (0.0.19) evaluated at rl; κ ∼ χ2(W −1); and f(κ)
is defined by Equation (0.0.21). Similarly, we can define an intermediate integral

I(κ; rl) =

∫ ∞
0

NCDF.T(t∗,W − 2, λ(rl)
√
κ)f(κ) dκ (0.0.26)

and
h(rl; I) = I(κ; rl)− α/2 , (0.0.27)

and aim to find the root of h(rl; I) = 0 lying between -1 and 1. By noting that

h(−1; I) = 1− α/2 > 0 and h(1; I) = −α/2 < 0 , (0.0.28)

we pass Equation (0.0.27) to the argument ∗function of the RTBIS routine and I(κ; rl) in Equation (0.0.26)
to ∗integral of the AGL routine, respectively, and follow Algorithm 1 and 2 to solve h(rl; I) = 0 in terms of
rl.

2 NCDF.T(quant, df, nc) returns the cumulative probability that a value from the noncentral Student’s t-distribution, with
the specified degrees of freedom df and noncentrality nc, will be less than quant.

3 PDF.CHISQ(quant, df ) returns the probability density of the Chi-square distribution, with df degrees of freedom, at quant.
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Algorithm 1 RTBIS Routine: Find the root of a function known to lie between x1 and x2 using bisection.
The root, returned as rtb, will be refined until its accuracy is ±xacc.

1: Input: ∗function = h(r; I), x1 = −1, x2 = 1, acc = 2−40.
2: Let rtb← ∗function(x1; I). . Use Equation (0.0.24), (0.0.28), (0.0.31), or (0.0.34) to calculate.
3: if rtb < 0 then
4: Assign δx ← x2 − x1.
5: Set rtb← x1.
6: else
7: Assign δx ← x1 − x2.
8: Set rtb← x2.
9: end if

10: for iteration j = 1, 2, 3, . . . do
11: Update δx ← 0.5 δx.
12: Update xmid← rtb + δx.
13: Evaluate I(κ; xmid) by calling I ← AGL(I(κ; xmid), 0, 106, 10−6). . Detailed by Algorithm 2.
14: Evaluate fmid← ∗function(xmid; I).
15: if fmid ≤ 0 then
16: Set rtb← xmid.
17: end if
18: if |δx| < acc or fmid = 0 then
19: return rtb.
20: end if
21: end for
22: Set rtb← SYSMIS.
23: return rtb.

Algorithm 2 AGL Routine: Approximate an integral between the bounds A and B by using the adaptive
Gauss-Lobatto quadrature. The approximated value, returned as I, will be refined until some condition is
met.

1: Input: ∗integral = I(κ; r), A = 0, B = 106, τ = 10−6.
2: Assign the nodes c1 ← 0, c2 ← 1/2−

√
3/28, c3 ← 1/2, c4 ← 1/2 +

√
3/28, and c5 ← 1.

3: Assign the weights w1 ← 9/180, w2 ← 49/180, w3 ← 64/180, w4 ← 49/180, and w5 ← 9/180.

4: Define Î(A,B)[∗integral]{ d← B− A; Î ←
∑5
i=1 wid∗integral(A + cid; r) }

5: Compute I0 ← Î(A,B)[∗integral].

6: Compute I1 ← Î(A,A+d/2)[∗integral] + Î(A+d/2,A+d)[∗integral].
7: if |I0 − I1|/(max {|I0|, |I1|}+ τ) < τ then
8: Set I ← I1.
9: else

10: Compute I ← AGL(∗integral, A, A + d/2, τ) + AGL(∗integral, A + d/2, A + d, τ).
11: end if
12: return I.

One-tailed confidence bound

For the estimation of the one-tailed confidence bound, if r ≤ 0, we set rl = −1, and rewrite Equation (0.0.20)
with ∫ ∞

0

[
1−NCDF.T(t∗,W − 2, λ(ru)

√
κ)
]
f(κ) dκ = 1− α , (0.0.29)

and follow a similar procedure all the way to Equation (0.0.24) to estimate ru. Note that Equation (0.0.23)
becomes

h(ru; I) = I(κ; ru)− 1 + α , (0.0.30)
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and Equation (0.0.24) becomes

h(−1; I) = −1 + α < 0 and h(1; I) = α > 0 . (0.0.31)

Similarly, if r > 0, we set ru = 1, and rewrite Equation (0.0.25) with∫ ∞
0

NCDF.T(t∗,W − 2, λ(rl)
√
κ)f(κ) dκ = α , (0.0.32)

and follow a similar procedure all the way to Equation (0.0.28) to estimate rl. Note that Equation (0.0.27)
becomes

h(rl; I) = I(κ; rl)− α , (0.0.33)

and Equation (0.0.28) becomes

h(−1; I) = 1− α > 0 and h(1; I) = −α < 0 . (0.0.34)

Spearman’s Rank-order Correlation

Notations

The following notations will be used in Section unless otherwise stated.

ρs: Spearman rank-order correlation parameter.

N : Number of cases in the data set.

i: Case index, and i = 1, 2, . . . , N .

xi: Observed value of the variable X for the i -th case.

yi: Observed value of the variable Y for the i -th case.

wi: Frequency weight for the i -th case.

Wx: Effective sample size for the variable X, and Wx =
∑N
i=1 wi.

Wy: Effective sample size for the variable Y , and Wy =
∑N
i=1 wi.

Wxy: Sum of weights of cases used in computation of statistics for the variables X and Y .

α: The significance level to reflect the type I error, and α ∈ (0, 1). Note that in the syntax design,
CILEVEL resets the level of confidence intervals, and α = 1− CILEVEL/100.

The following definitions are applied to the existing NONPAR CORR algorithm. Let R(xi) and R(yi) denote
the rank of xi and yi, respectively. Considering X and Y separately, we sort the observed values in ascending
order and replace them with their corresponding ranks. In case ti observations, taking wi into account, are
tied in a group of ties, the average rank is assigned. For each time it occurs that ti > 1, the quantity
(t3i − ti) is calculated and summed up for X and Y , separately. The summations are designated by STx and
STy, respectively. The following statistics have already been computed by the existing NONPAR CORR
algorithm.

Difference between R(xi) and R(yi) for each pair of the N cases:

di = R(xi)−R(yi) . (0.0.35)

Spearman’s rank-order correlation coefficient:

rs =
Tx + Ty −

∑N
i=1 d

2
i

2
√
TxTy

, (0.0.36)

where Tx = (N3 −N − STx)/12 and Ty = (N3 −N − STy)/12. Note that rs is not estimable if TxTy = 0.
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Interval Estimation

Fisher’s Large-sample Confidence Interval

Analogous to Equation (0.0.5), we now consider

ζ̂s = tanh-1(rs) =
1

2
log

(
1 + rs
1− rs

)
, (0.0.37)

where rs is estimated by Equation (0.0.36), and we do not allow rs = 1 or −1. Under a large sample size, ζ̂s
asymptotically follows a normal distribution.

Two-tailed confidence interval

The lower and upper confidence limits of ζs are

ζ̂l = ζ̂s− IDF.NORMAL(1−α/2, 0, 1) se(ζ̂s) and ζ̂u = ζ̂s+IDF.NORMAL(1−α/2, 0, 1) se(ζ̂s) , (0.0.38)

where ζ̂s is estimated by Equation (0.0.37). To estimate the standard error se(ζ̂s), we provide users with
three options:

• [Fieller et al., 1957] recommended that

se(ζ̂s) =

(
1.06

W − 3

)1/2

, (0.0.39)

where it is required that W > 3.

• [Caruso and Cliff, 1997] suggested that

se(ζ̂s) =

(
1

W − 2
+

|ζ̂s|
6W + 4

√
W

)1/2

, (0.0.40)

where it is required that W > 2, and ζ̂s is defined by Equation (0.0.37).

• [Bonett and Wright, 2000] proposed another useful formula

se(ζ̂s) =

(
1 + r2s/2

W − 3

)1/2

, (0.0.41)

where it is required that W > 3, and rs is estimated by Equation (0.0.36).

We then transform back to estimate the lower and upper confidence limits of ρs by

rl = tanh(ζ̂l) and ru = tanh(ζ̂u) , (0.0.42)

where ζ̂l and ζ̂u are estimated by Equation (0.0.38).

One-tailed confidence bound

For the estimation of the one-tailed confidence bound, if rs ≤ 0, we estimate the upper confidence limit of
ζs

ζ̂u = ζ̂s + IDF.NORMAL(1− α, 0, 1) se(ζ̂s) , (0.0.43)

where ζ̂s is estimated by Equation (0.0.37), and se(ζ̂s) is estimated by Equation (0.0.39), (0.0.40), or (0.0.41).
We then transform back to estimate the lower and upper confidence limits of ρs by

rl = −1 and ru = tanh(ζ̂u) , (0.0.44)
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where ζ̂u is estimated by Equation (0.0.43). Similarly, if rs > 0, we estimate the lower confidence limit of ζs

ζ̂l = ζ̂s − IDF.NORMAL(1− α, 0, 1) se(ζ̂s) , (0.0.45)

where ζ̂s is estimated by Equation (0.0.37), and se(ζ̂s) is estimated by Equation (0.0.39), (0.0.40), or (0.0.41).
We then transform back to estimate the lower and upper confidence limits of ρs by

rl = tanh(ζ̂l) and ru = 1 , (0.0.46)

where ζ̂l is estimated by Equation (0.0.45).

Kendall’s Rank Correlation

We focus the following discussion on the interval estimation of the Kendall’s Tau-b correlation parameter.
The following notations will be used in Section unless otherwise stated.

Notations

τ : Kendall’s Tau-b correlation parameter.

N : Number of cases in the data set.

i: Case index, and i = 1, 2, . . . , N .

xi: Observed value of the variable X for the i -th case.

yi: Observed value of the variable Y for the i -th case.

wi: Frequency weight for the i -th case.

Wx: Effective sample size for the variable X, and Wx =
∑N
i=1 wi.

Wy: Effective sample size for the variable Y , and Wy =
∑N
i=1 wi.

Wxy: Sum of weights of cases used in computation of statistics for the variables X and Y .

α: The significance level to reflect the type I error, and α ∈ (0, 1). Note that in the syntax design,
CILEVEL resets the level of confidence intervals, and α = 1− CILEVEL/100.

With the same definitions aforementioned in Section , for each time it occurs that ti > 1, the quantity
(t2i − ti) is calculated and summed up for X and Y , separately. The summations are designated by τx and τy,
respectively. Each of the N cases is compared to the others to determine with how many cases are there with
their ranking of X and Y concordant or discordant. The following statistics have already been computed by
the existing NONPAR CORR algorithm.

For each distinct pair of cases i and j, where i < j:

dij = [R(xj)−R(xi)][R(yj)−R(yi)] . (0.0.47)

Difference between the number of concordant and discordant pairs:

S =
N−1∑
i=1

N∑
j=i+1

sign(dij) , (0.0.48)

where sign(dij) is defined as +1 or -1 depending on the sign of dij , and those pairs with dij − 0 are
ignored in the computation of S.

Kendall’s rank correlation coefficient tau:

τ̂ =
S√

N2 −N − τx
2

√
N2 −N − τy

2

. (0.0.49)

In case the denominator is 0, τ is not estimated.
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Interval Estimation

Fisher’s Large-sample Confidence Interval

Analogous to Equation (0.0.5), we now consider

ζ̂τ = tanh-1(τ̂) =
1

2
log

(
1 + τ̂

1− τ̂

)
, (0.0.50)

where τ̂ is estimated by Equation (0.0.36), and we do not allow τ̂ = 1 or −1. Under a large sample size, ζ̂τ
asymptotically follows a normal distribution.

Two-tailed confidence interval

Provided that W > 4, the lower and upper confidence limits of ζτ are

ζ̂l = ζ̂τ−IDF.NORMAL(1−α/2, 0, 1) se(ζ̂τ ) and ζ̂u = ζ̂τ +IDF.NORMAL(1−α/2, 0, 1) se(ζ̂τ ) , (0.0.51)

where ζ̂τ is estimated by Equation (0.0.50), and the standard error

se(ζ̂τ ) =

(
0.437

W − 4

)1/2

. (0.0.52)

We finally transform back to estimate the lower and upper confidence limits of τ by

τ̂l = tanh(ζ̂l) and τ̂u = tanh(ζ̂u) , (0.0.53)

where ζ̂l and ζ̂u are estimated by Equation (0.0.51).

One-tailed confidence bound

For the estimation of the one-tailed confidence bound, if τ̂ ≤ 0, we estimate the upper confidence limit of ζτ

ζ̂u = ζ̂τ + IDF.NORMAL(1− α, 0, 1) se(ζ̂τ ) , (0.0.54)

where ζ̂τ and se(ζ̂τ ) are estimated by Equation (0.0.50) and (0.0.52), respectively. We then transform back
to estimate the lower and upper confidence limits of τ by

τ̂l = −1 and τ̂u = tanh(ζ̂u) , (0.0.55)

where ζ̂u is estimated by Equation (0.0.54). Similarly, if τ̂ > 0, we estimate the lower confidence limit of ζτ

ζ̂l = ζ̂τ − IDF.NORMAL(1− α, 0, 1) se(ζ̂τ ) , (0.0.56)

where ζ̂τ and se(ζ̂τ ) are estimated by Equation (0.0.50) and (0.0.52), respectively. We then transform back
to estimate the lower and upper confidence limits of τ by

τ̂l = tanh(ζ̂l) and τ̂u = 1 , (0.0.57)

where ζ̂l is estimated by Equation (0.0.56).
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CORRESPONDENCE  Algorithms 
The CORRESPONDENCE algorithm consists of three major parts: 

 
1. A singular value decomposition (SVD) 

 
2. Centering and rescaling of the data and various rescalings of the results 

 
3. Variance estimation by the delta method. 

 

Other names for SVD are “Eckart-Young decomposition” after Eckart and Young (1936), who 
introduced the technique in psychometrics, and “basic structure” (Horst, 1963). The rescalings 
and centering, including their rationale, are well explained in Benzécri (1969), Nishisato (1980), 
Gifi (1981), and Greenacre (1984). Those who are interested in the general framework of matrix 
approximation and reduction of dimensionality with positive definite row and column metrics 
are referred to Rao (1980).  The delta method is a method that can be used for the derivation 
of asymptotic distributions and is particularly useful for the approximation of the variance of 
complex statistics. There are many versions of the delta method, differing in the assumptions 
made and in the strength of the approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14; 
Wolter, 1985, ch.  6). 

Other characteristic features of CORRESPONDENCE are the ability to fit supplementary 
points into the space defined by the active points, the ability to constrain rows and/or columns to 
have equal scores, and the ability to make biplots using either chi-squared distances, as in standard 
correspondence analysis, or Euclidean distances. 

 
 

Notation 
 

The following notation is used throughout this chapter unless otherwise stated: 

t1 Total number of rows (row objects) 
s1 Number of supplementary rows 
k1 Number of rows in analysis ( ) 
t2 Total number of columns (column objects) 
s2 Number of supplementary columns 
k2 Number of columns in analysis ( ) 
p Number of dimensions 

 
 

Data-related quantities: 
 

 
 

 

 
 
 

Nonnegative data value for row i and column j: collected in table F 

Marginal total of row i,  

Marginal total of column j,   

N Grand total of F 
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Scores and statistics: 
 

 

 

 
 
 
 

Score of row object i on dimension s 

Score of column object j on dimension s 

I Total inertia 
 

Basic Calculations 
One way to phrase the CORRESPONDENCE objective (cf. Heiser, 1981) is to say that we wish 
to find row scores and column scores so that the function 

 

is minimal, under the standardization restriction either that 
 

or 
 

where is Kronecker’s delta and t is an alternative index for dimensions.  The trivial set of 
scores ({1},{1}) is excluded. 

 
The CORRESPONDENCE algorithm can be subdivided into five steps, as explained below. 

 
Data scaling and centering 

When rows and/or columns are specified to be equal, first the frequencies of the rows/columns 
to be equal are summed. The sums are put into the row/column with the smallest row/column 
number and the other rows/columns are set to zero. 

 
Measure is Chi Square 

 
The first step is to form the auxiliary matrix Z with general element 

 

The standardization with Chi Square measure is always rcmean (both row and column means 
removed. 

 

Measure is Euclidean 
 

When Euclidean measure is chosen, the auxiliary matrix Z is formed in two steps: 
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Singular value decomposition 
When rows and/or columns are specified as supplementary, first these rows and/or colums of Z 
are set to zero, yielding   

 
Let the singular value decomposition of  be denoted by 

 

 
with , , and Λ diagonal.  This decomposition is calculated by a routine based 
on Golub and Reinsch (1971). It involves Householder reduction to bidiagonal form and 
diagonalization by a QR procedure with shifts. The routine requires an array with more rows 
than columns, so when         the original table is transposed and the parameter transfer is 
permuted accordingly. 

 
Adjustment to the row and column metric 

The arrays of both the left-hand singular vectors and the right-hand singular vectors are adjusted 
row-wise to form scores that are standardized in the row and in the column marginal proportions, 
respectively: 

 

 

This way, both sets of scores satisfy the standardization restrictions simultaneously. 
 
Determination of variances and covariances 

For the application of the delta method to the results of generalized eigenvalue methods under 
multinomial sampling, the reader is referred to Gifi (1990, ch. 12) and Israëls (1987, Appendix 
B). It is shown there that N time variance-covariance matrix of a function φ of the observed cell 
proportions asymptotically reaches the form 
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Here the quantities are the cell probabilities of the multinomial distribution, and   are 
the partial derivatives of φ (which is either a generalized eigenvalue or a generalized eigenvector) 
with respect to the observed cell proportion. Expressions for these partial derivatives can also 
be found in the above-mentioned references. 

 
Normalization of row and column scores 

Depending on the normalization option chosen, the scores are normalized. The normalization 
option q can be chosen to be any value in the interval [-1,1] or it can be specified according to 
the following designations: 

symmetrical 
row principal 
column principal 

There is a fifth possibility, choosing the designation “principal”, that does not correspond to 
a q-value. 

 
When “principal” is chosen, normalization parameters α for the rows and β for the columns are 
both set to 1. When one of the other options is chosen, α and β are functions of q: 

 
α = (1+q)/2 

 
β = (1−q)/2 

 
The normalization implies a compensatory rescaling of the coordinate axes of the row scores 
and the column scores: 

 

 

The general formula for the weighted sum of squares that results from this rescaling is 

row scores:  

column scores:  

 
The estimated variances and covariances are adjusted according to the type of normalization 
chosen. 

 
Diagnostics 

After printing the data, CORRESPONDENCE optionally also prints a table of row profiles and 
column profiles, which are and , respectively. 



 
 

 

Singular Values, Maximum Rank and Inertia 
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All singular values   defined in the second step are printed up to a maximum of 
. Small singular values and corresponding dimensions are suppressed 

when they don’t exceed the quantity ; in this case a warning message is issued. 
Dimensionwise inertia and total inertia are given by the relationships 

 

 

where the right-hand part of this equality is true only if the normalization is row principal (but 
for the other normalizations similar relationships are easily derived from step 5). The quantities 
“proportion explained” are equal to inertia divided by total inertia: . 

 
Supplementary Points 

Supplementary row and column points are given by 
 

 

 
Mass, Scores, Inertia and Contributions 

The mass, scores, inertia and contributions for the row and columns points (including 
supplementary points) are given in the Overview Row Points Table and the Overview Column 
Points Table. These tables are printed in p dimensions. The tables are given first for rows, then 
for columns.  The masses are the marginal proportions ( and , respectively). The 
inertia of the rows/columns is given by: 

 

 

 

For supplementary points, the contribution to the inertia of dimensions is zero. The contribution 
of the active points to the inertia of each dimension is given by 

 

 

The contribution of dimensions to the inertia of each point is given by 
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Confidence Statistics of Singular Values and Scores 

The computation of variances and covariances is explained in step 4. Since the row and column 
scores are linear functions of the singular vectors, an adjustment is necessary depending on the 
normalization option chosen. From these adjusted standard deviations and correlations are derived 
in the standard way. 

 
Permutations of the Input Table 

For each dimension s, let be the permutation of the first t1 integers that would sort the 
sth column of          in ascending order.  Similarly, let be the permutation of the first t2 
integers that would sort the sth column of in ascending order.  Then the permuted data 
matrix is given by . 
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COXREG Algorithms 
Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative 
effect on the hazard function. These models are called proportional hazards models. Under the 
proportional hazards assumption, the hazard function h of t given X is of the form 

 

 

where x is a known vector of regressor variables associated with the individual,  is a vector of 
unknown parameters, and is the baseline hazard function for an individual with . 
Hence, for any two covariates sets and , the log hazard functions and should 
be parallel across time. 

 
When a factor does not affect the hazard function multiplicatively, stratification may be useful in 
model building.  Suppose that individuals can be assigned to one of m different strata, defined  
by the levels of one or more factors. The hazard function for an individual in the jth stratum is 
defined as 

 

 

There are two unknown components in the model: the regression parameter  and the baseline 
hazard function . The estimation for the parameters is described below. 

 
Estimation 

We begin by considering a nonnegative random variable T representing the lifetimes of individuals 
in some population. Let denote the probability density function (pdf) of T given a regressor 
x and let be the survivor function (the probability of an individual surviving until time 
t). Hence 

 

The hazard is then defined by 
 

Another useful expression for in terms of is 
 

Thus, 
 

For some purposes, it is also useful to define the cumulative hazard function 
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Under the proportional hazard assumption, the survivor function can be written as 

where is the baseline survivor function defined by 

and 

Some relationships between , and , and which will be used later are 
 

 

To estimate the survivor function , we can see from the equation for the survivor function 
that there are two components,  and  , which need to be estimated. The approach we use 
here is to estimate  from the partial likelihood function and then to maximize the full likelihood 
for . 

 
Estimation of Beta 

Assume that 
 There are m levels for the stratification variable. 
 Individuals in the same stratum have proportional hazard functions. 
 The relative effect of the regressor variables is the same in each stratum. 

 
Let                   be the observed uncensored failure time of the individuals in the jth 
stratum and be the corresponding covariates. Then the partial likelihood function is 
defined by 

 
 
 
 
 
 

where   is the sum of case weights of individuals whose lifetime is equal to   and   is 
the weighted sum of the regression vector x for those  individuals, is the case weight of 
individual l, and   is the set of individuals alive and uncensored just prior to   in the jth 
stratum. Thus the log-likelihood arising from the partial likelihood function is 
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and the first derivatives of l are 
 

 
  is the rth component of  . The maximum partial likelihood estimate 

(MPLE) of  is obtained by setting equal to zero for , where p is the number of 
independent variables in the model. The equations   can usually be 
solved by using the Newton-Raphson method. 

Note that from its equation that the partial likelihood function   is invariant under 
translation. All the covariates are centered by their corresponding overall mean. The overall mean 
of a covariate is defined as the sum of the product of weight and covariate for all the censored and 
uncensored cases in each stratum. For notational simplicity, used in the Estimation Section 
denotes centered covariates. 

 
Three convergence criteria for the Newton-Raphson method are available: 
 Absolute value of the largest difference in parameter estimates between iterations  divided 

by the value of the parameter estimate for the previous iteration; that is, 

BCON parameter estimate for previous iteration 
 Absolute difference of the log-likelihood function between iterations divided by the 

log-likelihood function for previous iteration. 
 Maximum number of iterations. 

 
The asymptotic covariance matrix for the MPLE                     is estimated by      where I    is 
the information matrix containing minus the second partial derivatives of . The (r, s)-th 
element of I is defined by 

 
 
 
 
 
 
 
 
 

We can also write I in a matrix form  as 
 

 

where is a matrix which represents the p covariate variables in the model evaluated 
at time ,  is the number of distinct individuals in , and is a matrix with 
the lth diagonal element  defined by 
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and the (l, k) element defined by 
 

 

Estimation of the Baseline Function 
After the MPLE  of  is found, the baseline survivor function is estimated separately for 
each stratum.  Assume that, for a stratum, are observed lifetimes in the sample. 
There are  at risk and  deaths at    , and in the interval  there are  censored times. 
Since is a survivor function, it is non-increasing and left continuous, and thus must be 
constant except for jumps at the observed lifetimes . 

Further, it follows that 
 

 

and 
 

 

Writing , the observed likelihood function is of the form 
 

 

where  is the set of individuals dying at and  is the set of individuals with censored times in 
. (Note that if the last observation is uncensored,   is empty and ) 

If we let ,   can be written as 

 
 

   

Differentiating with respect to and setting the equations equal to zero, we get 
 

 

We then plug the MPLE  of  into this equation and solve these k equations separately. 
 

There are two things worth noting: 
 If any ,   can be solved explicitly. 
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 If , the equation for the cumulative hazard function must be solved iteratively for 
.  A good initial value for   is 

where                   is the weight sum for set . (See Lawless, 1982, p.  361.) 
 
 

Once the , are found, is estimated by 
 

 

Since the above estimate of requires some iterative calculations when ties exist, Breslow 
(1974) suggests using the equation for when as an estimate; however, we will use 
this as an initial estimate. 

The asymptotic variance for can be found in Chapter 4 of Kalbfleisch and Prentice 
(1980).  At a specified time t, it is consistently estimated by 

 

 

where a is a p×1 vector with the jth element defined by 
 

 

and I is the information matrix. The asymptotic variance of is estimated by 
 

 

Selection Statistics for Stepwise Methods 

The same methods for variable selection are offered as in binary logistic regression. For more 
information, see the topic “Stepwise Variable Selection”. Here we will only define the three 
removal statistics—Wald, LR, and Conditional—and the Score entry statistic. 



 

COXREG 
Al ith  

 
 

 
 

Score Statistic 

The score statistic is calculated for every variable not in the model to decide which variable should 
be added to the model. First we compute the information matrix I for all eligible variables based 
on the parameter estimates for the variables in the model and zero parameter estimates for the 
variables not in the model. Then we partition the resulting I into four submatrices as follows: 

 

 

where   and  are square matrices for variables in the model and variables not in the model, 
respectively, and   is the cross-product matrix for variables in and out.  The score statistic 
for variable is defined by 

 

 

 

Wald Statistic 

The Wald statistic is calculated for the variables in the model to select variables for  removal. 
The Wald statistic for variable is defined by 

 

 
where  is the parameter estimate associated with and  is the submatrix of  associated 
with . 

 

LR (Likelihood Ratio) Statistic 

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models 
evaluated at their own MPLES. Assume that r variables are in the current model and let us call the 
current model the full model. Based on the MPLES of parameters for the full model, l(full) is 
defined in “Estimation of Beta ”.  For each of r variables deleted from the full model, MPLES 
are found and the reduced log-likelihood function, l(reduced), is calculated. Then LR statistic is 
defined as 

 
–2(l(reduced) – l(full)) 

 

Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The formula for 
conditional statistic is the same as LR statistic except that the parameter estimates for each 
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as 
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follows. Let                             be the MPLES for the r variables (blocks) and C be the asymptotic 
covariance for the parameters left in the model given  is 

 

 
where   is the MPLE for the parameter(s) associated with and  is without ,   is 
the covariance between the parameter estimates left in the model and  , and  is the 
covariance of . Then the conditional statistic for variable is defined by 

 

b 
 

where is the log-likelihood function evaluated at  . 
 

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to 
the number of parameters the corresponding model has. 

 
Statistics 

The following output statistics are available. 
 

Initial Model Information 

The initial model for the first method is for a model that does not include covariates. The 
log-likelihood function l is equal to 

 

 

where   is the sum of weights of individuals in set . 

 
Model Information 

When a stepwise method is requested, at each step, the −2 log-likelihood function and  three 
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their 
corresponding degrees of freedom and significance are printed. 

 
–2 Log-Likelihood 

 

where  is the MPLE of  for the current model. 
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Improvement Chi-Square 
 

(–2 log-likelihood function for previous model) – ( –2 log-likelihood function for current model). 
 

The previous model is the model from the last step. The degrees of freedom are equal to the 
absolute value of the difference between the number of parameters estimated in these two models. 

 

Model Chi-Square 
 

(–2 log-likelihood function for initial model) – ( –2 log-likelihood function for current model). 
 

The initial model is the final model from the previous method. The degrees of freedom are equal 
to the absolute value of the difference between the number of parameters estimated in  these 
two model. 

 
Note: The values of the model chi-square and improvement chi-square can be less than or equal to 
zero. If the degrees of freedom are equal to zero, the chi-square is not printed. 

 

Overall Chi-Square 
 

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables 
in the model are identically zero.  This statistic is defined as 

 

 

where  represents the vector of first derivatives of the partial log-likelihood function evaluated 
at        . The elements of u and I are defined in “Estimation of Beta  ”. 

 
 

Information for Variables in the Equation 
 

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its 
corresponding df, significance, and partial R are given. For a single variable, R is defined by 

 

sign of MPLE 
 

if Wald . Otherwise R is set to zero. For a multiple category variable, only the Wald  statistic, 
df, significance, and partial R are printed, where R is defined by 

 
   Wald df  

2 log-likelihood for the intial model 
 

if Wald df.  Otherwise R is set to zero. 

Wald 
2 log-likelihood for the intial model 
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Information for the Variables Not in the Equation 

For each of the variables not in the equation, the Score statistic is calculated and its corresponding 
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the 
equation is defined similarly to the R for the variables in the equation by changing the Wald 
statistic to the Score statistic. 

There is one overall statistic called the residual chi-square. This statistic tests if all regression 
coefficients for the variables not in the equation are zero. It is defined by 

 

 

where is the vector of first derivatives of the partial log-likelihood function  with 
respect to all the parameters not in the equation evaluated at MPLE  and   is equal to 

                                and A is defined in “Score Statistic ”. 
 
Survival Table 

For each stratum, the estimates of the baseline cumulative survival and hazard  function 
and their standard errors are computed. is estimated by 

 

 

and the asymptotic variance of is defined in “Estimation of the Baseline Function ”. Finally, 
the cumulative hazard function  and survival function are estimated by 

 

and, for a given x, 
 

The asymptotic variances are 
 

and 
 

 
Diagnostic  Statistics 

Three casewise diagnostic statistics, Residual, Partial Residual, and DFBETAs, are produced. 
Both Residual and DFBETA are computed for all distinct individuals. Partial Residuals are 
calculated only for uncensored individuals. 

Assume that there are subjects in stratum j and  distinct observed events  . 
Define the selected probability for the lth individual at time as 



 

COXREG 
Al ith  

 
 

 
 
 

if  th individual is in   
 

 

otherwise 

and 
 
 

 
 
 
 

 

 
DFBETA 

if  th individual is in  
otherwise 

 

 

The changes in the maximum partial likelihood estimate of beta due to the deletion of a single 
observation have been discussed in Cain and Lange (1984) and Storer and Crowley (1985). The 
estimate of DFBETA computed is derived from augmented regression models. The details can be 
found in Storer and Crowley (1985). When the lth individual in the jth stratum is deleted, the 
change   is estimated by 

 

where 
 

 

 

  
 

 

and is an matrix which represents the p covariate variables in the model evaluated at 
, and is the number of individuals in . 

 
Partial Residuals 

Partial residuals can only be computed for the covariates which are not time dependent. At time 
in stratum j, is the p×1 observed covariate vector for any gth individual in set , where 
  is the set of individuals dying at    . The partial residual is defined by 
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Rewriting the above formula in a univariate form, we get 
 

where is the hth component for . For every variable, the residuals can be plotted against 
times to test the proportional hazards assumption. 

 
Residuals 

The residuals are computed by 
 

 

 
Plots 

which is the same as the estimate of the cumulative hazard function. 
 
 
 

For a specified pattern, the covariate values are determined and is computed. There are three 
plots available for Cox regression. 

 

Survival Plot 

For stratum j, , are plotted where 
 

When PATTERN(ALL) is requested, for every uncensored time in stratum j the survival 
function is estimated by 

 

 

Then , are plotted for stratum j. 
 

Hazard Plot 

For stratum j, , are plotted where 
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LML Plot 

The log-minus-log plot is used to see whether the stratification variable should be included as 
a covariate.  For stratum j, , are plotted.  If the plot shows 
parallelism among strata, then the stratum variable should be a covariate. 
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CREATE Algorithms 
CREATE produces new series as a function of existing series. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 22-1 
Notation 
Notation Description 
Existing Series 

New Series 

 

Cumulative Sum (CSUM(X)) 
 

 

Differences of Order m (DIFF(X,m)) 
Define 

 

 
with 

 

 
then 

 

SYSMIS otherwise 
 
Lag of Order m (LAG(X,m)) 

 

SYSMIS 
 

Lead of Order m (LEAD(X,m)) 
 

SYSMIS 
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Moving Average of Length m (MA(X,m)) 

If m is odd, define 
 
 

 
 

 

then 
 
 

SYSMIS otherwise 
 

If m is even, define  and 
 

 
then 

 

SYSMIS otherwise 
 
Running Median of Length m (X,m) 

If m is odd, 
 

median 
SYSMIS otherwise 

If m is even, define 

median 

then 
 
 

 
 

SYSMIS otherwise 
 

where 
 
 
 
 
 

 
 
 

if is odd 
if is even 

 

if is odd 
if is even 
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and is the ordered sample of . 
 
Seasonal Differencing of Order m and Period p 
(SDIFF(X,m,p)) 

Define 
 

 
where 

 

 
then 

 

 

The T4253H Smoothing Function (T4253H(X)) 
The original series is smoothed by a compound data smoother based on (Velleman, 1980). The 
smoother starts with: 

E   A running median of 4: 
 

Let Z be the smoothed series, then 
 

 
and 

 

 

 
E   A running median of Z: 

 

and 
 

 
E   A running median of 5 on from the previous step: 

Let   be the resulting series, then 
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and 
 

 

E   A running median of 3 on from the previous step: 

Let   be the resulting series, then 
 

 

 
 

 
   

 

 
 

 

 
   

E   Hanning (Running Weighted Averages): 
 

 

E  Residual: 
 

E   Repeat the previous steps on the residuals : 

E  Let be the final result. 

E   Final smooth: 
 

 
Prior Moving Averages of Length m (PMA(X,m)) 

 
 

 
 

 
    

 

   

 
SYSMIS 
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Fast Fourier Transform (FFT(X)) 

The discrete Fourier transform of a sequence is defined as 
 
 

 
 

 

 

 
 

 
 

 
 

 

 
 

  
 

 

 
 

  
 
 

 

Thus a, b are two sequences generated by FFT and they are called real and imaginary, respectively. 
 
 

 
 

 
 

    
 

   

 
 

 
 

 
 

 
 

    
 

   

 
 

where 
 
 

 
 

if is odd 
if is even 

 

and 
 

 

 
Inverse Fast Fourier Transform of Two Series (IFFT(a,b)) 

The inverse Fourier Transform of two series {a, b} is defined as 
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CROSSTABS Algorithms 
The notation and statistics refer to bivariate subtables defined by a row variable X and a column 
variable Y, unless specified otherwise. By default, CROSSTABS deletes cases with missing 
values on a table-by-table basis. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 23-1 
Notation 
Notation Description 

Distinct values of row variable arranged in ascending order: 

                                                     Distinct values of column variable arranged in ascending order: 

                                                       Sum of cell weights for cases in cell 

 

, the jth column subtotal 
 

, the ith row subtotal 
 

W 
, the grand total 

 
 

Marginal and Cell Statistics 
Count 

 
count  

 
Expected Count 

 

Row Percent 
 

row percent 
 

Column Percent 
 

column percent 
 

Total Percent 
 

total percent 
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Residual 
 

 
Standardized Residual 

 

 
Adjusted Residual 

 

 
Chi-Square  Statistics 

Pearson’s Chi-Square 
 

 
The degrees of freedom are . 

Likelihood Ratio 

 
The degrees of freedom are . 

 
Note: when        , the entire term is treated as 0, because , 
and thus has no effect on the sum. 

Fisher’s Exact Test 
 

If the table is a table, not resulting from a larger table with missing cells, with at least one 
expected cell count less than 5, then the Fisher exact test is calculated. For more information, see 
the topic “Significance Levels for Fisher’s Exact Test”. 

 
Yates Continuity Corrected for 2 x 2 Tables 

 

if >0.5W 
otherwise 

 

The degrees of freedom are 1. 
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Mantel-Haenszel Test of Linear Association 
 

 
where r is the Pearson correlation coefficient to be defined later. The degrees of freedom are 1. 

 
Other Measures of Association 

Phi Coefficient 

For a table not 

 
 

 
 

For a table only, is equal to the Pearson correlation coefficient so that the  sign of 
matches that of the correlation coefficients. 

 
Coefficient of Contingency 

 

 
Cramér’s V 

 

 
where . 

 
Measures of Proportional Reduction in Predictive Error 

Lambda 
 

Let  and   be the largest cell count in row i and column j, respectively.  Also, let   be 
the largest row subtotal and       the largest column subtotal. Define as the proportion of 
relative error in predicting an individual’s Y category that can be eliminated by knowledge of 
the X category. is computed as 

 
 

 

 
 

The standard errors are 
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where 
 
 

 
 

if is column index for  
otherwise 

 

if is index for 
otherwise 

 

Lambda for predicting X from Y, , is obtained by permuting the indices in the above formulae. 

The two asymmetric lambdas are averaged to obtain the symmetric lambda. 

 

 
 

 

The standard errors are 
 

 

where 
 

if is row index for  
               otherwise 

if is index for 
otherwise 

 

and where 
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if is column index for  
               otherwise 

 

if is index for 
otherwise 

 
Goodman and Kruskal’s Tau 

 
Similarly defined is Goodman and Kruskal’s tau (Goodman and Kruskal, 1954): 

 

 

 

 

 
 

with standard error 
 

 

in which 
 
 

 
 

and 
 
 

and its standard error can be obtained by interchanging the roles of X and Y. 

The significance level is based on the chi-square distribution, since 

 

 
 

 
 

 
 

 

 
Uncertainty Coefficient 

 
Let be the proportional reduction in the uncertainty (entropy) of Y that can be eliminated by 
knowledge of X. It is computed as 

 

 
where 
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and 
 
 

 

 

 
 

The asymptotic standard errors are 

for 

 

 
 

 
 

where 

 
 

The formulas for can be obtained by interchanging the roles of X and Y. 
 

A symmetric version of the two asymmetric uncertainty coefficients is defined as follows: 
 

 
with asymptotic standard errors 

 

or 

 
 
Cohen’s Kappa 

Cohen’s kappa , defined only for square table , is computed as 
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with variance 
 

 
 
Kendall’s Tau-b and Tau-c 

Define 
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Note: the P and Q listed above are double the “usual” P (number of concordant pairs) and Q 
(number of discordant pairs). Likewise,  is double the “usual” (the number of 
concordant pairs, discordant pairs, and pairs on which the row variable is tied) and  is double 
the “usual” (the number of concordant pairs, discordant pairs, and pairs on which 
the column variable is tied). 

 
Kendall’s Tau-b 

 

 
with standard error 

 

where 
 

 
Under the independence assumption, the standard error is 

 

 

Kendall’s Tau-c 
 

 

with standard error 
 

 

or, under the independence assumption, 
 

 

where 
 



 

CROSSTABS 
Al ith  

 
 

 
 

Gamma 
Gamma   is estimated by 

 

 
with standard error 

 

 
or, under the hypothesis of independence, 

 

 

Somers’ d 
Somers’ d with row variable X as the independent variable is calculated as 

 

 
with standard error 

 

 
or, under the hypothesis of independence, 

 

 

By interchanging the roles of X and Y, the formulas for Somers’ d with X as the dependent 
variable can be obtained. 

 
Symmetric version of Somers’ d is 

 

 
The standard error is 
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where   is the variance of Kendall’s , 
 

 
Pearson’s r 

The Pearson’s product moment correlation r is computed as 
 

where 
 

 

 
 

and 
 

 
The variance of r is 

 

If the null hypothesis is true, 
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where 
 

 

and 
 

 

Under the hypothesis that , 
 

 

is distributed as a t with degrees of freedom. 
 
Spearman  Correlation 

The Spearman’s rank correlation coefficient is computed by using rank scores  for  and 
  for .  These rank scores are defined as follows: 

 
                                               for  

                                      for 

 
 
Eta 

The formulas for and its asymptotic variance can be obtained from the Pearson formulas by 
substituting and   for and , respectively. 

 
 
 

Asymmetric with the column variable Y as dependent is 
 

 

 
 

 

where 



 

CROSSTABS 
Al ith  

 
 

 

Relative Risk 
Consider a table  that is, . In a case-control study, the relative risk is estimated as 

 

 
The           percent CI for the relative risk is obtained as 

 

 
where 

 

 
 

The relative risk ratios in a cohort study are computed for both columns. For column 1, the risk is 
 

 
and the corresponding           percent CI is 

 

 
where 

 

 

The relative risk for column 2 and the confidence interval are computed similarly. 
 
McNemar-Bowker’s  Test 

This statistic is used to test if a square table is symmetric. 

 
Notations 

Table 23-2 
Notation 
Notation   Description 

Dimension of the table (both row and column) 

Unknown population cell probability of row i and column j 

Observed counts cell count of row i and column j 



 
 

 

Algorithm 
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Given a square table, the McNemar-Bowker’s statistic is used to test the hypothesis 
                    for all (i<j) v.s.                             for at least  one pair of  (i,j).  The statistic  is 

defined  by the formula 
 
 
 
 
 

Where I() is the indicator function. Under the null hypothesis,  has an asymptotic Chi-square 
distribution with degrees of freedom. The null hypothesis will be rejected if  has a 
large value.  The two-sided p-value is equal to , where is the 
CDF of Chi-square distribution with df degrees of freedom. 

 
A Special Case:  2x2 Tables 

For 2x2 table, the statistic reduces to the classical McNemar statistic (McNemar, 1947) for which 
exact p-value can be computed.  The two-tailed probability level is 

 

 

Conditional Independence and Homogeneity 
The Cochran’s and Mantel-Haenzel statistics test the independence of two dichotomous variables, 
controlling for one or more other categorical variables. These “other” categorical variables define 
a number of strata, across which these statistics are computed. 

 
The Breslow-Day statistic is used to test homogeneity of the common odds ratio, which is a weaker 
condition than the conditional independence (i.e., homogeneity with the common odds ratio of 
1) tested by Cochran’s and Mantel-Haenszel statistics. Tarone’s statistic is the Breslow-Day 
statistic adjusted for the consistent but inefficient estimator such as the Mantel-Haenszel estimator 
of the common odds ratio. 

 
Notation and Definitions 

Table 23-3 
Notation 
Notation Description 

The number of strata. 

                  Sum of cell weights for cases in the ith row of the jth column of the kth strata. 
 

, the jth column of the kth strata subtotal. 
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Notation Description 

, the ith row of the kth strata subtotal. 
 

, the grand total of the kth strata. 
 

                                           , the expected cell count of the ith row of the jth column of the kth strata. 
 
 

A stratum such that is omitted from the analysis. (K must be modified accordingly.) If 
for all k, then no computation is done. 

 
Preliminarily, define for each k 

 

            , 
 

                      , 
 

, 

and 
 

. 
 
Cochran’s Statistic 

Cochran’s statistic (Cochran, 1954) is 
 
 
 

. 
 
 
 

All stratum such that or are excluded, because  is undefined. If every stratum 
is such, C is undefined.  Note that a stratum such that and but that or 

is a valid stratum, although it contributes nothing to the denominator or numerator. 
However, if every stratum is such, C is again undefined. So, in order to compute a non-system 
missing value of C, at least one stratum must have all non-zero marginal totals. 

 
Alternatively, Cochran’s statistic can be written as 

 
 

. 
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E 

V 

 

 
 

When the number of strata is fixed as the sample sizes within each stratum increase, Cochran’s 
statistic is asymptotically standard normal, and thus its square is asymptotically distributed as a 
chi-squared distribution with 1 d.f. 

 

Mantel and Haeszel’s Statistic 

Mantel and Haenszel’s statistic (Mantel and Haenszel, 1959) is simply Cochran’s statistic with 
small-sample corrections for continuity and variance “inflation.” These corrections are desirable 
when and  are small, but the corrections can make a noticeable difference even for relatively 
large and (Snedecor and Cochran, 1980) (p. 213). The statistic is defined as: 

 
 

 

 

 
 

, 
 
 
 

where sgn is the signum function 
 

if 
if . 

if 
 

Any stratum in which is excluded from the computation.  If every stratum is such, then 
M is undefined.  M is also undefined if every stratum is such that , , , or 

. In order to compute a non-system missing value of M, at least one stratum must have all 
non-zero marginal totals, just as for C. 

 
When the number of strata is fixed as the sample sizes within each stratum increase, or when   
the sample sizes within each strata are fixed as the number of strata increases, this statistic is 
asymptotically standard normal, and thus its square is asymptotically distributed as a chi-squared 
distribution with 1 d.f. 

 

The Breslow-Day Statistic 

The Breslow-Day statistic for any estimator is 
 
 

. 



 
 

MH 

MH 
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E and V are based on the exact moments, but it is customary to replace them with the asymptotic 
expectation and variance.  Let  and  mean the estimated asymptotic expectation and the 
estimated asymptotic variance, respectively. Given the Mantel-Haenszel common odds ratio 
estimator   MH, we use the following statistic as the Breslow-Day statistic: 

 

, 
 
 

where 
 

MH 

satisfies the equations 
 

MH, 
 

with constraints such that 
 
 
 
 
 

 
and 

 
MH       

with constraints such that 
 

 
All stratum such that  or are excluded. If every stratum is such, is undefined. 
Stratum such that are also excluded. If every stratum is such, then is undefined. 

 
Breslow-Day’s statistic is asymptotically distributed as a chi-squared random variable with K-1 
degrees of freedom under the null hypothesis of a constant odds ratio. 

 
Tarone’s Statistic 

Tarone (Tarone, 1985) proposes an adjustment to the Breslow-Day statistic when the common 
odds ratio estimator is consistent but inefficient, specifically when we have the Mantel-Haenszel 
common odds ratio estimator. The adjusted statistic, Tarone’s statistic, for   MH is 
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where  and  are as before. 
 

The required data conditions are the same as for the Breslow-Day statistic computation. is, 
of course, undefined, when is undefined. 

 

is also asymptotically distributed as a chi-squared random variable with K-1 degrees of freedom 
under the null hypothesis of a constant odds ratio. 

 

Estimation of the Common Odds Ratio 

For strata of tables, write the true odds ratios as 
 

 
for . And, assuming that the true common odds ratio exists,               , Mantel 
and Haenszel’s estimator (Mantel et al., 1959) of this common odds ratio is 

 

MH . 
 
 

If every stratum is such that or , then   MH is undefined. The (natural) log of 
the estimated common odds ratio is asymptotically normal. Note, however, that if          or 

in every stratum, then   MH is zero and MH   is undefined. 

MH 

MH 

MH 

MH 

MH 

MH 
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The Asymptotic Confidence Interval 

Robins et al. (Robins, Breslow, and Greenland, 1986) give an estimated asymptotic variance for 
  that is appropriate in both asymptotic cases: 

 

 
 
 

An asymptotic (100 −   )% confidence interval for is 

MH       log MH , 

where z   is the upper critical value for the standard normal distribution.  All these 
computations are valid only if   MH is defined and greater than 0. 

The Asymptotic P-value 

We compute an asymptotic P-value under the null hypothesis that           against a 
2-sided alternative hypothesis   , using the standard normal variate, as follows 

 
, 

 

given that MH    is defined. 

Alternatively, we can consider using MH and the estimated exact variance of MH, which is 
still consistent in both limiting cases: 

2 
MH 

Then, the asymptotic P-value may be approximated by 
 

Pr   MH  . 
MH 

The caveat for this formula is that MH may be quite skewed even in moderate sample sizes 
(Robins et al., 1986). 

 
Column Proportions Test 

This section describes the computation of the column proportions test. 

  MH  
MH 

MH log( 

MH 

MH . 
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Notation 
 

The following notation is used throughout this section unless otherwise stated: 
Table 23-4 
Notation 
Notation Description 
R Number of rows in the sub-table. 
C Number of columns in the sub-table. 

                                          ith category of the row variable. 

                                         jth category of the column variable. 

                                            Total case weights in cell (i,j). 

Marginal case weights total in jth column. 

                                           Rounded marginal case weights total in jth column. 

z z-statistic. 
                                          Chi-Square statistic. 

Column proportion for cell (i,j). 

                                         Estimated column proportion for cell (i,j). 
                                        Estimate of pooled column proportion of j and kth column in ith row. 

p p-value of a test. 
Bonferroni corrected p-value. 

α The significance level supplied by the user. 
 
 
Conditions and Assumptions 

 Pairwise tests are performed on each row of all eligible innermost sub-tables within each layer. 
 The number of rows and columns in the sub-table must each be greater than or equal to two. 
 Tests are constructed by using all visible categories excluding totals and sub-totals. Hiding of 

categories and showing of user-missing categories are respected. 
 If weighting is on, cell statistics must include weighted cell counts or weighted simple column 

percents; a weighted analysis will be performed. If weighting is off, cell statistics requested 
must include cell counts or simple column percents; an unweighted analysis will be performed. 

 A proportion will be discarded if the proportion is equal to zero or one, or the sum of case 
weights in a category is less than 2; that is, if . If less than two proportions are left after 
discarding proportions, test will not be performed. 

 

Statistics 

The following statistics are available. 
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Table Layout 
 

 B1 B2 ... BC 
A1 p11 p12 ... p1C 

A2 p21 p22 ... p2C 
... ... ... ... ... 
AR pR1 pR2 ... pRC 

 
Hypothesis 

 
Without lost of generality, we will only look at the ith row of the table. Let C* be the number of 
categories in the ith row where the proportion is greater than zero and less than one, and where 
the sum of case weights in the corresponding column is at least 2. In the ith row, C*(C*−1)/2 
comparisons will be made among . The (j,k)th hypothesis will be 

 
                    vs.   

Aggregated Statistics 

Column proportions tests are based on the aggregated proportions ( ) and cell counts for each 
column (   ). Column proportions are computed using the un-rounded cell counts              which 
are equal to the proportions actually displayed. 

 
Statistics for the (i,j)th Comparisons 

Pooled proportion:   

z statistic with a categorical variable in the columns: 
 
 

When multiple response set defines columns there may exist cases that belong to both jth and kth 
columns.  Let  be the rounded sum of weights for such cases. 

z statistic with a multiple response set in the columns: 
 
 

p-value: 
 

where is the CDF of standard normal distribution. 

Alternatively, the statistic can be constructed as a chi-square statistic, 

the p-value will now be given by , where is the CDF of a chi-square 
distribution with df degrees of freedom. 

 
A comparison is significant if p<α (or , if Bonferroni adjusted). 

Bonferroni Adjustment 
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If Bonferroni adjustment for multiple comparisons is requested, the p-value will be adjusted by 
 

 

Relationship to Pearson’s Chi-Square Tests 
 

With a categorical variable in the columns, the statistics used in column proportion tests is 
equivalent to the Pearson’s chi-square test on a 2×2 table by taking j and kth column and collapsing 
all rows except the ith row. Therefore performing column proportion tests on a 2×2 table will give 
you the same result as Pearson’s chi-square test. 

 
Use of Case Weights 

 
The case weights (or frequency weights) are supposed to be integers representing number of 
replications of each case. In column proportions tests, we will only check if the column marginal 

’s are integers. If not, they will be rounded to the nearest integer. 
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CSCOXREG Algorithms 
Survival analysis studies the failure time distribution. This algorithm considers the Cox 
proportional hazards regression model under the complex sampling setting. The failure time 
is assumed to be continuous here. 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

For data with one time interval, the observed end time for record i. 

For data with two time intervals, the observed enter and end time for record 
i, . 

                                           The zero-one status indicator with  indicating end time or being 
failure time, and          indicating or  being right censoring time. 

              The ordered observed failure times where K is the number of distinct failure 
times in the data set. 

Predictor vector for record i, . No intercept term. 
Vector of reference values for transforming predictors. For more 
information, see the topic “Predictor Transformations”. 

Design matrix . 

The set of records failed at time t.  for data with 
one time variable, and                              for data with two time 
variables. 
The set of records at risk at time t.             for data with one time 
variable, and                            for data with two time variables. 

The at-risk indicator for record i such that if 
otherwise 

The number of records failed at time t; that is, the number of records in 

Survival function at time t for a given predictor vector        , 
where T is a random variable representing survival 

time. 
Hazard function at time t for a given predictor vector        , 

. 

Cumulative hazard function at time t for a given predictor vector   . 

Baseline hazard function at time t, . 

Cumulative baseline hazard function at time t. 
 

 
Baseline survival function at time t. 

N The number of cases in the whole population. 
n The number of cases/records in the sample. 

The number of subjects/individuals in the sample. 
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Sampling weight for record i, . 

The parameter of interest, the population or census parameter. 

                                           The estimate of census parameter from the sample. 
 
 

Input   
Sampling plan. This plan is needed for sampling method, sampling weight, strata and cluster 
information. 

 
Observed sample data.  Two kinds of data structures are allowed. 
 Data with one time intervals: . 
 Data with two time intervals: , or   id , where 

is the time interval during which the record is at risk, and id  is the subject id  for 
record i. Multiple records for the same subject have the same id and same sampling weight. 
Multiple records of the same subject should have disjoint time intervals. If id is not specified, 
each record is assumed from different subject. 

 

Note: Data with one time interval is simply a special case of data with two time intervals where 
and . The rest of this document is written from the perspective of data with two 

time intervals. 
 
Predictor Transformations 

To decrease the chance of over- or underflow when calculating exp(.), first a transformation 
is performed on each predictor for a properly chosen (reference value). Then all 

the calculations described in other sections are performed on the transformed data. Except for 
baseline hazards and baseline survival functions, all other quantities based on transformed data 
are the same as those based on original data. 

 
For a continuous predictor x in the original covariate list, the reference value x0 is chosen to be 

 
 

 
  

 

 
 

Note that x0 is not the mean of x when there are multiple cases per subject or x is a time dependent 
predictor. 

 
For a categorical predictor, the last category is the reference value. 

 
The reference values for model effects derived from original predictors, such as interactions, are 
derived from the reference values of the original predictors in the same way the effects are derived. 
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Proportional Hazards 
Two phases of sampling are assumed. The first phase generates a finite population by a model 
or super population. The second phase selects a sample according to a sampling plan from the 
finite population generated in the first phase. 

 

Model 

For a given predictor vector   , the hazard function at time t is 
 

 
or 

 

 
where   is the baseline hazard function. The regression parameter vector doesn’t include an 
intercept term because the intercept can be absorbed by the baseline hazard. 

 
Survival and cumulative hazard functions 

 
From this model the cumulative hazard function is 

 

 
 

where                           is the baseline cumulative hazard function. The survival function is 
 

 
where                               is the baseline survival function. 

 

Pseudo Partial Likelihood and Derivatives 

For a sample drawn from the finite population according to a sample 
plan, we take the pseudo-likelihood approach. In this approach, pseudo-likelihood is a sample 
estimate of the population log-likelihood, and parameter estimates are derived by maximizing 
the pseudo-likelihood. Let  ,   and   denote the pseudo-likelihood, its first and 
second derivatives. 
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For the Breslow approximation: 
 

 
 

For the Efron approximation: 
 

 
 

Let 
 

 
 

 

  
 

 

 

 
 
 
 
 
 
 

    
 

 
 

 
 

 
 
 

 

 
  

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
  

 
 
 

Breslow 

Efron 
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Breslow 

Efron 

 
So 

 

                                                                                                     Breslow 

Efron 
 

 

 
 

These equations are used to calculate the needed quantities throughout the rest of the document. 
When predictors are time-dependent, these equations need to be modified accordingly. For more 
information, see the topic “Time-Dependent Predictors”. 

 

Parameter Estimation 

To obtain the maximum pseudo-likelihood estimate of B, the Newton-Raphson iterative estimation 
method is used to solve the estimating equation. Redundant parameters are fixed at zero for all 
iterations. Let   be the parameter estimate at iteration step v, the parameter estimate   at 
iteration step v + 1 is updated as 

 

 
where is a generalized inverse of .  The stepping scalar   >0 is used to make 

                                     . Use the step-halving method if                                  . Let s be the 
maximum number of steps in step-halving; the set of values of is then {1/2r: r = 0, …, s−1}. 

 
Starting with initial value  , update until one of the stopping criteria is satisfied. The 
final estimate is denoted as . 

 
Initial values 

 
By default,       . 
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Stopping criteria 

Given two small constants > 0 and > 0, the iteration stops if one of the following criteria is 
satisfied: 

1. Pseudo-likelihood criterion 
 

 
 

if relative change 

if absolute change 

2. Parameter criterion 

 

3. The maximum number of iteration is reached, or maximum number of steps in step-halving 
is reached. 

 
Either relative or absolute change is considered in criteria 1 and 2. 

 
Infinite valued parameters 

There may be situations in which the maximum pseudo-likelihood estimates of some parameters 
are infinite. For example, if there is no failure at one level of a binary predictor, the estimated 
parameter would be infinity for this predictor. In this situation, the estimation procedure is 
performed as usual. At the end of the estimation, we will check for possible infinite parameters 
and issue warnings if there are any. Parameter  is possibly infinite if both of the followings are 
satisfied: 

1.    
 

2. The Hessian is singular, or . 

When there are infinite valued parameters, the Wald statistic for hypothesis testing involving 
infinite valued parameters becomes worthless. 

 
Properties of Estimates 

 
Variance matrix 

 
Let 

 
                                                                                                      Breslow 
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We will use the following robust variance estimation (Binder 1992, Lin 2000), 
 

 
where is the estimate of the design based variance of   with 

 

 

 
Notice that the sum in   is over all subjects, and the sum in  is over all records 
for subject j.  The    is an estimate for the population total of vectors. For more 
information, see the topic “Complex Samples: Covariance Matrix of Total”. 

 
Confidence interval 

 
The confidence interval for a single regression parameter   is approximately 

 

 
where is the percentile of a t distribution with df degrees of freedom. 

 
The degrees of freedom df can be user specified; its default value is the difference between the 
number of primary sampling units and the number of strata in the first stage of sampling. 

 
Design effect 

 
For each parameter , its design effect is the ratio of its variance under the design to its variance 
under the SRS design, 

 

 
For SRS design, the variance matrix is 

 

 
where 

 
id 
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with finite population correction. 
without finite population correction. 

 
 

t Tests 
 

Testing hypothesis          for each non-redundant model parameter   is performed using 
the t test statistic: 

 

 
 

The p-value for the two-sided test is given by the probability     , where T is a 
random variable from the t distribution with df degrees of freedom. 

 
Exponentiated parameter estimates 

 

can be interpreted as a hazard ratio for main effects model. Its confidence interval is 
 

 

where   are the lower and upper confidence limits for census parameter . 

 
Survival and Cumulative Hazard Functions 

In this section,                 are the ordered observed failure times, and       ,          
are used for convenience. The estimates are valid for . 

 

Estimation of Baseline Survival and Cumulative Hazard Functions 
 

Only one of these needs to be estimated because                  and                     
The baseline functions are estimated by right continuous step functions with jumps only at 

observed failure times; that is,  .
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Product-limit Estimate 
 

The non-increasing right continuous baseline survival function    is estimated here. Let 
the ratio jump be                           for j = 1 to K, and , so                           
. 
Assuming that the regression parameters are given, will be the parameters to be estimated 
by maximum likelihood estimation. 

 
Pseudo likelihood and its derivatives 

 
Let be the probability density function of failure time at t for a given predictor. The 
pseudo likelihood is 

 

 
 
 

We will estimate by maximizing              , which is equivalent to solving and 
hence the following equation. 

 

 
Failure times of single failure 

 
If there is only a single failure  at failure time , there exists a closed form solution, 

 
 

 
 

Failure times with tied failures 
 

If there are multiple failures at failure time , Newton’s iterative method is used to solve the 
equation with constraint .  A good initial value is 
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Kaplan-Meier estimator: a special situation of no predictors 
 

When there are no predictors; that is, always, the product-limit estimator becomes the 
Kaplan-Meier estimator, 

 

 
Breslow, or Nelson-Aalan, or Empirical, Estimate 

Here   is estimated by a non-decreasing step function with steps at observed failure times: 
 

where    is the count of failures up to time t for record i. 
 

Efron Estimate 

When there are ties in failure times, the following estimation can also be used. This will reduce 
to Breslow when there are no ties. 

 
 
 
 
 
 
 

Prediction of Survival and Cumulative Hazard Functions 

For a given   , the cumulative hazard function and survival functions are predicted by 
 

 

 
where    and    are the estimated baseline cumulative hazard function and baseline 
survival function. 

 
For variance calculation, the same formula will be used regardless of different ways to estimate 
baseline functions.  The variance for cumulative hazard is 
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where 

 

 

 

 

 

 
 

 

 
  

 

 

 
 

 
 

 

 
  

 
  

 

 

 
 

and   and   are defined in “Pseudo Partial Likelihood and Derivatives ” and “Properties 

of Estimates ”, respectively.  See Lin (2000) for more details. is the 

design-based variance of which is the estimated population total of       .  

For more information, see the topic “Complex Samples: Covariance Matrix of Total”. 

The variance estimate for the survival function is 
 

 
 

Confidence interval for survival function 
 

A confidence interval for can be calculated in the following ways. Let 

 
id 
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original 
 

  
 
 

the confidence interval for at level is 

 
where is the  upper percentile point of the standard normal distribution and 

 
 

Please note that the first two confidence intervals may have values greater than 1 or less than zero 
(we can truncate them to 0 or 1 if they are out of range). The third one always between 0 and 1. 
However Link (1984 & 1986) suggested that the second one performed the best. 

 

Residuals 

Some residuals defined below depend on the baseline cumulative function. Three estimation 
methods for baseline cumulative function are available to user. If users don’t request estimation 
of cumulative hazard or survival function, but request for residuals, then use Breslow estimate 
if Breslow approximation is chosen in estimating the parameters, and Efron estimate if Efron 
approximation is chosen in estimating the parameters. 

 
Schoenfeld’s partial residuals 

 
This is calculated only for observations with        . 

(Sch) 
 

 
 

where is defined in “Pseudo Partial Likelihood and Derivatives ”. 
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Martingale residual 

(M) 
   

 
 

Deviance residual 
 

(D) 
 

 
 
 

Cox-Snell residual 

(CS) (M) 
    

 
 

Score residual 

(Sco) 
 

 
 

where    is defined in “Properties of Estimates”. 

 
DFBETA 

 
DFBETA that measures the influence of record i on parameter estimate is 

 

 

This is approximately the parameter change,             , where   is the parameter estimate 
when the ith record is omitted. 

 
Aggregated residual 

 
When there are multiple records representing a single subject (as in data with two time variables), 
residuals can be given for each subject rather than for each record. Except for Schoenfeld’s and 
deviance residuals, the aggregated residual for a subject is simply the sum of the corresponding 
record residuals over all the records belonging to the same subject. Please notice that aggregation 
can only be done for data in the format  id . For Schoenfeld’s residual, 
the aggregated version is the same as that of the non-aggregated version because Schoenfeld’s 
residual is only defined for records with        . For deviance residual, the aggregated residual can 
be derived using the aggregated Martingale residual. 

(M) (M) (M) 
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Baseline Hazard Strata 
Cox regression can be extended to allow multiple baseline hazard strata (note that these are 
different from the sample design strata). The baseline hazard strata divide the subjects into disjoint 
groups, each of which has different baseline hazard function while the regression parameter 

 stays the same for all baseline hazard strata. 
 

Suppose there are G baseline hazard strata. For baseline hazard stratum g, the model becomes 
 

 
Let  be the set of records belong to baseline hazard stratum g. Adding the subscript g to a 
quantity denotes that it is calculated only using data in . For baseline stratum g, the previously 

 

 

The parameter can be estimated by maximizing   as before. The variance of the parameter 
estimates and design effects are calculated by the same formulae with the following modifications: 

 

 
where  is the baseline stratum that case i belongs to, and the sum is over all cases for subject j, 
no matter which baseline stratum the case is in. 

After the regression parameters are estimated, the cumulative hazard and survival functions can 
be estimated for each baseline stratum separately using the same formula but on data only from 
that stratum. Let           denote the estimate of stratum g’s cumulative hazard function at time t 
for a given predictor . Its variance calculation is similar as before but with the following changes. 

 

 

where 
 

   

     
 

 
     

 
id 

 
idi 



 

CSCOXREG 
Al ith  

 
 

 
 

and are calculated by the same equations as before but only using data from 
stratum g. 

 
Given regression parameters at the estimated values, the residual for each record is calculated 
based on the data only from the stratum that the record belongs to. If record i belongs to stratum g, 
then in its residuals calculation, simply replace by . 

 

Time-Dependent Predictors 

Cox regression can also be extended to allow time dependent predictors, . The Cox 
regression model becomes 

 

 
 

The previously defined equations still apply by simply replacing with accordingly. 
 

Note: If the values of a time-dependent predictor only depend on time and not the case number, 
then this predictor will be absorbed in the baseline hazard function. The regression parameter 
for this predictor is set as redundant. 

 
 

Predictors 
 

All predictor values for records in the risk set at each failure time are needed in the calculation. 
Two kinds of time dependent predictors are allowed: piecewise constant predictors, and predictor 
values that can be calculated at all the needed times. 

 

Piecewise constant predictors 
 

Often the predictors for a subject are measured many times during the study. Between 
measurements, the predictor value is assumed to be unchanged. Data with two time variables can 
handle this kind of piecewise constant predictors. For each subject, multiple records with two time 
variables (see “Input ”) are created, one record for each distinct pattern of the time-dependent 
measurements. The predictor values are constant for each record. This becomes the two failure 
time variables with time-independent covariate situation. 

 
Note: it is the user’s responsibility to create the data set of two time variables. 

 

Calculatable predictors 
 

The predictor values can be calculated and hence known at any time point; for example, the age of 
a subject. The TIME PROGRAM command is used for this purpose. 
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Survival and Cumulative Hazard Functions 

For product-limit estimate, solve for from: 
 

 

For Breslow estimation: 
 

 
For Efron estimation: 

 

 
 

 

Using the fact that   and   are right continuous step functions with jumps only at observed 
failure times, then for a given predictor path up to time T: , the cumulative hazards 
and survival function are estimated by step functions. For 

 

 

     

 

  
 

The variance of   can be calculated as in the case without time-dependent 
predictors, but with the following changes: 
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There is no agreeable interpretation of the survival function when there are  calculatable 
time-dependent predictors. Survival curves based on a time-dependent covariate must be used 
with extreme caution. 

 
Residuals 

When there are time dependent predictors, all residuals are calculated in the situation where data 
with two time variables are used to handle the time-dependent predictors. Only Schoenfeld’s 
residual, score residual, and DFBETA are calculated in other situations. 

 
Hypothesis Testing 

Contrasts defined as a linear combination of regression parameters can be tested. Given matrix 
with r rows and p columns, and vector with r elements, we test the linear hypothesis 
                    if it is testable. For more information, see the topic “Complex Samples: Model 

Testing”. 
 
Testing Model Assumptions 

Tests are performed by considering bigger alternative models involving additional parameters. 
When fitting alternative models, initial values are set to 0 for all additional parameters 
and        for old parameters where   is the previously estimated value of model 

 
If there are baseline hazard strata or time dependent covariates in the original model, then the 
alternative model should also include them. The only difference between the original and the 
alternative model is that there are more predictors in the alternative model. 

 
Testing Proportional Hazards 

A key assumption of Cox regression is proportional hazards. When predictors are constant, the 
hazard ratio is independent of time, so the hazards at different 
predictor values are proportional. We test the adequacy of the proportional hazards assumption 
by considering an alternative model with time-dependent coefficients. Suppose that there are p 
predictors, and we are interested in testing the proportional hazard assumption for   predictors, 
assuming the first   predictors without loss of generality. 

 
Specific alternative model 

 
Consider the alternative model 
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where                                                is a time dependent predictor vector, and 

are user-specified functions of time, one for each of the predictors of interest. 
This is a proportional hazards model with time dependent covariates with parameter vector 

.  Fit this model and test            . 
 

For the time functions, the available options are 

 
where   is the Kaplan-Meier estimate of the survival function, and rd(t) is 

 
 
For simplicity, we will only allow                                 .  By default, p* = p and 
g(t) = 1 – SKM (t). 

 
Note: When there are baseline strata, rd(t) and   are calculated based on the whole data, 
not any individual strata. 

 
Subpopulation Estimates 

When analyses are requested for a given subpopulation, we perform calculations on the redefined 
data such that if the ith record is not in the subpopulation, then 

 

 
In the estimations of regression parameters and the survival/cumulative hazard functions, this 
substitution is equivalent to including only the subpopulation elements in the calculations. In the 
calculation of variance and  , this means that           if the ith record is  not 
in the subpopulation. 

 
Missing Values 

List-wise deletion is used to determine which records are used in the analysis. Negative failure 
times, or or , are considered missing. 



 

CSCOXREG 
Al ith  

 
 

 
 

References 
Binder, D. A. 1992. Fitting Cox’s Proportional Hazards Models from Survey Data. Biometrika, 
79, 139–147. 

 
Collett, D. 2003. Modelling survival data in medical research, 2 ed. Boca Raton: Chapman & 
Hall/CRC. 

 
Grambsch, P., and T. Therneau. 1994. Proportional hazards tests and diagnostics based on 
weighted residuals.  Biometrika, 81, 515–526. 

 
Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2 ed. 
New York:  John Wiley & Sons, Inc. 

 
Lin, D. Y. 2000. On fitting Cox’s proportional hazards models to survey data. Biometrika, 87, 37–
47. 

 
Link, C. L. 1984. Confidence intervals for the survival function using Cox’s proportional hazards 
model with covariates.  Biometrics, 40, 601–610. 

 
Link, C. L. 1986.  Confidence intervals for the survival function in the presence of covariates. 
Biometrics, 42, 219–220. 

 
Therneau, T., and P. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model. New 
York: Springer. 

 
Zhang, D. 2005. "Analysis of Survival Data, lecture notes, Chapter 10." Available at 
http://www4.stat.ncsu.edu/%7Edzhang2/st745/chap10.pdf. 

http://www4.stat.ncsu.edu/%7Edzhang2/st745/chap10.pdf


 

CSDESCRIPTIVES  Algorithms 
This document describes the algorithms used in the complex sampling estimation procedure 
CSDESCRIPTIVES. The data do not have to be sorted. 

 
Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. Sampling design includes the sampling method, strata 
and clustering information, and inclusion probabilities for all units at every sampling stage. The 
overall sampling weight must be specified for each observation. 

 
The sampling design specification for CSDESCRIPTIVES may include up to three stages of 
sampling. Any of the following general sampling methods may be assumed in the first stage: 
random sampling with replacement, random sampling without replacement and equal probabilities 
and random sampling without replacement and unequal probabilities. The first two sampling 
methods can also be specified for the second and the third sampling stage. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

H Number of strata. 
Sampled number of primary sampling units (PSU) per stratum. 

                                          Sampling rate per stratum. 

Number of elements in the ith sampled unit in stratum h. 

Overall sampling weight for the jth element in the ith sampled unit in 
stratum h. 
Value of variable y for the jth element in the ith sampled unit in stratum h. 

Y Population total sum for variable y. 
n Total number of elements in the sample. 
N Total number of elements in the population. 

 
 
Weights 

Overall weights specified for each ultimate element are processed as given. See “Weights ” in 
Complex Samples: Covariance Matrix of Total for more information on weights and variance 
estimation methods. 

 
Z Expressions 
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For multi-stage samples, the index h denotes a stratum in the given stage, and i stands for unit 
from h in the same stage. The index j runs over all final stage elements contained in unit hi. 

 
Variable Total 

An estimate for the population total of variable y in a single-stage sample is the weighted sum 
over all the strata and all the clusters: 

 

Alternatively, compute the weighted sum over all the elements in the sample: 
 

The latter expression is more general because it also applies to multi-stage samples. 
 
Variable Total Variance 

For a multi-stage sample containing a with replacement sampling stage, all specifications other 
than weights are ignored for the subsequent stages. They make no contribution to the variance 
estimates. 

 
Single Stage Sample 

The variance of the total for variable y in a single-stage sampling is estimated by the following: 
 

where   is an estimated contribution from stratum h and depends on the sampling method 
as follows: 
 For sampling with replacement:  
 For simple random sampling:         
 For sampling without replacement and unequal probabilities: 
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and are the inclusion probabilities for units i and j in stratum h, and is the joint 
inclusion probability for the same units. This estimator is due to Yates and Grundy (1953) and 
Sen (1953). 

 
For each stratum h containing a single element, the variance contribution  is always set to zero. 

 

Two-stage Sample 

When the sample is obtained in two stages and sampling without replacement is applied in the 
first stage, use the following estimate for the variance of the total for variable y: 

 

where 
       is the first stage inclusion probability for the primary sampling unit i in stratum h. In 

the case of simple random sampling, the inclusion probability is equal to the sampling rate 
  for stratum h. 

   is the number of second stage strata in the primary sampling unit i within the first stage 
stratum h. 

   is a variance contribution from the second stage stratum k from the primary sampling 
unit hi. Its value depends on the second stage sampling method; the corresponding formula 
from “Single Stage Sample ” applies. 

 

Three-stage Sample 

When the sample is obtained in three stages where sampling in the first stage is done without 
replacement and simple random sampling is applied in the second stage, we use the following 
estimate for the variance of the total for variable y: 

 

 

where 
   is the sampling rate for the secondary sampling units in the second stage stratum hik. 
   is the number of third stage strata in the secondary sampling unit hikj. 
   is a variance contribution from the third stage stratum l contained in the secondary 

sampling unit hikj. Its value depends on the second stage sampling method; the corresponding 
formula from “Single Stage Sample ” applies. 
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Population Size Estimation 
An estimate for the population size corresponds to the estimate for the variable total; it is sum of 
the sampling weights. We have the following estimate for the single-stage samples: 

 

More generally, 
 

The variance of  is obtained by replacing with 1; that is, by replacing with in the 
corresponding variance estimator formula for   . 

Ratio Estimation 
Let R=Y/X be the ratio of the totals for variables y and x. It is estimated by 

 

 
where  and  are the estimates for the corresponding variable totals. 

 
The variance of  is approximated using the Taylor linearization formula following Woodruff 
(1971). The estimate for the approximate variance of the ratio estimate       is obtained by 
replacing        with 

 

in the corresponding variance estimator      . 

Mean Estimation 
The mean  for the variable y is estimated by 

 

 
where  is the estimate for the total of y and  is the population size estimate. 

 
The variance of the mean is estimated using the ratio formulas, as the mean is a ratio of  and 

. Accordingly,   is obtained by substituting with 
 

in the corresponding variance estimator        . 



 
 

 
Domain Estimation 

CSDESCRIPTIVES Algorithms 

 

Let the population be divided into D domains. For each domain d define the following indicator 
variables: 

 

if the sample unit  is in the domain 
otherwise 

 

To estimate a domain population total, domain variable total, ratios and means, substitute with 
           in the corresponding formula for the whole population as follows: 

 
 Domain variable total:   

 
 Domain population total:   

 

 Domain variable ratio:        

 Domain variable mean: 
 

Similarly, in order to estimate the variances of the above  estimators, substitute with 
               in the corresponding formula for the whole population. The following substitution of 
in the formulas for   are used for estimating the variance of: 

 Domain variable total:        
 Domain population total:        

 Domain variable ratio:  

 Domain mean:  

 
Standard Errors 

Let Z denote any of the population or subpopulation quantities defined above: variable total, 
population size, ratio or mean. Then the standard error of an estimator  is the square root of its 
estimated variance: 

 

 
Coefficient of Variation 

The coefficient of variation of the estimator  is the ratio of its standard error and its value: 
 

 
The coefficient of variation is undefined when        . 
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T Tests 
Testing the hypothesis that a population quantity Z equals ; that is,             , is performed 
using the t test statistic: 

 

The p-value for the two-sided test is given by the probability 
 

where T is a random variable form the t distribution with df degrees of freedom. 
 

The number of the degrees of freedom is calculated as the difference between the number of 
primary sampling units and the number of strata in the first stage of sampling. 

 
Confidence Limits 

A level 1−α confidence interval is constructed for a given . The confidence bounds are 
defined as 

 

 
where    is the estimated standard  error of , and is the 

percentile of the t distribution with df degrees of freedom. 
 

Design Effects 
The design effect Deff is estimated by 

 

 
          is the estimate of the variance of  under the appropriate sampling design, while 

is the estimate of variance of   under the simple random sampling assumption 
as follows: 

 

  

 
 

Assuming sampling without replacement we have        given that , while for 
sampling with replacement we set .  This assumption is independent of the sampling 
specified for the complex sample design based variance         . 
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Whereas design effect is not relevant for estimates of the population size, we do compute the 
design effects for ratios and means in addition to the totals. The values of variable y in  are 
then replaced by the linearized values as follows: 

 Ratio estimation   

 Mean estimation   

When estimating design effects for domains we use the familiar substitution            for in the 
  formula in addition to any ratio or mean substitutions. 

 
We also provide the square root of design effect . 

 
Design effects and their applications have been discussed by Kish (1965) and Kish (1995). 
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CSGLM Algorithms 
CSGLM is a procedure for regression analysis as well as analysis of variance and covariance 
based on complex samples. 

 
Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. Sampling design includes the sampling method, strata 
and clustering information, inclusion probabilities and the overall sampling weights. 

 
Sampling design specification for CSGLM may include up to three stages of sampling. Any of the 
following general sampling methods may be assumed in the first stage: random sampling with 
replacement, random sampling without replacement and equal probabilities and random sampling 
without replacement and unequal probabilities. The first two sampling methods can also be 
specified for the second and the third sampling stage. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Total number of elements in the sample. 
p Number of regression parameters in the model. 
Y Dependent variable vector containing values . 
X n×p design matrix.  The rows correspond to the observations and the 

columns to the model parameters. The ith row is . 
W Diagonal matrix with sampling weights on the diagonal. 
B Vector of p unknown population parameters. 
N Total number of elements in the population. 

 
 
Weights 

Overall weights specified for each ultimate element are processed as given. See “Weights ” in 
Complex Samples: Covariance Matrix of Total for more information on weights and variance 
estimation methods. 

 

Model Specification 

Let the linear model be specified by the equation Y=Xβ+E, where Y is a vector of observed 
dependent variable values, X is the linear model design matrix, β is a vector of model parameters 
and E is a vector of random errors with zero mean. Each column of the design matrix corresponds 
to a parameter in the model equation. Each parameter corresponds to one of the intercept, factor 
main effects, factor interaction effects, factor nested effects, covariate effects and factors by 
covariates interaction effects. For every factor effect level occurring in data there is a separate 
parameter.  This results in an over-parametrized model. 
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Estimation 
Assuming that the entire finite population has been observed, we can obtain the least square 
parameter estimates for the linear model by solving the following normal equations 

 

 

where  and  denote the design matrix and dependent variable for all elements in the given 
population. A solution vector for this system, estimating the model parameters β, is denoted by 
B. In our analyses we take the established design-based approach concerned with estimating the 
finite population parameters B developed by Kish and Frankel (1974), Fuller (1975), Shah, Holt 
and Folsom (1977) and others. See Särndal et al. (1992) for an overview. 

 
Estimates for the population matrices and are given by and 

respectively. We solve the following set of weighted normal equations 
 

 

where W is a diagonal matrix with sampling weights on the diagonal. A solution 
for B is then given by the equation 

 

 
where is a generalized g2 inverse of . 

 

Predicted Values and Residuals 

Predicted values for each observation are given by              . 

The vector of residuals r is defined as . 

The residual sum of squares is: 
 
 

Algorithm 

Estimation begins with construction of the weighted sum-of-squares and crossed products (SSCP) 
matrix. Let be the ith row of the matrix Z. Then the SSCP matrix is computed by 

 

 

where is the outer product for the vector . This matrix can be partitioned as follows 
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After applying the sweep operator to the first p rows and columns of the matrix above, we obtain 
the following solution matrix 

 

 
is a generalized g2 inverse of ,  is a parameter solution, and is the 

residual sum of squares. 
 

When a column of is found to be dependent on previous columns, the corresponding 
parameter is treated as redundant. The solution for redundant parameters is set to 0 as well as the 
corresponding rows and columns in . 

 

Variance Estimates 
Variances of parameter estimates are computed according to the Taylor linearization method as 
presented by Binder (1983). 

 
Define the vector                 for i=1,...,n and its total population estimate by 

 

Let   be its sample design-based covariance matrix. See “Complex Samples: Covariance 
Matrix of Total” for more information on its computation. Then the covariance matrix of  is 
estimated by 

 

 
Note:  If any diagonal element of   happens to be non-positive due to the use of the 
Yates-Grundy-Sen estimator, all elements in the corresponding row and column are set to zero. 

 

Subpopulation Estimates 
 

When analyses are requested for a given subpopulation S, we redefine as follows: 
 

if the  th element is in 
otherwise 

When computing point estimates, this substitution is equivalent to including only the 
subpopulation elements in the calculations. This is in contrast to computing the variance estimates 
where all elements in the sample need to be included. 
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Standard Errors 

Let   denote a non-redundant parameter estimate. Its standard error is the square root of its 
estimated variance: 

 

 
Standard error is undefined for redundant parameters. 

 

Degrees of Freedom 

The sample design degrees of freedom ν is used for computing confidence intervals and test 
statistics below and is calculated as the difference between the number of primary sampling units 
and the number of strata in the first stage of sampling. Alternatively, ν may be specified by the user. 

 

Confidence  Intervals 

A level 1−α confidence interval is constructed for a given for each non-redundant 
model parameter.  Confidence bounds are given by 

 

 
where               is the percentile of the t distribution with ν degrees of freedom. 

 

t Tests 

The hypothesis test              is performed for each non-redundant model parameter using 
the t test statistic: 

 

 
The p-value for the two-sided test is given by the probability     , where T is a 
random variable from the t distribution with ν degrees of freedom. 

 

Design Effects 

The design effect for each non-redundant parameter estimate is given by 
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  is the estimate of variance of under the complex sampling design, while   is 
the estimate of variance of   under the simple random sampling assumption. The latter is 
computed as the ith diagonal element of the following matrix: 

 

where 
 

 

  
 

 

with   as specified earlier. 
 

Assuming sampling without replacement we have        given that , while for 
sampling with replacement we set .  This assumption is independent of the sampling 
specified for the complex sample design based variance   . 

For subpopulation analysis          whenever observation i does not belong to a   
given subpopulation. 

 
We also provide the square root of design effect . 

 
Design effects and their application have been discussed by Kish (1965) and Kish (1995). 

 

Multiple R-square 
 

where  is the estimated subpopulation mean for variable Y. 
 

If the specified model contains no intercept the following expression is used: 
 

 
Hypothesis Testing 

Given an r×pL matrix and r×1 K vector, CSGLM tests the linear hypothesis                    if LB 
is estimable.  The Wald   statistic is given by 
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The statistic has an asymptotic chi-square distribution with                  degrees of 

freedom. If ,                 is a generalized inverse such that Wald tests are effective     
for a restricted set of hypothesis  containing a particular subset I of independent rows 
from . 

 
Each row of L is also tested separately. The estimate for the ith row is given by and 

its standard error by . 

 
See “Complex Samples: Model Testing” for additional tests and p-value adjustments. 

 
 
Custom Tests 

 
Custom hypothesis tests are conducted only when L is such that LB is estimable. This condition is 
verified using the following equality: 

 

 
Default Tests of Model Effects 

 
For each effect specified in the model, a Type III test L matrix is constructed such that LB is 
estimable. It involves parameters only for the given effect and the containing effects and it does 
not depend on the order of effects specified in the model. If such a matrix cannot be constructed, 
the effect is not testable. K is always set to 0 when computing the test statistics for model effects. 

 
The hypothesis for the corrected model is that all the parameters except for the intercept are zero. 

 
 
Estimated Marginal Means 

 
Estimated marginal means (EMMEANS) are based on the estimated cell means. For a given fixed 
set of factors, or their interactions, we estimate marginal means as the mean value averaged over 
all cells generated by the rest of the factors in the model. Covariates may be fixed at any specified 
value. If not specified, the value for each covariate is set to its overall mean estimate. 

 
When missing cells are present in the data, EMMEANS may not be estimable. In such 
circumstance, we provide a modified estimate proposed by Searle, Speed and Milliken (1980) 
that ignores the non-estimable cells. 

 
Each marginal estimate is finally constructed in the form such that is estimable. 



 
 

 

Comparing EMMEANS 
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For a given factor in the model, a vector of EMMEANS is created for all levels of the factor. This 
vector can be expressed in the form       where each row of L is generated as described above. 
The variance is then computed by the following formula: 

 

A set of contrasts for the factor is created according to the selected contrast type. Let this set of 
contrasts define the matrix C used for testing the hypothesis            . 

 
The Wald  statistic is used for testing given set of contrasts for the factor as follows: 

 

The statistic has an asymptotic chi-square distribution with      degrees of freedom, where 
. 

 
Each row of C is also tested separately.  The estimate for the ith row is given by and 
its standard error by . 

See “Complex Samples: Model Testing” for additional tests and p-value adjustments. Substitute 
the following formula for the simple random sampling covariance:                          

 . 
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CSLOGISTIC Algorithms 
Logistic regression is a commonly used analytical tool for categorical responses. LOGISTIC 
REGRESSION (for binary response) and NOMREG (for multi-category response) are procedures 
under the standard sampling setting. This document considers multinomial logistic regression 
model under the complex sampling setting extending the model in NOMREG to complex 
sampling. 

 
There are different approaches for analytic inference in complex sampling (Chambers and Skinner 
2003). We will take the two-phase sampling and pseudo-likelihood estimation approaches. 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

Y Categorical dependent variable vector containing values , i=1,...,n. 
K The total number of categories for dependent variable. 

Indicator variable for category k;  if . otherwise 
X n×p design matrix. The rows correspond to the observations and the 

columns to the model parameters. 
Inclusion probability for case i. 

Sampling weight for case i, . 

The probability for response category k at x: , and 
denote for case i. 

N The number of cases in the whole population. 
n The number of cases in the sample. 
B The parameter of interest, the population or census parameter. 

 
 
Superpopulation  Model 

Two phases of sampling are assumed. The first phase generates a finite population by a model 
or super population. The second phase selects a sample according to a sampling plan from the 
finite population generated in the first phase. 

 

Model Generating the Population 

Assume that the response variable y at a given x follows a multinomial distribution with 
probability for y=k.  Without loss of generality, let the last category K be the reference 
category.  Then for k = 1, …, K−1, 

 

 

or 
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where                               is the regression parameter vector for response category k. 
 

There are p(K−1) regression parameters in total. This model is described in many books, for 
example Agresti (2002). 

 
Let B denote the MLE of the model parameter β based on the whole population. This B is also 
called the census parameter.  The parameter of interest is the census parameter B, rather than 
the model parameter β. The exact definition and formulation of B is described below in the 
estimating equation. 

 
Parameter Estimation 

For a sample drawn from the finite population according to a sample plan, we take the 
pseudo-likelihood approach. In this approach, the pseudo-likelihood is a sample estimate 
of the population log-likelihood, and parameter estimates are derived by maximizing the 
pseudo-likelihood. 

 
From the sample, an unbiased estimate of population log-likelihood  is 

 

We will maximize   to get the estimates for census parameter B. The pseudo-score function 
is, for k = 1, …,  K−1, 

 

The estimator obtained by solving          is an estimator of B. 
 
Redundant Parameters 

In this procedure, the over-parameterization approach is similar to that in the NOMREG procedure. 
If a parameter is found to be redundant, it is set to zero and will not affect the estimation procedure. 

 
Estimation Algorithm 

The Newton-Raphson iterative estimation method is used to solve the estimating equation. Let 
  be the parameter estimate at iteration step v, the parameter estimate   at iteration 

step v + 1 is updated as 
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is a 

 

 
 
 

where 
 

the (k, j)th block element of , for k, j = 1, …, K−1,  is 
 

  

 
generalized inverse of .     The stepping scalar ζ > 0 is used to make 

                                   . Use the step-halving method if                                  . Let t be the 
maximum number of steps in step-halving; the set of values of ζ is {1/2r: r = 0, …, t−1}. 

Starting with initial values  , iteratively update   until one of the stopping criteria is 
satisfied.  The final estimate is denoted as . 

 
Note: Sometimes, infinite parameters may be present in the model because of complete or 
quasi-complete separation of the data (Albert and Anderson, 1984) (Santner and Duffy, 1986). 
In CSLOGISTIC, a check for separation of the data can be performed. If either complete or 
quasi-complete separation is suggested by the test, a warning is issued and results based on the 
last iteration are given. 

 
Initial Values 

For all non-intercept regression parameters, set their initial values to be zero. For intercepts, if 
there are any, set for k = 1, …,  K−1, 

 

 
where                      is the estimated population number of responses in category k. 

 
 

Stopping Criteria 
 

Given two convergence criteria > 0  and > 0, the iteration is considered to be converged if one 
of the following criteria is satisfied: 

: 
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3. The maximum number of iterations is reached. 
 
Parameter Covariance Matrix 

The design-based variance of  (Binder 1983) has estimate 
 

 
where is the estimate of design based variance of  .  Let                          , then 

                                              is an estimate for population total of  vectors.                                See 

“Complex Samples: Covariance Matrix of Total” for how to calculate the design-based variance 
matrix for the total. 

 
Confidence Intervals 

The confidence interval for a single regression parameter   is approximately 
 

 
where              is the estimated standard error of  , and is the 

percentile of a t distribution with df degrees of freedom. The degrees of freedom df 
can be user specified, and defaults to the difference between the number of primary sampling units 
and the number of strata in the first stage of sampling. 

 
Design Effect 

For each parameter , its design effect is the ratio of its variance under the design to its variance 
under the SRS design, 

 

For SRS design, the variance matrix is 
 

where 
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Assuming sampling without replacement we have        given that , while for 
sampling with replacement we set .  This assumption is independent of the sampling 
specified for the complex sample design based variance matrix . 

 
Pseudo -2 Log-Likelihood 

For the model under consideration, the pseudo –2 Log Likelihood is 
 

Let the initial model be the intercept-only model if the intercept is in the considered model, or the 
empty model otherwise. For the initial model, the pseudo –2 Log Likelihood is 

 

 
where   is the initial parameter vector used in the iterative estimating procedure. 

 
Pseudo R Squares 

Let   be the likelihood function for the whole population; that is,                           
.A sample estimate is                           . 

 
Cox and Snell’s R Square 

 

 

Nagelkerke’s R Square 
 

  CS  
 
 

McFadden’s R Square 
 

M 
 
 

Hypothesis Tests 
Contrasts defined as linear combination of regression parameters can be tested. Given an 
r×p(K−1) L matrix and r×1 K vector, CSLogistic tests the linear hypothesis H0 : LB = K. See 
“Complex Samples: Model Testing” for details. 
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Custom Tests 

 
For a user specified L and K,                    is tested only when LB is estimable. Let 

, where each  is a r×p matrix. LB is estimable if for every 
 

 
where is a p×p matrix. 

 
Note: In NOMREG, only block diagonal matrices such as are considered, 
where is a q×p matrix. Also in NOMREG, testability is not checked. 

 
 

Default Tests of Model Effects 
 

For each effect specified in the model,  a matrix is constructed and 
                   is tested. The matrix is chosen to be the type III test matrix constructed based 

on matrix . This construction procedure makes sure that LB is estimable. It 
involves parameters only for the given effect and the effects containing the given effect. It does 
not depend on the order of effects specified in the model. If such a matrix cannot be constructed, 
the effect is not testable. 

 

Predicted Values 

For a predictor pattern x, the predicted probability of each response category is 
 
 
 

 
 
 

The predicted category is the one with the highest predicted probability; that is 
 

 

Equivalently, 
 

 

where         is set for the last (reference) response category. This latter formula is less likely to 
have numerical problems and should be used. 



 
 

 

Classification Table 
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A two-way table with (i,j)th element being the counts or the sum of weights for the observations 
whose actual response category is i (as row) and predicted response category is j (as column) 
respectively. 

 

Odds Ratio 

The ratio of odds at to odds at for response category   versus  is 
 

 
For          and           (the reference response category), odds ratio is simplified as 

 

 
Equation for will be the one we use to calculate odds ratios. The estimate and 
confidence interval for  are respectively 

 

 
and 

 

 
where 

 

 

 
exp(B) 

 

can be interpreted as an odds ratio for main effects model. SUDAAN calls the 
odds ratio for parameter   whether or not there is an interaction effect in the model. Even 
though they may not be odds ratios for models with interaction effects, they are still of interest. 
For each , its 1−α confidence interval is 

 

 
where              are the lower and upper confidence limits for census parameter . 
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Subpopulation Estimates 
When analyses are requested for a given subpopulation D, we perform calculations on the 
following redefined and : 

 

 

where 
 

  

 
 

if the sample unit is in the subpopulation D 
otherwise 

 

When computing point estimates, this substitution is equivalent to including only the 
subpopulation elements in the calculations. This is in contrast to computing the variance estimates 
where all elements in the sample need to be included. 

 
Missing Values 

Missing values are handled using list-wise deletion; that is, any case without valid data on any 
design, dependent, or independent variable is excluded from the analysis. 
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CSORDINAL Algorithms 
Complex Samples Ordinal Regression is a procedure for the analysis of ordinal responses using 
cumulative link models and allowing for both categorical and continuous predictors. Models 
specify threshold parameters associated with different response categories in addition to regression 
parameters associated with model predictors. 

 
Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. Sampling design includes the sampling method, strata 
and clustering information, inclusion probabilities and the overall sampling weights. 

 
Sampling design specification for Complex Samples Ordinal Regression may include up to three 
stages of sampling. Any of the following general sampling methods may be assumed in the first 
stage: random sampling with replacement, random sampling without replacement and equal 
probabilities and random sampling without replacement and unequal probabilities. The first two 
sampling methods can also be specified for the second and the third sampling stage. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Total number of complete records or cases in the dataset. 
Overall sampling weight for each sample element in the ith record, i=1,...,n. 

K The number of values for the ordinal response variable, K>1. 
Y The ordinal response variable taking values coded into integers between 1 and K. 

Vector of K−1 population threshold parameters in the cumulative link model. 

                                Vector of p population regression parameters associated with model predictors. 

B Vector of all model parameters B=(  T,  T)T. 
X n×p design matrix.  The rows correspond to the records and the columns to the 

model regression parameters. The ith row is . 
Conditional response probability for category given observed independent variable 
vector ; that is, . 
Conditional cumulative response probability for category given observed 
independent variable vector ; that is,           . 

N 
Total number of elements in the population: . 

 
 

Weights 
Overall weights specified for each ultimate element are processed as given. See “Weights ” in 
Complex Samples: Covariance Matrix of Total for more information on weights and variance 
estimation methods. 
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Cumulative Link Model 

Cumulative link models support regression of a single categorical dependent variable  
on a set of categorical or continuous independent variables.  The dependent variable Y  
is assumed to be ordinal.  Its values have an intrinsic linear ordering and correspond   to 
consecutive integers from 1 to K. The cumulative link model links the conditional cumulative 
probabilities to a linear predictor.  Threshold parameters 

                                are assumed different for each cumulative probability, but the vector of 
regression parameters                            remains the same. The cumulative link model is given 
by the following set of equations: 

 

 
Cumulative link function is specified as an inverse of a cumulative probability distribution 
function as follows: 

 
Vector denotes a linear model design matrix row matching the vector of regression parameters 

. Each parameter corresponds to one of the factor main effects, factor interaction effects, factor 
nested effects, covariate effects and factors by covariates interaction effects. For every factor effect 
level occurring in data there is a separate parameter. This results in an over-parametrized model. 

 
Cumulative link models gained popularity after the publication by McCullagh (1980). Further 
details and examples of these models are given in Agresti (2002). 

 
Estimation 

Assuming that the entire finite population has been observed, we can obtain the 
maximum likelihood population parameter estimates for the cumulative model by maximizing the 
following multinomial log-likelihood function 

 

 

where we define indicator variables 

if 
otherwise 

 
and model probabilities 

 

with 
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Taking the first derivatives of the log-likelihood function with respect to the model parameters 
and setting them equal to zero, we obtain a set of estimating equations for the population 

model.  A solution vector for this set of equations is denoted by .  We follow the 
established design-based approach concerned with estimating the implicit finite population 
parameters as described by Binder (1983). Population totals in the estimating equations are 
replaced by their sample-based estimates. A solution for the sample-based estimating equations 
provides estimates for the population parameters and these are the estimates that we 

will consider in our analysis. For simplicity, we shall still denote them by . 
 

An equivalent approach for obtaining the estimates is the pseudo-maximum likelihood 
method where we maximize the sample-based estimate of the log-likelihood given as follows: 

 

See Särndal et al. (1992) for an overview of designed-based approach in modeling survey data. 
 
Predicted probabilities 

Given a predictor design vector , the model-predicted probability for each response category is 
 

Where 

 
 

Let             .  The inverse of the link function; that is, the corresponding cumulative 
distribution function is given by the following formulas: 

for Logistic link 
for Complementary log-log link 

                                                                 for Negative log-log link 
for Probit link 
for Cauchit link 

 

Estimating equations 

Sample-based estimating equations for the population parameters are given by 
 

 

 
and 
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where  
 

 

for k=1,...,K−1, and by the definition                .  Note that if 

or then        for all link functions. 

Second derivatives 

The matrix of the first derivatives of the estimated scores is denoted by and its 
elements are given by the following expressions: 

 

 

 

  for 
 

 
 
 

 

 

Second derivatives of the cumulative distribution functions are given by 

 
for k=1,...,K−1, and by the definition . 



 
 

 

Expected second derivatives 
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The matrix of the expected first derivatives of the  estimated scores is denoted by 
and its elements are given by the following expressions: 

 

 

 

  for 
 
 
 
 
 

When conducting an analysis for a subpopulation D, only records that belong to the subpopulation 
enter the summation in all of the above derivatives formulas. 

 
Redundant parameters 

Due to our use of the over-parametrized model where there is a separate parameter for every 
factor effect level occurring in the data, the columns of the design matrix are often dependent. 
Collinearities among continuous variables in the data can also occur. To establish the dependencies 
in the design matrix we examine columns of using the sweep operator. When a 
column is found to be dependent on previous columns, the corresponding parameter is treated as 
redundant. The solution for redundant parameters is fixed at zero. 

 
Parameter estimation 

The vector of estimates of the population model parameters is obtained as a solution                  of 
the sample-based estimating equations. It is computed using the Newton-Raphson method, Fisher 
scoring or a hybrid method. The hybrid method consists of applying Fisher scoring steps for a 
specified number of iterations before switching to Newton-Raphson steps. The iteration step is 
described as follows. Given a vector of parameter estimates at iteration step   , the parameters 

  at iteration step are computed by solving the following equation: 
 

 

where 
 

  

 
 

for Newton-Raphson step 
for Fisher scoring step 

 

 
 

The stepping scalar is used to ensure that  and that if 
for every i. Use step-halving until these conditions are 

satisfied or the maximum number of steps in step-halving M is reached. 
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Starting with initial values  , iteratively update estimates until one of the stopping 
criteria is satisfied.  The final vector of estimates is denoted by . 

 
Initial values 

 
Let                    be the estimated population number of responses in category , 

 
and                 be the estimated population size. Initial thresholds are then computed according 

to the following formula: 

 
 

for k=1,...,K−1 
 
 
 

Initial values for all regression parameters are set to zero, i.e.          for t=1,...,p. 
 

Stopping Criteria 

Given two convergence criteria 𝜖𝜖𝑙𝑙 > 0 and 𝜖𝜖𝑝𝑝 > 0, the iteration is considered to have converged if 
criterion 1 or 2 is satisfied, and it stops if any of the following criteria are satisfied: 

1. Pseudo-likelihood criterion 
 

 

2. Parameter criterion 
 

 

3. The maximum number of iteration, or steps in step-halving is reached. 

4. Complete or quasi-complete separation of the data is established. 
 
Depending on user’s choice, either relative or absolute change (default) is considered in criterion 1 
and 2. 
 
If the hybrid algorithm converges with Fisher scoring step, the iterations continue with Newton-
Raphson steps. 



 
 

 
Variance estimates 
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Variances of parameter estimates are computed according to the Taylor linearization method as 
suggested by Binder (1983). Define vector   of size to be the contribution of the 
ith element to the estimating equations as follows: 

 

 
and 

 

 
so that 

 

 
The above sum is to be considered as an estimate for the population total of the vectors      . 
Its sample design-based covariance matrix is denoted by              . See “Complex Samples: 
Covariance Matrix of Total” for more information on its computation.  Then the covariance 
matrix of  is estimated by 

 

 
where is a generalized inverse of  . 

 
Note:  If any diagonal element of             happens to be non-positive due to the use of 
Yates-Grundy-Sen estimator, all elements in the corresponding row and column are set to zero. 

 
 
Subpopulation estimates 
 

When analyses are requested for a given subpopulation D, we redefine as follows: 
 

if the   the record is in 
otherwise 

 

This is to ensure that the contribution to estimates of every element not in subpopulation D is 
zero. When computing point estimates, this substitution is equivalent to including only the 
subpopulation elements in the calculations. This is in contrast to computing the variance estimates 
where all elements in the sample need to be included. 
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Standard Errors 
Let   denote a non-redundant parameter estimate. Its standard error is the square root of its 
estimated variance: 

 

Standard error is undefined for redundant parameters. 
 
Degrees of Freedom 

The number of the degrees of freedom df used for computing confidence intervals and test 
statistics below is calculated as the difference between the number of primary sampling units and 
the number of strata in the first stage of sampling. We shall also refer to this quantity as the sample 
design degrees of freedom. Alternatively, df may be specified by the user. 

 
Confidence  Intervals 

A level 1−α confidence interval is constructed for a given for each non-redundant 
model parameter .  Confidence bounds are given by 

 

 

 
 
t Tests 

where  is the estimated standard error of , and              is the 
percentile of t distribution with df degrees of freedom. 

 
 
 

Testing hypothesis               for each non-redundant model parameter  is performed using 
the t test statistic: 

 
 

 

 
 

 

The p-value for the two-sided test is given by the probability     , where T is a 
random variable from the t distribution with df degrees of freedom. 

 
Design Effects 

The design effect   for non-redundant parameter estimate is given by 
 

Design effects are undefined for redundant parameters. 



 
 
 

 

CSORDINAL Algorithms 
 

  is the estimate of variance of under the appropriate sampling design, while   is 
the estimate of variance of   under the simple random sampling assumption. The latter is 
computed as the ith diagonal element of the following matrix: 

 

     can be computed by the following formula: 
 

  

  
 

with as specified earlier and  being an estimate of the population size. 
 

Assuming sampling without replacement we have        given that , while for 
sampling with replacement we set .  This assumption is independent of the sampling 
specified for the complex sample design based variance          . 

For subpopulation analysis we have that whenever record does not belong to a given 
subpopulation. 

 
We also provide the square root of design effects. Note that the square root of design effect Deff, 
computed without finite population correction, has been commonly denoted by Deft following 
paper by Kish (1995). Design effects and their application have been discussed since introduction 
by Kish (1965). 

 
Linear combinations 

Given a constant vector l of the same size as the vector of parameter estimates , we compute 
variance estimates for the linear combination by the formulas: 

 

and 
 

 
Design effect            for the linear combination is then given by 

 

 

Pseudo -2 Log Likelihood 
For the model under consideration, the sample-based estimate of the population –2 Log Likelihood 
is 
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For initial model, the estimate of the –2 Log Likelihood is 
 

 

where   is the initial parameter values used in iterative estimating procedure. 
 
Pseudo R Squares 

Let be the likelihood function for the whole population, that is, .  A  
sample-based estimate of it is . 

 
Cox and Snell’s R Square 

 

 

Nagelkerke’s R Square 
 

McFadden’s R Square 
 

M 
 
Hypothesis Testing 

Contrasts defined as linear combinations of threshold and regression parameters can be tested 
. Given matrix L with r rows and columns, and vector K with r elements, Complex 
Samples Ordinal Regression performs testing of linear hypothesis                   . See “Complex 
Samples:  Model Testing” for details. 

 
Custom tests 
 

 
if       , where is a                matrix constructed using 

                  . 



 
 

 

Default tests of Model effects 
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For each effect specified in the model excluding intercept, type III test matrix L is constructed and 
                  is tested. Construction of matrix L is based on matrix and 

such that LB is estimable.  It involves parameters only for the given effect and the  effects 
containing the given effect. It does not depend on the order of effects specified in the model.  If 
such a matrix cannot be constructed, the effect is not testable. 

 
See “Type III Sum of Squares and Hypothesis Matrix” in Sums of Squares for computational 
details on construction of type III test matrices. 

 
Test of Parallel Lines Assumption 

Consider an alternative model for the specified cumulative link model by allowing different 
regression parameters                                for the first K−1 response categories: 

 

The alternative model then contains parameters with threshold parameters and regression 
parameters. Cumulative link model is a restriction of the alternative model based on the 
assumption of parallel lines corresponding to the following null hypothesis: 

 

 
We conduct test of this hypothesis by estimating the parameters of the alternative model and 
applying a Wald type test for         with the contrast matrix L given by 

 

 

where each is a             matrix containing pairwise contrasts 
for parameter t between the first and the rest of the regression equations for corresponding 
responses. 

 
See “Complex Samples: Model Testing” for details of conducting an appropriate Wald test. There 
are several testing options available, but they all require previously computed alternative model 
parameter estimates as well as their covariance matrix  .  For some of the options, 
covariance matrix  must be computed as well. 

 
See Peterson and Harrell (1990) for a discussion of the alternative model. 

 
Estimation of the Alternative Model 

Algorithm applied for computing solution of the alternative model  is similar to the algorithm 
for the restricted cumulative link model . The main difference is in computation of estimating 
equations and second derivatives appropriate for the alternative model. They are outlined below. 

. 
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Expressions and expected for j,k=1,...,K−1 are identical to their restricted 
model counterparts. 

 
Estimating equations for alternative model regression parameters are given by 

 

Derivatives of the estimated scores for the alternative model are given by: 
 

and 
 

where 
 

Expected derivatives of the estimated scores for alternative model are given by the following 
expressions: 

 

and 
 

where 
 

 

 

Initial values for threshold and regression parameters in the alternative model are taken as the final 
estimated parameters in the restricted model. 

 
Solution of the alternative model  is provided as an optional output. 

 
Predicted Values 

For a predictor design vector and estimated parameters  , the predicted probability for 
each response category is denoted by . The predicted category is the 
one with the highest predicted probability; that is, 

 

 

If there is a tie in determining , choose the category with 

1. higher  
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2. If there is still a tie, choose the one with higher 

3. If there is still a tie, choose the one with lower category number. 
 

Classification table 

A two-way classification table is constructed with (k,l)th element, k,l=1,...,K, being the sum of 
weights for the sample elements i whose actual response category is k and predicted response 
category is l respectively. 

 

Predictions for new or incomplete records 

Predicted probabilities and category are also computed for the records not used in the analysis, 
but having non-missing values for all the model predictors and subpopulation variable if any. An 
additional requirement is that given predictor values could be properly parametrized by using 
only the existing model parameters. 

 
Cumulative odds ratios 

Given user specified design vectors and , the ratio of cumulative odds at to cumulative 
odds at is computed for cumulative logistic link. For response category k=1,...,K−1 

 

Notice that cumulative odds for this particular link do not depend on the response category k. 
Because of this property, ordinal response model with cumulative logistic link is also called a 
proportional odds model. 

 
A level 1−α confidence interval for is given by 

 

where 
 

 
and 

 

Given a factor we compute odds ratios for all its categories relative to the reference category. If a 
covariate is specified, we compute odds ratios for its unit change. Other factors are held fixed at 
their respective reference categories, while other covariates are held fixed at their mean values, 
unless requested differently by the user. 
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CSSELECT Algorithms 
This document describes the algorithm used by CSSELECT to draw samples according to 
complex designs. The data file does not have to be sorted. Population units can appear more than 
once in the data file and they do not have to be in a consecutive block of cases. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

N Population size 
n Sample size 
f Sampling fraction 

                                          Hit counts of ith population unit (i=1,...,N). 

Size measure of ith population unit (i=1,...,N). 

M 
Total size. 

 

is the relative size of ith population unit (i=1,...,N) 
 

Stratification 
Stratification partitions the sampling frame into disjoint sets. Sampling is carried out 
independently within each stratum. Therefore, without loss of generality, the algorithm described 
in this document only considers sampling from one population. 

 
In the first stage of selection, the sampling frame is partitioned by the stratification variables 
specified in stage 1. In the second stage, the sampling frame is stratified by first-stage strata and 
cluster variables as well as strata variables specified in stage 2. If sampling with replacement is 
used in the first stage, the first-stage duplication index is also one of the stratification variables. 
Stratification of the third stage continues in a like manner. 

 
Population Size 

Sampling units in a population are identified by all unique level combinations of cluster variables 
within a stratum. Therefore, the population size N of a stratum is equal to the number of unique 
level combinations of the cluster variables within a stratum. When a sampling unit is selected, all 
cases having the same sampling unit identifier are included in the sample. If no cluster variable is 
defined, each case is a sampling unit. 

 
Sample Size 

CSSELECT uses a fixed sample size approach in selecting samples. If the sample size is supplied 
by the user, it should satisfy for any without replacement design and for any 
with replacement design. 
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If a sampling fraction f is specified, it should satisfy for any without replacement 
design and for any with replacement design. The actual sample size is determined by the 
formula  . When the option RATEMINSIZE is specified, a sample size less than 
RATEMINSIZE is raised to RATEMINSIZE. Likewise, a sample size exceeding RATEMAXSIZE 
is lowered to RATEMAXSIZE. 

 
Simple Random Sampling 

This algorithm selects n distinct units out of N population units with equal probability; see Fan, 
Muller & Rezucha (1962) for more information. 
 Inclusion probability of ith unit = n/N 
 Sampling weight of ith = N/n 

 
Algorithm 

1. If f is supplied, compute n=round(f*N). 

2. Set k=0, i=0 and start data scan. 

3. Get a population unit and set k=k+1. If no more population units are left, terminate. 

4. Test if kth unit should go into the sample. 

Generate a uniform (0,1) random number U. 

If          , kth population unit is selected and set i=i+1. 

If i=n, terminate.  Otherwise, go to step 3. 

Unrestricted Random Sampling 
This algorithm selects n units out of N population units with equal probability and with 
replacement. 
 Inclusion probability of ith unit = 1−(1−1/N)n 
 Sampling weight of ith = N/n. (For use with Hansen-Hurwitz(1943) estimator) 
 Expected number of hits of ith = n/N 

 
Algorithm 

1. Set i=0 and initialize all hit counts to zero. 

2. Generate an integer k between 1 and N uniformly. 

3. Increase hit count of kth population unit by 1. 

4. Set i=i+1. 

5. If i=n, then terminate.  Otherwise go to step 2. 
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At the end of the procedure, population units with hit count greater than zero are selected. 
 
Systematic  Sampling 

This algorithm selects n distinct units out of N population units. If the selection interval (N/n) 
is not an integer, an exact fractional selection interval is used. 
 Inclusion probability of a unit = n/N 
 Sampling weight = N/n 

 
Algorithm 

1. Draw a uniform (0,1) random number U. 

2. Population units with indices {i: i=trunc((U+k)*N/n)+1, k=0,...,n−1} are included in the sample. 
 
Sequential Sampling (Chromy) 

See the section on PPS sequential sampling. This algorithm is a special case of PPS Chromy with 
all size measures   equal. 

 
PPS Sampling without Replacement (Hanurav & Vijayan) 

This algorithm selects n distinct units out of N population units with probability proportional to 
size without replacement. This method is first proposed by Hanurav (1967) and extended by 
Vijayan (1968) to the case of n>2. 
 Inclusion probability of ith unit = 
 Sampling weight of ith unit = 

 Special requirement: 
 

Algorithm (Case 1) 

This algorithm assumes that the population units are sorted by  ; that is, 
                     with the additional assumption that       . 

1. Compute the probabilities , j=1,...,n, where . 

2. Select one integer from 1,...,n with probability proportional to . 

3. If the integer selected is i, then the last (n−i) population units are selected. 

4. Define a new set of probabilities for the first (N−n+i) population units. 
 

5. Define                                                                               1 



 
 
 

 

CSSELECT Algorithms 
 

6. Set m=1 and select one unit from the first (N−n+1) population units with probability proportional to 
 

 

 
 

 
 

 
 

  
 

7. Denote the index of the selected unit by . 

8. Set m=m+1 and select one unit from the   (        )th to (N−n+m)th population units with 
the following revised probabilities 

 

 

 

       

 
9. Denote the selected unit in step 8 by . 

10. If m=i, terminate. Otherwise, go to step 8. At the end of the algorithm, the last (n−i) units and 
units with indices are selected. 

 
Joint Inclusion Probabilities (Case 1) 

The joint inclusion probabilities of unit i and unit j in the population ( ) is given by 
 

 

where 
 
 

 
 

if 
if and 

and 
 

   
 

 ’s are the conditional joint inclusion probabilities given that the last (n−r) units are selected at 
step 3.  They can be computed by the following formula 

 

where 

if 
if 

and 
 

Note: There is a typo in (3.5) of Vijayan(1967) and (3.3) of Fox(1989). The factor (1/2) should 
not be there. See also Golmant (1990) and Watts (1991) for other corrections. 



 
 

np 

 

Algorithm (Case 2) 
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This algorithm assumes that the population units are sorted by   with the order 
                         and the additional assumption       . 

1. Define the probabilities 
 

2. Select one unit from the first (N−n+1) population units with probability proportional to 
 

 

 

    
   

 
3. Set m=1 and denote the index of the selected unit by . 

4. Set m=m+1. 

5. Select one unit from the (         )th to the (N−n+m)th population unit with probability 
proportional to 

 

 
 
 

6. Denote the index of the unit selected in step 5 by . 

7. If m=n, terminate.  Otherwise, go to step 4. 
 

At the end of the algorithm, population units with indices are selected. 
 
Joint Inclusion Probabilities (Case 2) 

Joint inclusion probabilities of unit i and unit j in the population ( ) are given by 
. 

 

PPS Sampling with Replacement 
This algorithm selects n units out of N population units with probability proportional to size and 
with replacement.  Any units may be sampled more than once. 

 Inclusion probability of ith unit = 1 (1 pi)
n 

 Sampling weight of ith unit =   1  . (For use with Hansen-Hurwitz(1943) estimator) 
i 

 Expected number of hits of ith unit = 
 

Algorithm 

1. Compute total size  

2. Generate n uniform (0,M) random numbers . 



 
 

card 
, and 
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3. Compute hit counts of ith population unit 
card{} is the number of elements in the set,                                             

, where 

 

At the end of the algorithm, population units with hit count are selected. 
 
PPS Systematic Sampling 

This algorithm selects n units out of N population units with probability proportional to size. If the 
size of the ith unit  is greater than the selection interval, the ith unit is sampled more than once. 
 Inclusion probability of ith unit = 
 Sampling weight of ith unit = 
 Expected number of hits of ith unit = . In order to ensure no duplicates in the sample, the 

condition is required. 
 

Algorithm 
1. Compute cumulated sizes . 

2. Compute the selection interval I=M/n. 

3. Generate a random number S from uniform(0,I). 
 

4. Generate the sequence                                                  . 

5. Compute hit counts of ith population unit card                                  , k=1,...,N, 
where card{} is the number of elements in the set. 

 
At the end of the algorithm, population with hit counts         are selected. 

 
PPS Sequential Sampling (Chromy) 

This algorithm selects n units from N population units sequentially proportional to size with 
minimum replacement. This method is proposed by Chromy (1979). 
 Inclusion probability of ith unit = 
 Sampling weight of ith unit = 
 Maximum number of hits of ith unit =   
 Applying the restriction ensures maximum number of hits is equal to 1. 

 

Algorithm 
1. Select one unit from the population proportional to its size . The selected unit receives a label 

1. Then assign labels sequentially to the remaining units. If the end of the list is encountered, 
loop back to the beginning of the list until all N units are labeled.  These labels are the index   
i in the subsequent steps. 
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2. Compute the integer part of expected hit counts , where , 
i=1,...,N. 

3. Compute the fractional part of expected hit counts         , i=1,...,N. 

4. Define        ,          and        . 

5. Set i=1. 

6. If        , go to step 8. 

7. If              , go to step 9. 

8. Determine accumulated hits at ith step (case 1). 

Set       . 

If        , set with probability                                   

.Set i=i+1. 

If i > N, terminate.  Otherwise go to step 6. 

9. Determine accumulated hits at ith step (case 2). 

Set       . 

If        , set              . 

If       , set               with probability . 

Set i=i+1. 

If i > N, terminate.  Otherwise go to step 6. 
 

At the end of the algorithm, number of hits of each unit can be computed by the formula 
                  ,     i=1,...,N.  Units with are selected. 

 
PPS Sampford’s Method 

Sampford’s (1967) method selects n units out of N population units without replacement and 
probabilities proportional to size. 
 Inclusion probability of ith unit = 
 Sampling weight of ith unit = 

 Special requirement: 
 

Algorithm 
1. If , then go to step 2, otherwise go to step 5. 

2. Select one unit with probability proportional to , i=1,...,N. 

3. Select the remaining (n−1) units with probabilities proportional to  
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4. If there are duplicates, reject the sample and go to step 2. Otherwise accept the selected units 
and stop. 

5. If and the ’s are constant, then select all units in the population and set all sampling 
weights, 1st and 2nd order inclusion probabilities to 1. 

 
Joint Inclusion Probabilities 

First define the following quantities: 
 

                  , i=1,...,N 
 
 

                 , r=1,...,n 
 

        , i,j=1,...,N 
 

                                             , m=1,...,n 
 

                                                        , m=1,...,n, i,j=1,...,N 
 

Given the above quantities, the joint inclusion probability of the ith and jth population units is 
 

 

PPS Brewer’s Method (n=2) 
Brewer’s (1963) method is a special case of Sampford’s method when n=2. 

 
PPS Murthy’s Method (n=2) 

Murthy’s (1957) method selects two units out of N population units with probabilities proportional 
to size without replacement. 

 
 Inclusion probability of ith unit =  

 Sampling weight of ith unit = inverse of inclusion probability 
 

Algorithm 
1. Select first unit from the population with probabilities , k=1,...,N. 
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2. If the first selected unit has index i, then select second unit with probabilities ,    . 
 
Joint Inclusion Probabilities 

The joint inclusion probability of population units i and j is given by 
 

 
Saved Variables 

STAGEPOPSIZE saves the population sizes of each stratum in a given stage. 
 

STAGESAMPSIZE saves the actual sample sizes of each stratum in a given stage. See the 
“Sample Size” section for details on sample size calculations. 

 
STAGESAMPRATE saves the actual sampling rate of each stratum in a given stage.  It   
is computed by dividing the actual sample size by the population size.  Due to the use  of 
rounding and application of RATEMINSIZE and RATEMAXSIZE on sample size, the resulting 
STAGESAMPRATE may be different from sampling rate specified by the user. 

 
STAGEINCLPROB saves stage inclusion probabilities. These depend on the selection method. 
The formulae are given in the individual sections of each selection method. 

 
STAGEWEIGHT saves the inverse of stage inclusion probabilities. 

 
SAMPLEWEIGHT saves the product of previous weight (if specified) and all the stage weights. 

 
STAGEHITS saves the number of times a unit is selected in a given stage. When a WOR method 
is used the value is always 0 or 1. When a WR method is used it can be any nonnegative integer. 

 
SAMPLEHITS saves the number of times an ultimate sampling unit is selected. It is equal to 
STAGEHITS of the last specified stage. 

 
STAGEINDEX saves an index variable used to differentiate duplicated sampling units resulted 
from sampling with replacement. STAGEINDEX ranges from one to number of hits of a selected 
unit. 
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CSTABULATE Algorithms 
This document describes the algorithms used in the complex sampling estimation procedure 
CSTABULATE. 

 
Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. The sampling design includes the sampling method, 
strata and clustering information, inclusion probabilities and the overall sampling weights. 

 
The sampling design specification for CSTABULATE may include up to three stages of sampling. 
Any of the following general sampling methods may be assumed in the first stage: random 
sampling with replacement, random sampling without replacement and equal probabilities and 
random sampling without replacement and unequal probabilities. The first two sampling methods 
can also be specified for the second and the third sampling stage. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

H Number of strata. 
Sampled number of primary sampling units (PSU) per stratum. 

                                          Sampling rate per stratum. 

Number of elements in the ith sampled unit in stratum h. 

Overall sampling weight for the jth element in the ith sampled unit in 
stratum h. 
Value of variable y for the jth element in the ith sampled unit in stratum h. 

Y Population total sum for variable y. 
n Total number of elements in the sample. 
N Total number of elements in the population. 

 
 

Weights 
Overall weights specified for each ultimate element are processed as given. See “Weights” in 
Complex Samples: Covariance Matrix of Total for more information on weights and variance 
estimation methods. 

 
Z Expressions 

For variables y and : 
 

, 
 

, 
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, 
 
 

For multi-stage samples, the index h denotes a stratum in the given stage, and i stands for unit 
from h in the same stage. The index j runs over all final stage elements contained in unit hi. 

 
Variable Total 

An estimate for the population total of variable y in a single-stage sample is the weighted sum 
over all the strata and all the clusters: 

 

Alternatively, we compute the weighted sum over all the elements in the sample: 
 

The latter expression is more general as it also applies to multi-stage samples. 
 
Variables Total Covariance 

For a multi-stage sample containing a with replacement sampling stage, all specifications other 
than weights are ignored for the subsequent stages. They make no contribution to the variance 
estimates. 

 
Single Stage Sample 

The covariance of the total for variables y and in a single-stage sample is estimated by the 
following: 

 

 
where             is an estimate contribution from stratum h and depends on the 
sampling method as follows: 
 For sampling with replacement:  

 For simple random sampling:                             

 For sampling without replacement and unequal    probabilities: 
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and are the inclusion probabilities for units i and j in stratum h, and is the joint 
inclusion probability for the same units. This estimator is due to Yates and Grundy (1953) and 
Sen (1953). 

 
For each stratum h containing a single element, the covariance contribution               is 
always set to zero. 

 
Two-stage Sample 

When the sample is obtained in two stages and sampling without replacement is applied in the 
first stage, we use the following estimate for the covariance of the total for variables y and : 

 

where 
 

is the first stage inclusion probability for the primary sampling unit i in stratum h. In the case 
of simple random sampling, the inclusion probability is equal to the sampling rate  for stratum h. 

 
  is the number of second stage strata in the primary sampling unit i within the first stage 

stratum h. 
 

                 is a covariance contribution from the second stage stratum k from the primary 
sampling unit hi. It depends on the second stage sampling method. The corresponding formula 
given in the “Single Stage Sample” section applies. 

 
Three-stage Sample 

When the sample is obtained in three stages where sampling in the first stage is done without 
replacement and simple random sampling is applied in the second stage, we use the following 
estimate for the covariance of the total for variables y and    : 

 

where 
   is the sampling rate for the secondary sampling units in the second stage stratum hik. 
   is the number of third stage strata in the secondary sampling unit hikj. 

                    is a variance contribution from the third stage stratum l  contained in 
the secondary sampling unit hikj. It depends on the third stage sampling method. The 
corresponding formula given in the “Single Stage Sample” section applies. 

 
Variable Total Variance 

The variance of the total for variable y in a complex sample is estimated by 
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with            defined above. 

 
 
Population Size Estimation 

An estimate for the population size corresponds to the estimate for the variable total; it is sum of 
the sampling weights. We have the following estimate for the single-stage samples: 

 

 

More generally, 
 

 

The variance of  is obtained by replacing with 1; that is, by replacing with in the 
corresponding variance estimator formula for   . 

 
Cell Estimates: One-Way Tables 

Let the population be classified according to the values of a single categorical row variable 
and possibly one or more categorical variables in the layer. Categories for the row variable 
are enumerated by r=1,...,R and categories for the layer variables are given by l=1,...,L. Each 
combination of the values (r,l) defines a domain and a cell in the one-way table (r,l), r=1,...,R. For 
each cell we define a corresponding indicator variable: 

 

if the sample unit  is in the cell 
otherwise 

 

Sizes 
 

To estimate a cell population size or a table population size, we replace with         in 
the formula for the population total and obtain the following expressions: 

 Cell population size: 
 
 

 Table population size: 
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Similarly, in order to estimate variances of the above estimators,  we substitute with 
          in the corresponding formula for the whole population. The following substitutions of 
in the formulas for   are used for estimating the variances of these estimators: 

 Cell population size:  
 

 Table population size: 
 
 
Proportions 

A table proportion estimate is computed at each layer category as follows: 
 

 

This estimator is a ratio and we apply Taylor linearization formulas as suggested by Woodruff 
(1971). The following substitution of in the formulas for   are used for estimating the 
variance of the table proportion at a given layer: 

 

 
Cell Estimates:  Two-Way Tables 

Let the population be cross-classified according to the values of a categorical row variable, a 
categorical column variable and possibly one or more categorical variables in the layer. Categories 
for the row variable are enumerated by r=1,...,R while categories for the column variable are 
denoted by c=1,...,C and categories for the layer variables are given by l=1,...,L. Each combination 
of values (r,c,l) defines a domain and a cell in the two-way table (r,c,l) . For each cell we define   
a corresponding indicator variable: 

 

if the sample unit  is in the cell 
otherwise 

 
We will also use the following indicator notation: 

 
 Row indicator:   

 
 

 Column indicator:   
 
 

 Table indicator:   
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Sizes 
 

To estimate various domain sizes, we substitute with  in the corresponding formula for the 
whole population as follows: 

 Cell population size: 
 

 Row population size: 
 

 Column population size: 
 

 Table population size: 
 

Similarly, in order to estimate variance of the above estimators, we substitute        with   in 
the corresponding formula for the whole population. The following substitutions of 𝑧𝑧ℎ𝑖𝑖𝑖𝑖 in the 
formulas for       are used for estimating variances of: 
 Cell population size: 
 Row population size:  
 Column population size: 
 Table population size:  

 
Proportions 

We define various proportion estimates to be computed as follows: 
 Row population proportion:   
 Column population proportion:   
 Table population proportion: 
 Marginal column population proportion:   
 Marginal row population proportion:   

 

In order to estimate variances of the above estimators, again apply the Taylor linearization 
formulas as for the one-way tables.  The following substitutions of in the formulas for 

  are used for estimating variances of: 

 Row population proportion: 
 

 Column population proportion: 
 

 Table population proportion: 
 

 Marginal column population proportion: 
 

 Marginal row population proportion: 



 
 

 
Standard Errors 
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Let Z denote any of the population or subpopulation quantities defined above: variable total, 
population size, ratio or mean. Then the standard error of an estimator  is the square root of its 
estimated variance: 

 

 
Coefficient of Variation 

The coefficient of variation of the estimator  is the ratio of its standard error and its value: 
 

 
The coefficient of variation is undefined when        . 

 

Confidence Limits 
A level 1−α confidence interval is constructed for  a given for any domain size 

 defined earlier.  The confidence bounds are defined as 
 

 
where  is the estimated standard error of   , and               is the 

percentile of the t distribution with degrees of freedom. 
 

Proportions 

For any domain proportion , we use the logistic transformation and 
obtain the following level confidence bounds for the transformed estimate: 

 

These bounds are transformed back to the original metric using the logistic   inverse 
                                             . 

 

Degrees of Freedom 

The degrees of freedom for the t distributions above is calculated as the difference between the 
number of primary sampling units and the number of strata in the first stage of sampling. This 
quantity is also referred to as the sample design degrees of freedom. 
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Design Effects 
Size 

 
The design effect Deff for a two-way table cell population size is estimated by 

 

 
                      is an estimate of the variance of under the complex sample design, while 

is its estimate of variance under the simple random sampling assumption: 
 

 
Assuming sampling without replacement we have        given that , while for 
sampling with replacement we set .  This assumption is independent of the sampling 
specified for the complex sample design based variance                     . 

 
Computations of the design effects for the one-way table cells, as well as for the row, column and 
table population sizes are analogous to the one above. 

 
Proportions 

 
Deff for a two-way table population proportion is estimated by 

 

 
                          is an estimate of the variance of under the complex sample design, 

while is its estimate of variance under the simple random sampling assumption: 

 
with fpc as specified earlier. 

 
Computations of the design effects for one-way table proportions, as well as for the row, column, 
marginal row and marginal column population proportions are analogous to the one above. 

 
Design effects for various estimates are computed only when the condition         is satisfied. 

 
Design effect square root 

 
We also compute the square root of a design effect . 

 
Design effects and their applications have been discussed by Kish (1965) and Kish (1995). 



 
 

 
Tests of Independence for Two-Way Tables 
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Let the population be cross-classified according to the values of a categorical row variable, a 
categorical column variable and possibly one a more categorical variables in the layer. Categories 
for the row variable are enumerated by r=1,...,R, while categories for the column variable are 
denoted by c=1,...,C. When the layer variables are given we assume that their categories coincide 
with the strata in the first sampling stage. In the following we omit reference to the layers as the 
formulas apply for each stratum separately when needed. 

 
We use a contrast matrix C defined as follows. Let  be the contrast matrix given by 

 

 
  is an identity matrix of size R−1 and   is a vector with R−1 elements equal to 1. Define 

C to be a            matrix defined by the following Kronecker product: 
 

 

Adjusted Pearson Statistic 
 

 

Under the null hypothesis, the asymptotic distribution of   is generally not a chi-square 
distribution, so we perform an adjustment using the following  matrix: 

 

 
  is a vector and is a diagonal matrix of size RC  containing elements . 

                is a multinomial covariance matrix estimating the asymptotic covariance 

of     under the simple random sampling design, while        estimates covariance matrix of 
 under the complex sampling design. 

 
We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment 

 

 
where 

 

 

This statistic has an approximate distribution. Properties of this test are given in a review 
of simulation studies by Rao and Thomas (2003). 
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Adjusted Likelihood Ratio Statistic 

 

 

The adjusted likelihood ratio statistic is computed in an analogous manner to the Pearson 
adjustment where  is the same as before and 

 

where 
 

 

This statistic has an approximate distribution. 
 

Residuals 

Under the independence hypothesis, the expected table proportion estimates are given  by 
and residual are defined as . 

 
Standardized residuals are computed by 

 

 

where               denotes the estimated residual variance. 
 

Let                          estimate the asymptotic covariance matrix under simple random sampling 
where  and are defined as above. X is another contrast matrix specified by 

 

 
Contrast matrices  and , as well as the unit vectors  and , are defined as earlier. 
Variance estimates for residuals are obtained from the diagonal of the following matrix: 

 

 
Odds Ratios and Risks 

These statistics are computed only for 2×2 tables. If any layers are specified, they must correspond 
to the first stage strata. 

 
Let  , ,   and be the cell population size estimates, , , , and   be 
marginal estimates and  the population size estimate. 
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Estimates and Variances 

The odds ratio is defined by the following expression: 
 

 

Relative risks are defined by 
 

                     and  
 

Risk differences are given by 
 

        and       

The following substitutions of in the formulas for   are used for estimating variances: 

 Odds ratio: 
 

 Risk ratio :  
 

 Risk difference : 
 

The estimations of variance for  and  are performed using similar substitutions. 
 

Confidence Limits 

A level 1−α confidence interval is constructed for a given for odds ratio, risk ratio 
and risk difference in every table. 

 
For the odds ratio or risk ratio R we use the logarithm transformation and obtain the confidence 
bounds 

 

These bounds are transformed back to the original metric using the exponential function. No 
transformations are used when estimating confidence bounds for a risk difference D: 

 

 
Tests of Homogeneity for One-Way Tables 

Let the population be classified according to the values of a categorical row variable and possibly 
one a more categorical variables in the layer. Categories for the row variable are enumerated by 
r=1,...,R. When the layer variables are given we assume that their categories coincide with the 
strata in the first sampling stage. In the following we omit references to the layers as the formulas 
apply for each stratum separately when needed. 



 
 

. T 
for r=1,...,R. 
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We study proportions 
null hypotheses   

he test of homogeneity consists of testing the 

 

Adjusted Pearson Statistic 
We perform an adjusted Pearson statistic test for testing the homogeneity. The Pearson test 
statistic is computed according to the following standard formula: 

 

Under the null hypothesis, the asymptotic distribution of   is generally not a chi-square 
distribution, so we perform an adjustment using the following  matrix: 

 

 
  is the estimated covariance matrix under the complex sample design, while   is an 

estimated asymptotic covariance matrix under the simple random sampling given by 
 

where is a vector and   is a diagonal matrix of size R−1 containing elements , 
r=1,...,R−1. 

 
We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment 

 

where 
 

This statistic has an asymptotic approximate distribution. 
 
Adjusted Likelihood Ratio Statistic 

The likelihood ratio test statistic is given by 
 

The adjusted likelihood ratio statistic is computed in an identical way as the adjustment for the 
Pearson statistic: 

 

d and  are the same as specified before. This statistic has an asymptotic approximate 
distribution. 
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Complex Samples: Covariance 
Matrix of Total 

This document describes the algorithms used in the complex sampling module procedures 
for estimation of covariance matrix of population total estimates. It contains a more general 
formulation of the algorithms given in CSDESCRIPTIVES and CSTABULATE. 

 
Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. Sampling design includes the sampling method, strata 
and clustering information, inclusion probabilities and the overall sampling weights. 

 
Sampling design specification may include up to three stages of sampling. Any of the following 
general sampling methods may be assumed in the first stage: random sampling with replacement, 
random sampling without replacement and equal probabilities and random sampling without 
replacement and unequal probabilities.  The first two sampling methods can also be specified 
for the second and the third sampling stage. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

H Number of strata. 
Sampled number of primary sampling units (PSU) per stratum. 

                                          Sampling rate per stratum. 

Number of elements in the ith sampled unit in stratum h. 

Overall sampling weight for the jth element in the ith sampled unit in 
stratum h. 
Values of vector y for the jth element in the ith sampled unit in stratum h. 

Population total sum for vector of variables y. 

n Total number of elements in the sample. 
N Total number of elements in the population. 

 
 

Weights 
Overall weights specified for each ultimate element are processed as given. They can be obtained 
as a product of weights for corresponding units computed in each sampling stage. 

When sampling without replacement in a given stage, the substitution  for unit 
i in stratum h will result in application of the estimator for the population totals due to Horvitz 
and Thompson (1952). The corresponding variance estimator will also be unbiased. is the 
probability of unit i from stratum h being selected in the given stage. 

If sampling with replacement in a given stage, the substitution yields the 
estimator for the population totals due to Hansen and Hurwitz (1943). Repeatedly selected units 
should be replicated in the data. The corresponding variance estimator will be unbiased. is the 
probability of selecting unit i in a single draw from stratum h in the given stage. 
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Weights obtained in each sampling stage need to be multiplied when processing multi-stage 
samples. The resulting overall weights for the elements in the final stage are used in all 
expressions and formulas below. 

 

Z Expressions 
 
 

 

 

 

 

For multi-stage samples, index h denotes a stratum in the given stage, and i stands for unit from h 
in the same stage. Index j runs over all final stage elements contained in unit hi. 

 

Total Estimation 

An estimate for the population total of vector of variables y in a single-stage sample is the 
weighted sum over all the strata and all the clusters: 

 

 

Alternatively, we compute the weighted sum over all the elements in the sample: 
 

 

The latter expression is more general as it also applies to multi-stages samples. 
 
 

Total covariances 

For a multi-stage sample containing a with replacement sampling stage, all specifications other 
than weights are ignored for the subsequent stages. They make no contribution to the variance 
estimates. 



 
 

 

Single stage sample 

Complex Samples: Covariance Matrix of Total 

 

Covariance of the total for vector y in a single-stage sample is estimated by the following: 
 

 

where   is an estimate contribution from stratum h and depends on the sampling method 
as follows: 

 
For sampling with replacement 

 

 
For simple random sampling 

 

 
For sampling without replacement and unequal probabilities 

 

 

and are the inclusion probability for units i and j in stratum h, and is the joint inclusion 
probability for the same units. This estimator is due to Yates and Grundy (1953) and Sen (1953). 
In some situations it may yield a negative estimate and is treated as undefined. For each stratum h 
containing a single element, the covariance contribution   is always set to zero. 

 
Two-stage sample 

When the sample is obtained in two stages and sampling without replacement is applied in the 
first stage, we use the following estimate for the covariance of the total for vector y: 

 

 

is the first stage inclusion probability for the primary sampling unit i in stratum h. In case of 
simple random sampling, the inclusion probability is equal to the sampling rate  for stratum h. 

 

  is the number of second stage strata in the primary sampling unit i within the first stage 
stratum h. 

 

  is a covariance contribution from the second stage stratum k from the primary sampling 
unit hi.  Its value depends on the second stage sampling method; the corresponding formula 
from “Single stage sample ” applies. 
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Three-stage sample 

When the sample is obtained in three stages where sampling in the first stage is done without 
replacement and simple random sampling is applied in the second stage, we use the following 
estimate for the covariance of the total for vector y: 

 

  is the sampling rate for the secondary sampling units in the second stage stratum hik. 
 

is the number of the third stage strata in the secondary sampling unit hikj. 
 

   is a covariance contribution from the third stage stratum l contained in the secondary 
sampling unit hikj. Its value depends on the second stage sampling method; the corresponding 
formula from “Single stage sample ” applies. 

 
Total variance 

Variance of the total estimate for the rth element of the vector , is estimated by the rth diagonal 
element of the covariance matrix for   

 

 
Population Size Estimation 

An estimate for the population size corresponds to the estimate for the variable total; it is sum of 
the sampling weights. We have the following estimate for the single-stage samples: 

 

More generally, 
 

Variance of  is obtained by replacing with 1, i.e.  by replacing with in the 
corresponding variance estimator formula for . 
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Complex Samples:  Model Testing 
This document describes the methods used for conducting linear hypothesis tests based on the 
estimated parameters in Complex Samples models. 

 
Required input is a set of the linear hypothesis, parameter estimates and their covariance matrix 
estimated for the complex sample design. Some methods require an estimate of the parameter 
covariance matrix under the simple random sampling assumption as well. Also needed is the 
number of degrees of freedom for the complex sample design; typically this will be the difference 
between the number of primary sampling units and the number of strata in the first stage of 
sampling. 

 
Given consistent estimates of the above constructs, no additional restrictions are imposed on 
the complex sample design. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

p Number of regression parameters in the model. 
r The number of linear hypotheses considered. 
L r×p generalized linear hypothesis matrix. 
K r×1 vector of hypothesis values. 
B p×1 vector of population parameters. 

                                           p×1 vector of estimated population parameters (solution). 
 

                                   p×p estimated covariance matrix for  given the complex sample design. 

Sampling design degrees of freedom. 
 
 
Hypothesis Testing 

Given L and K, the following generalized linear hypothesis test is performed: 
 

 
It is assumed that LB is estimable. 

 
Wald Chi-Square Test 

                                                   Koch et al. (1975) 

The statistic has an asymptotic chi-square distribution with          degrees of 

freedom. If ,                 is a generalized inverse such that Wald tests are effective     
for a restricted set of hypothesis  containing a particular subset I of independent rows 
from . 
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Wald F Test 

Fellegi (1980) 
 

This statistic has an approximate asymptotic F-distribution .  The statistic is 
undefined if . See Korn and Graubard (1990) for the properties of this statistic. 

 

Adjusted Wald Chi-Square Test 

The Wald chi-square statistic under the simple random sampling assumption is given by the 
following expression: 

 

 
where            is an asymptotic covariance matrix estimated under the simple random sampling 
assumption. If                , adjusted Wald tests are effective for a restricted set of 
hypotheses containing a particular subset I of independent rows from . 

 
Since the asymptotic distribution of  is generally not a chi-square distribution, it is adjusted 
using the following matrix: 

 

 
where   is an estimated asymptotic covariance matrix under the complex sample design. We 
use second-order adjustment as in Rao and Scott’s (1984) given by 

 

 
where 

 

 

This statistic has an approximate asymptotic chi-square distribution with d degrees of freedom. 
See Graubard and Korn (1993) for properties of this statistic in reference to regression problems. 

 

Adjusted Wald F Test 

  Rao and Scott’s (1984) 

This statistic has an approximate asymptotic F distribution where d is defined as above. 
See Thomas and Rao (1987) for the heuristic derivation of this test, and Rao and Thomas (2003) 
for a review of the related simulation studies. 



 
 

 

Individual Tests 
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Each row of the L matrix may also be tested separately. For such tests, or when the L matrix 
contains a single row, the statistics above simplify as follows: 

 

 

and 
 

 
The test statistics  and  have asymptotic chi-square distributions with 1 degree of freedom. 
The test statistics F and have approximate asymptotic F distributions . The tests are 
undefined if is not positive. 

 

Significance Values 

Given a value of test statistic T and a corresponding cumulative distribution function G as 
specified above, the p-value of the given test is computed as p=1−G(T). 

 

Multiple  Comparisons 
In addition to the testing methods mentioned in the previous section, the   hypothesis 

                    can also be tested using the multiple row hypotheses testing technique. Let be the 
ith row vector of the L matrix, and  be the ith element of the K vector. The ith row hypothesis is 

                . Testing  is the same as testing multiple hypotheses         simultaneously, 
where R is the number of non-redundant row hypotheses. A hypothesis is redundant if there 
exists another hypothesis     such that . 

 
For each individual hypothesis  , tests described in the previous section can be performed. Let 

denote the p-value for testing , and   denote the adjusted p-value. The conclusion from 
multiple testing is, at level α (the family-wise type I error), 

reject                 if  

reject                  if  
 

There are different methods for adjusting p-values. If the adjusted p-value is bigger than 1, it is 
set to 1 in all the methods. 

 
Sequential Tests.  In sequential testing, the p-values are first ordered from the 
smallest to the biggest, and then adjusted depending on the order. Let the ordered p-
values be 

. 
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LSD (Least Significant Difference) 

The adjusted p-values are the same as the original p-values: 
 

 
Bonferroni 

The adjusted p-values are: 
 

 

Sidak  
 

The adjusted p-values are: 
 

 

 
 

   
 

Sequential Bonferroni 
The adjusted p-values are: 

 

 

Sequential Sidak 
The adjusted p-values are: 

 

 

Comparison of Adjustment Methods 
A multiple testing procedure tells not only if  is rejected, but also if each individual   is 
rejected. All the methods, except LSD, control the family-wise type I error for testing ; that is, 
the probability of rejecting at least one individual hypothesis under . In addition, sequential 
methods also control the family-wise type I error for testing any subset of . 

 
LSD is the one without any adjustment, it rejects  too often. It does not control the family-wise 
type I error and should never be used to test . It is provided here mainly for reference. 

 
Bonferroni is conservative in the sense that it rejects   less often than it should. In some 
situations, it becomes extremely conservative when test statistics are highly correlated. 

 
Sidak is also conservative in most cases, but is less conservative than Bonferroni. It gives the 
exact type I error when test statistics are independent. 
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Sequential Bonferroni is as conservative as the Bonferroni in terms of testing  because the 
smallest adjusted p-value used in making decision is the same in both methods. But in term of 
testing individual , it is less conservative than the Bonferroni. Sequential Bonferroni rejects at 
least as many individual hypotheses as Bonferroni. 

 
Sequential Sidak is as conservative as the Sidak in terms of testing , but less conservative 
than the Sidak in terms of testing individual . Sequential Sidak is less conservative than 
sequential Bonferroni. 
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CTABLES Algorithms 
This document describes the algorithms used in the Custom Tables procedure. 

 
Weights 
There are two ways in which weighting can be applied in CTABLES: 

 
1. Frequency or case weighting is specified via a WEIGHT command. Weights specified in 

this manner represent frequency replication (i.e., cases with the same values for all 
variables) and should be positive integers. Non-integer values are accepted and are 
used as specified for descriptive statistics, but sums are generally rounded in computing 
inferential statistics (standard errors, confidence intervals and test statistics). 

 
2. Effective sample size or effective base adjustment weighting is specified via a WEIGHT 

subcommand. Weights need only be positive and no rounding is applied at any point in 
computations when using this form of adjustment weighting. 

 
If the WEIGHT subcommand has been specified, formulas for effective base weighting are used 
and if a WEIGHT command is also in effect, it is silently ignored. If no WEIGHT subcommand is 
specified, formulas for weighted analyses using the WEIGHT command are used. If no 
weighting is in effect, these formulas are used with all weights equal to 1. 

 
 
A note on weights and multiple response sets 

 
Case weights are always based on Counts, not Responses, even when one of the variables is a 
multiple response variable. 

 
 

Means and Sums 
This section describes the algorithm used in computing variances, standard errors and 
confidence intervals for the means and sums of scale variables. 

 
Notation 

 
ci Unweighted case count in the i-th category, i=1,...,k. 

∝i 
Population mean of the i-th category, i=1,...,k. 

xil 
l-th observation in i-th category, i=1,...,k. 

wil 
Weight of the l-th observation in i-th category, i=1,...,k. 

wi Sum of weights in category i, i=1,...,k. 

w'i Rounded sum of weights in category i, i=1,...,k. 



 

 
 

qi Sum of squared weights in category i, i=1,...,k. 

ei Effective base in category i, i=1,...,k. 

xi Weighted mean of category i, i=1,...,k. 

xi+ 
Weighted sum of category i, i=1,...,k 

s 2 
i 

Weighted variance of category i, i=1,...,k.. 

∋ 2 

si 
Adjusted variance of category i, i=1,...,k incorporating effective base. 

∋ 

s xi 

Estimated standard error of the mean of category i, i=1,...,k. 

∋ 
s xi + 

Estimated standard error of the sum of category i, i=1,...,k. 

(1- 〈 )% Confidence interval coverage level supplied by the user. 
 
Conditions and assumptions 

• User and system missing values of scale variables are excluded. 
 
 
Algorithm 

Means and Sums 
 
 

Basic weighted statistics 
 

 
Standard errors with WEIGHT command in effect 

 
Estimated standard error of weighted mean of i-th category: 
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Estimated standard error of weighted sum of i-th category: 

  
 
 

Adjusted weighted statistics and standard errors with effective base weighting 
 

Effective base of i-th category:  
 

Adjusted variance estimate of i-th category incorporating effective base: 

 

Estimated standard error of weighted mean of i-th category:  

 
Estimated standard error of weighted sum of i-th category: 

 

 

 
 

Confidence interval for weighted mean with WEIGHT command 
 

 
 
Confidence interval for weighted mean with effective base weighting 

 

 
 
 

 
 
 
 



 

Confidence interval for weighted sum with WEIGHT command 
 

 
Confidence interval for weighted sum with effective base weighting 

 

 
 
Counts and Percentages 
This section describes the algorithms used in computing adjusted standard errors and 
confidence intervals for counts and percentages for categorical variables. 

 
Notation 

 
c Unweighted case count. 

 Indicator of whether the l-th case is in the i-th category. 

wl Weight of the l-th observation. 

wi Sum of weights in category i. 

W Sum of weights over all categories used in forming the 
proportion/percentage denominator. 

q Sum of squared weights over all categories. 
E Effective sample size or effective base over all categories used in forming 

the proportion/percentage denominator. 
w'i Rounded sum of weights in category i. 

W ' Rounded sum of weights over all categories used in forming the 
proportion/percentage denominator. 

pi Weighted observed proportion of category i. 
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^ 

pi 
Estimated population proportion of category i. 

 
 

Estimated standard error of the proportion in category i. 
 

 
 

Estimated population percentage in category i. 

 

 

Estimated population count in category i. 

 Confidence interval coverage level supplied by the user. 
 
Conditions and assumptions 

• Cases with user and system missing values of scale variables are excluded. 
 
Algorithm 

Counts and Percentages 
 
 

Basic weighted statistics 
 

Weighted observed count in i-th category: 
  

 
Weighted observed proportion in i-th category:

 

 

 

Adjusted weighted statistics 
 
 

Estimated population proportion in i-th category: 
^ 

pi = pi . 
 

Estimated standard error of population proportion in i-th category with WEIGHT 
command in effect: 

 

 
Estimated standard error of population proportion in i-th category with WEIGHT 
subcommand in effect: 
 

  
   



 

W 

 
 
 

where 
 

2 

E = . 
q 

 

Estimated standard error of weighted percentage in i-th category: 
 

 
 
Estimated standard error of population count in i-th category: 

 

 
Confidence interval for weighted population proportion 

 
 confidence interval for estimated population proportion of i-th category: 

 
If WEIGHT subcommand is not in effect: 

 
^ 

Lower bound ( pi ) = IDF.BETA(α/ 2 , 
^ 

w'i +.5 , W '−w'i +.5 ), 

Upper bound ( pi ) = IDF.BETA(1− α / 2 , w'i +.5 , W '−w'i +.5)      

where IDF.BETA is the inverse Beta distribution function. 

 
If WEIGHT subcommand is in effect: 

 
^ 

Lower bound ( pi ) = IDF.BETA(α / 2 , 
^ 

E * pi + .5 , E *(1− pi ) + .5 ), 

Upper bound ( pi ) = IDF.BETA(1− α / 2 , E * pi + .5 , E *(1− pi ) + .5 ), 

where IDF.BETA is the inverse Beta distribution function. 

 
 

Confidence interval for weighted population percentage 
 

^ ^ 

Lower bound ( pi % ) = 100 * Lower bound ( pi ) 
^ ^ 

Upper bound ( pi % ) = 100 * Upper bound ( pi ) 
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Confidence interval for weighted population count 
 

^ 

Lower bound ( ∑i ) = W ' 
^ 

Upper bound ( ∑i ) = W ' 

^ 

* Lower bound ( pi ) 
^ 

* Upper bound ( pi ) 
 
 
 

Percentiles 
This section describes the algorithms used in computing percentiles and confidence intervals for 
percentiles for scale variables. The following applies to any cell or marginal of the sub-table 
aside from the sub-table total. Therefore no subscripts for categories or cells are used here. 
Note that the median is the 50th percentile. 

 
Notation 

 
p Percentile specified by the user divided by 100. 
P Proportion of data less than or equal to the 100 * p th percentile. 
W Sum of weights. 

W ' Rounded sum of weights. 
q Sum of squared weights. 
w Cumulative sum of weights for cases less than or equal to the 100 * p th 

percentile. 
w' Rounded cumulative sum of weights for cases less than or equal to the 

100 * p th percentile 
(1- α)% Confidence interval coverage level supplied by the user. 

 
Conditions and assumptions 

• Cases with user and system missing values of scale variables are excluded. 
 
 
 
Algorithm 

Percentiles 
 
 

Percentiles 
 

Percentiles are computed using the averaged empirical (AEMPIRICAL) method 
documented in the statistical algorithms for the EXAMINE procedure. 



 

 
 
 

Confidence Intervals for Percentiles 
 

Confidence intervals for percentiles are computed in a three-step manner, 
adapted from Shah & Vaish (2012) and Woodruff (1952): 

 
 

Step 1) Compute the desired percentile. 
 
 

Step 2) Fit a binomial confidence interval for the proportion of the data less or 
^ 

equal to the estimated percentile ( p ): 
 
 

If there is no WEIGHT subcommand, compute: 
 

Plower 

 
Pupper 

= IDF.BETA(α / 2 , w'+.5 , W '−w'+.5 ) 
 
= IDF.BETA(1 − α / 2 , w'+.5 , W '−w'+.5 ) 

 

where IDF.BETA is the inverse Beta distribution function. 
 
 

If there is a WEIGHT subcommand, compute: 
 

P = 
w 
W 

 

Plower 

 
Pupper 

= IDF.BETA(α / 2 , E * P + .5 , E * (1 − P) + .5 ) 
 
= IDF.BETA(1 − α / 2 , E * P + .5 , E * (1 − P) + .5 ) 

 

where E is the effective base or effective sample size, computed as the sum 
of weights squared divided by sum of squared weights: 

 
W 2 

E = 
q 

 

and IDF.BETA is the inverse Beta distribution function. 
 
 

Step 3) Apply the percentile-finding algorithm in step 1 to 
obtain lower and upper interval bounds for the percentile. 

 
References: 

Plower and Pupper  to 
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Shah, B. V., & Vaish, A. K. (2012). Confidence intervals for quantile estimation 
from complex survey data. Proceedings of the Joint Statistical Meetings, Section on 
Survey Methods, 3720-3728. 

 
Woodruff, R. S. (1952). Confidence intervals for medians and other position 

measures. Journal of the American Statistical Association, 47, 635-646. 
 
 

Pearson's Chi-square 

This section describes computation of Pearson's chi-square statistics. 
 
Notation 

 
R Number of rows in the sub-table. 
C Number of columns in the sub-table. 
f ij 

Case weights total in cell (i,j). 

ri 
Marginal case weights total in i-th row. 

c j Marginal case weights total in j-th column. 

W Marginal case weights total in the sub-table. 
q Marginal sum of squared weights in the sub-table. 
ESS 

2 
Effective sample size or effective base= W 

q 

Eij 
Expected cell counts. 

 
 
 
 

 

Pearson's Chi-Square statistic. 

 
 
 

 
Pearson's Chi-Square statistic adjusted for effective base weighting. 

pij 
Population proportion for cell (i,j). 

pi. 
Marginal population proportion for i-th row. 

p. j 
Marginal population proportion for j-th column. 

df Degrees of Freedom. 
p p-value of the chi-square test. 
α Significance level supplied by the user. 

 
 
Conditions and assumptions 

• Tests will not be performed on Comperimeter tables. 
• Chi-square tests are performed on each innermost sub-table of each layer. 
• If a scale variable is in the layer, that layer will not be used in analysis. 



 

 
 

• The row variable and column variable must be two different categorical variables or 
multiple response sets. 

• The contingency table must have at least two non-empty rows and two non-empty 
columns. 

• Non-empty rows and columns do not include subtotals and totals. 
• Empty rows and columns are assumed to be structural zeros. Therefore, R and C are 

the numbers of non-empty rows and columns in the table. 
• If weighting is in effect, cell statistics must include weighted cell counts or weighted 

simple row/column percents; the analysis will be performed using these weighted cell 
statistics. If weighting is not in effect, cell statistics must include cell counts or simple 
row/column percents; the analysis will be unweighted. 

• Tests are constructed by using all visible categories. Hiding of categories and showing of 
user-missing categories are respected. 

 
Algorithm 

Pearson's Chi-square 
 
 

Hypothesis: H0 : pij  = pi. p. j i = 1,..., R and j = 1,...,C vs. not H0 

 
 

Let 
 
Eij = 

ric j .
 

W 
 

Statistic 
 

Categorical variables in rows and columns 
 

 
Under the null hypothesis, the statistic has a Chi-square distribution with 
df  = (R −1)(C −1) degrees of freedom. 

 

Categorical variable in rows and multiple response set in columns 
 

Under the null hypothesis, the statistic has an approximate Chi-square 
distribution with df = (R − 1)C degrees of freedom. 

 

Multiple response set in rows and categorical variable in columns 
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Under the null hypothesis, the statistic has an approximate Chi-square 
distribution with df = R(C − 1) degrees of freedom. 

 

Multiple response sets in rows and columns 
 

 
 

Under the null hypothesis, the statistic has an approximate Chi-square 
distribution with  df  = RC degrees of freedom. 

 

P-value  
 

 
where F (x; df ) is the cumulative distribution function of Chi-square distribution 
with df degrees of freedom. 

 
The chi-square test is significant if 

 
p < α . 

 

Use of weights 
 

If the WEIGHT command is used, the case weights (or frequency weights) are 
supposed to be integers representing the number of replications of each case. In 
the chi-square test, we will only check if the aggregated cell counts f ij are 
integers. If not, they will be rounded to the nearest integers before computations. 

 

If the WEIGHT subcommand is used, the f ij are treated as effective sample size 
or effective base adjustment weights and need not be integers. The Pearson chi- 
square statistic is computed as indicated above without rounding aggregated cell 
counts to integers, then is adjusted by 

 

Degrees of freedom and p for  are calculated as with . The chi-square test is 
significant if p < α . 
 

Test statistics for multiple response sets 



 

 
 
 

In the formulas above we use a variation of the Pearson chi-square test 
statistics developed for a combination of categorical variable and a multiple 
response set as initially suggested by Agresti and Liu (1999). Formulas and 
properties of this test can be found in a comparative study by Bilder et al. 
(2000). 

 
An extension of this approach when both variables are multiple response sets is 
given in the paper by Thomas and Decady (2004). It contains a study of the test 
properties as well as additional references. 

 
 

References 
 

Agresti, A. and Liu, I.-M. (1999), “Modeling responses to a categorical variable allowing 
arbitrarily many category choices”, Biometrics, 55, 936-943. 

 
Bilder, C.R., Loughin, T.M. and Nettleton, D. (2000), “Multiple marginal independence testing 

for pick any/c variables”, Communications in Statistics: Simulation, 29, 1285-1316. 
 

Thomas, D.R. and Decady, Y.J. (2004), “Testing for association using multiple response 
survey data: approximate procedures based on Rao-Scott Approach”, International Journal 
of Testing, 4, 43-59. 

 
 
 
 

Column Means Tests (No Effective Base Weighting) 
This section describes the algorithm used in pairwise comparisons of scale variables over levels 
of a categorical variable or a multiple response set when effective base weighting is not used. 

 
Notation 

 
k Number of categories in the sub-table. 
k * Number of categories with case weights greater than or equal to 2. 

µi 
Population mean of the i-th category, i=1,...,k. 

xij 
j-th observation in i-th category, i=1,...,k. 

wij 
Case weight of the j-th observation in i-th category, i=1,...,k. 

wi Sum of case weights in category i, i=1,...,k. 

w~ 
i 

Rounded sum of case weights in category i, i=1,...,k. 

xi 
Mean of category i, i=1,...,k. 

si 
Standard devation of category i, i=1,...,k. 

sij 
Pooled standard deviation from i-th and j-th categories. 

sw Pooled standard deviation from all categories. 
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W Total case weights. Sum of rounded wi 's. 
α Significance level supplied by the user. 

 
Conditions and assumptions 

• Tests will not be performed for Comperimeter tables. 
• Tests are performed on each innermost sub-table for each layer. 
• Row variable must be a scale variable, possibly nested under or over some categorical 

variables or multiple response sets. Column variable must be categorical or a multiple 
response set. 

• If weighting is on, cell statistics must include weighted means; a weighted analysis will 
be performed using the weighted statistics. If weighting is off, cell statistics must include 
means; an unweighted analysis will be performed. 

• Tests are constructed by using all visible, non-empty categories excluding totals and 
sub-totals. Hiding of categories and showing of user-missing categories are respected. 

• Total case weights in each category must be at least two. Categories not satisfying this 
assumption are not used. If number of categories satisfying this condition is less than 
two, no comparisons will be made. 

• Population variances of all categories are assumed to be equal. 
• User and system missing values of scale variables are excluded. 

 
Algorithm 

All Pairwise Comparisons 
 

Hypothesis: H 0ij : µi = µ j , vs. H1ij : µi  ≠ µ j , for all i > j .
 

k *(k * −1) 
Total number of hypotheses: 

2 
* (where k * 

 
 

= ∑I (wi ε 2) ). 
i=1 

 

Note that this assumes that a positive variance estimate can be computed using 
the specified method (pooling over all categories or over the two categories 
compared). If the pooled variance estimate using all categories is 0, no 
comparisons will be made. If the pooled variance estimate using only two 
categories is 0, this comparison will not be made and the number of hypotheses 
tested is reduced. 

 
 

Aggregated statistics 
 

 
 
 

 
 

k 



 

ij 

 
Statisitics for (i,j)th comparisons with variance pooled from the two compared 
categories 

 

Assume  and . 
 
Variance pooled from the two compared categories: 
 

 
 

 

t-statistic for comparing levels of a categorical variable: 
 

 
 

P-value p = 2[1− F (| tij |, w~i + w~ 
j − 2)] , where 

of t-distribution with n degrees of freedom. 
F (t, n) is the distribution function 

 

When multiple response set determines categories there may exist cases that 
belong to both i-th and j-th category. Let  w~   be the rounded sum of weights for 
such cases. 

t-statistic for comparing levels of a multiple response set: 

 

P-value p = 2[1− F (| tij |, w~i + w~ 
j − w~ij − 2)] . 

 

A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 
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* 

 
 
 

Statistics for (i,j)th comparisons with variance pooled from all categories 
 

Within groups variance pooled from all the categories: 
 

 

t-statistic for levels of a categorical variable: 
 

 
Note: This pooled-variance version of the test is available only for categories 
defined by a categorical variable (it is not available when categories are defined 
by a multiple response variable). 

 

P-value p = 2[1− F (| tij |,W − k )] . 
 

A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
 

Use of case weights 
 

The case weights (or frequency weights) are supposed to be integers 
representing number of replications of each case. If the sum of case weights in 
any group ( wi ,i=1,...,k) is not an integer, it will be rounded to the nearest integer 
before calculations. Consequently, the total weight W  will become the sum of the 
rounded wi 's. 

 
 

Column Means Tests (With Effective Base Weighting) 
This section describes the algorithm used in pairwise comparisons of scale variables over levels 
of a categorical variable or a multiple response set when effective base weighting is used. 

 
Notation 

 
k Number of categories in the sub-table. 
k * Number of categories with at least two unweighted cases (ci ≥ 2) . 
ci Unweighted case count in the i-th category, i=1,...,k. 



 

 
 

µi 
Population mean of the i-th category, i=1,...,k. 

xil 
l-th observation in i-th category, i=1,...,k. 

wil 
Weight of the l-th observation in i-th category, i=1,...,k. 

wi 
Sum of weights in category i, i=1,...,k. 

qi Sum of squared weights in category i, i=1,...,k. 

ei 
Effective base in category i, i=1,...,k. 

xi Weighted mean of category i, i=1,...,k. 

si Weighted standard deviation of category i, i=1,...,k. 

∧ 

si 

Adjusted weighted standard deviation of category i, i=1,...,k incorporating 
effective base. 

p p-value of a test. 
 
 
 
 
Conditions and assumptions 

• Tests will not be performed for Comperimeter tables. 
• Tests are performed on each innermost sub-table for each layer. 
• The row variable must be a scale variable, possibly nested under or over some 

categorical variables or multiple response sets. The column variable must be categorical 
or a multiple response set. 

• Cell statistics must include weighted means. 
• Tests are constructed by using all visible, non-empty categories excluding totals and 

sub-totals. Hiding of categories and showing of user-missing categories are respected. 
• In order for two categories to be compared, each must have at least one valid case and 

at least one of the two categories must have at least two valid cases. If no categories 
have more than one valid case, no comparisons will be made. 

• Population variances of all categories are assumed to be equal. 
• User and system missing values of scale variables are excluded. 

 
Algorithm 

All Pairwise Comparisons 
 

Hypothesis: H 0ij : µi =≠ µ j vs. H1ij : µi  ≠ µj for all j > i . 
 

 

Total number of hypotheses tested: 
 

k *(k * −1) 
2 

+ k * (k − k *) , where k * 

 
 

= ∑I (ci  ≥ 2) 
i=1 

 
if the default pooled population 

variance estimate is used and assuming that this pooled variance estimate is 

k 
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positive. If the population variance estimate is based on only the two categories 
k 

used in the comparison,  k * = ∑I (c 
i=1 

≥ 2). 

Note that if all categories have at least two valid cases and a positive variance 

estimate can be computed, this reduces to the more familiar k (k −1) . 2 
 
 

Aggregated statistics 

The statistics in pairwise comparisons are computed from aggregated category 
means ( x ), sample variances ( s2 ) and sample sizes ( w ), i=1,...,k. Various i i i 
quantities used in the comparisons are shown below. 
 

 
 
 

Statistics for (i,j)th comparisons with variance pooled from the two compared 
categories 

 
Pooled variance estimate from the two compared categories: 

 

 

T-statistic for comparing levels of a categorical variable: 

i 



 

 

 

p-value: p = 2[1− F (| tij |, ei + e j − 2)], where F (t, n) is the distribution function of a 
t-distribution with n degrees of freedom. 
A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
When a multiple response set determines categories there may exist cases that 
belong to both the i-th and j-th categories. Let wij be the sum of weights for 

 

p-value p = 2[1− F (| tij |, ei + e j − eij − 2)]. 
 

A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 

Statistics for (i,j)th comparisons with variance pooled from all categories 
 

Within groups variance estimate pooled from all the categories: 
 

 

t-statistic for levels of a categorical variable: 
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A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
 

Note: This pooled-variance version of the test is available only for categories 
defined by a categorical variable (it is not available when categories are defined 
by a multiple response variable). 

 
 

Column Proportions Tests (No Effective Base Weighting) 
This document describes the algorithm used in computation of column proportions test 
when effective base weighting is not in use. 

 
Notation 

 
R Number of rows in the sub-table. 
C Number of columns in the sub-table. 
Ai i-th category of the row variable. 

Bj j-th category of the column variable. 

fij 
Case weights total in cell (i,j). 

c j Marginal case weights total in j-th column. 

c~ 
j 

Rounded marginal case weights total in j-th column. 

z z-statistic. 
χ2 Chi-Square statistic. 

pij 
Column proportion for cell (i,j). 

p̂ ij Estimated column proportion for cell (i,j). 

p̂ ijk 
Estimate of pooled column proportion of j-th and k-th column in i-th row. 

p p-value of a test. 
α The significance level supplied by the user. 



 

 

Conditions and assumptions 
 

• Tests will not be performed on Comperimeter tables and tables with scale variables in 
the layer. 

• Pairwise tests are performed on each row of all eligible innermost sub-tables within each 
layer. 

• Sub-tables must have categorical variables or multiple response sets in both rows and 
columns. 

• Number of rows and columns must be larger than or equal to two, i.e. R ≥ 2 and C ≥ 2 . 
• Tests are constructed by using all visible categories excluding totals and sub-totals. 

Hiding of categories and showing of user-missing categories are respected. 
• If weighting is on, cell statistics must include weighted cell counts or weighted simple 

column percents; a weighted analysis will be performed. If weighting is off, cell statistics 
requested must include cell counts or simple column percents; an unweighted analysis 
will be performed. 

• A proportion will be discarded if the proportion is equal to zero or one, or the sum of 
case weights in a column is less than 2, (i.e. c j < 2 ). If less than two proportions are left 
after discarding proportions, test will not be performed. 

 
Algorithm 

All Pairwise Comparisons 

Table layout: 

 
 
 
 
 

Hypothesis: 
 

Without loss of generality, we will only look at the i-th row of the table. Let C * be 
the number of categories in the i-th row where the proportion is greater than zero 
and less than one, and where the sum of case weights in the corresponding 
column is at least 2. In the i-th row, C *(C * −1) / 2 comparisons will be made 
among pi1, pi 2 ,..., piC . The (j,k)th hypothesis will be 

 

H 0 jk : pij  = pik vs. H1 jk : pij ≠ pik  . 
 

Aggregated statistics 
 

Column proportions tests are based on the aggregated proportions ( p̂ ij ) and cell 

counts for each column ( c j ). Column proportions are computed using the un- 

 B1 B2 ... BC 

A1 p11 p12  p1C 

A2 p21 p22  p2C 

... ... ... ... ... 
AR pR1 pR2 ... pRC 
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k 

jk 

 

 

rounded cell counts  which are equal to the proportions actually displayed 
in the table output. 

 
Statistics for the (j,k)th comparisons 

Let c~ = round (c j ) and c~ = round (ck ) . 
 

Pooled proportion: 
 

z  statistic with a categorical variable in the columns: 
 

 
When multiple response set defines columns there may exist cases that belong 
to both j-th and k-th columns. Let c~ be the rounded marginal weights total for 
such cases. 

 
z  statistic with a multiple response set in the columns: 

 

p -value: p = 2[1− ɸ (| z |)], where ɸ(z) is the CDF of standard normal 
distribution. 

 
A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
 

Relationship to Pearson's chi-square tests 
 

With a categorical variable in the columns, the statistics used in column 
proportion tests are equivalent to the Pearson's chi-square test on a 2 x 
2 table by taking the j and k-th columns and collapsing all rows except 

j 



 

 
 

the i-th row. Therefore performing column proportion tests on a 2 x 2 
table will give the same result as Pearson's chi-square test. 

 
Use of case weights 

 
The case weights (or frequency weights) are supposed to be integers 
representing the number of replications of each case. In column proportions 
tests, we will only check if the column marginal c j 's are integers. If not, they will 
be rounded to the nearest integers. 

 
 

Column Proportions Tests (With Effective Base Weighting) 
This section describes the algorithms used in computation of column proportions tests when 
effective sample size or effective base weighting is used. 

 
Notation 

 
R Number of rows in the sub-table. 
C Number of columns in the sub-table. 
n j Number of valid unweighted cases in the j-th column of the sub-table. 

C * Number of categories in the i-th row where the number of valid cases in 
the corresponding column is at least 2 (n j ε 2) 

Ai i-th category of the row variable. 

Bj j-th category of the column variable. 

wij 
Sum of weights in cell (i,j). 

wj Marginal sum of weights in j-th column. 

qij 
Sum of squared weights in cell (i,j). 

eij 
Effective base in cell (i,j). 

e j Effective base in j-th column. 

t t-statistic. 
pij 

Column proportion for cell (i,j). 

p̂ ij Estimated column proportion for cell (i,j). 

p̂ ijk 
Estimate of pooled proportion of j-th and k-th columns in the i-th row. 

p p-value of a test. 

 
Conditions and assumptions 

• Tests will not be performed on Comperimeter tables and tables with scale variables in 
the layer. 
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• Pairwise tests are performed on each row of all eligible innermost sub-tables within each 
layer. 

• Sub-tables must have categorical variables or multiple response sets in both rows and 
columns. 

• The number of rows and columns must be larger than or equal to two, i.e. 
C ≥ 2. 

R ≥ 2 and 

• Tests are constructed by using all visible categories excluding totals and sub-totals. 
Hiding of categories and showing of user-missing categories are respected. 

• Cell statistics must include weighted cell counts or weighted simple column percents. 
• In order for two categories to be compared, each must have at least one valid case and 

at least one of the two categories must have at least two valid cases. If no categories 
have more than one valid case, no comparisons will be made. 

 
Algorithm 

All Pairwise Comparisons 

Table layout: 

 
 
 
 
 

Hypothesis: 
 

Without loss of generality, we will only look at the i-th row of the table. The (j,k)th 
hypothesis will be 

 

H 0 jk : pij  = pik vs. H1 jk : pij   ≠  pik for all k > j. 
 

Let C*
 be the number of categories in the i-th row where the number of valid 

unweighted cases is at least two. 
 

Total number of hypotheses tested: 
 

C *(C * −1) 
2 

+ C * (C − C *
 

 
) , where C * 

 

 

= ∑I (n j ≥ 2). 
j =1 

 

 
Note that if all categories have at least two valid cases this reduces to C(C −1) . 2 

 

Aggregated statistics 

C 

 C1 C2 ... CC 

R1 p11 p12  p1C 

R2 p21 p22  p2C 

... ... ... ... ... 
RR pR1 pR2 ... pRC 

 



 

 

Column proportions tests are based on the aggregated proportions ( p̂ ij ) and cell 

counts for each column ( wj ). Column proportions are computed as  

 
 

Statistics for the (j,k)th comparisons 
 

Pooled proportion estimate: 
 

 
 

 
 

t statistic with a categorical variable in the columns: 
 

p-value: p = 2[1 − F (| t |, df )], F (t, df ) is the CDF of Student's t 
distribution with df degrees of freedom. Here df  = e j + ek - 2 . 

 

A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
 

When a multiple response set defines the columns there may exist cases that 
belong to both the j-th and k-th columns (these cases are said to overlap). Let 
wijk be the sum of the weights for the cases in row i that belong to both columns 
j and k. Then the effective base of these overlapping cases for columns j and k 
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A comparison is significant if  if no multiple comparison adjustments are 
made. For multiple comparison adjustment formulas see the final section. 

 
If rows are also defined by a multiple response set, then overlapping cases 
cannot be identified individually by rows, so the effective base of the overlapping 

 
 

 

Multiple Comparison Adjustments for Column Means and 
Column Proportions Tests 
This section describes the algorithms used in adjusting p -values or significance levels for 
pairwise comparisons among column means or proportions. 

 
Notation 

 
m Number of distinct comparisons performed. 
p Unadjusted p-value of a test. 
pB Bonferroni corrected p-value. 

pBH ,i Benjamini-Hochberg adjusted p-value for the ith  comparison. 
α The significance level supplied by the user. 



 

th 

 

Algorithm 

Multiple Comparison Adjustments 
 
 

Unadjusted comparisons 
 

A comparison is significant if 

 

p < α. 
 

Bonferroni adjustment 
 

If the Bonferroni adjustment for multiple comparisons is requested, the  p -value 
p  will be adjusted by 

 
pB  = min(mp,1) . 

A comparison is significant if pB < α. 

 
Benjamini-Hochberg False Discovery Rate Procedure 

 
If the Benjamini-Hochberg adjustment for multiple comparisons is requested, the 
method from Benjamini & Hochberg (1995) for controlling the false discovery 
rate (FDR) is used. 

 
 

Statistically significant comparisons 
 
 

Sort the unadjusted  p -values from i = 1,..., m 
 
in ascending order. 

 

Find the largest unadjusted  p -value pk  for which 
 

pi ≤ 
i  

α. 
m 

 

Then all comparisons associated with pi = p1,..., pk are declared significant. 
 
 

Adjusted  p -values 
 
 

The adjusted  p -value pBH ,i for the i comparison is computed as: 
 

pBH ,i  = p if i = m 
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Reference: 
 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. Journal of the Royal Statistical 
Society B, 57(1), 289-300. 



 

CURVEFIT Algorithms 
Eleven models can be selected to fit times series and produce forecasts, forecast errors, and 
confidence limits. In all of the models, the observed series is some function of time. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 34-1 
Notation 
Notation Description 

Observed series; 

Expected value of 

                           Predicted value for 
 
 
Models 

CURVEFIT allows the user to specify a model with or without a constant term designated by . 
If this constant term is excluded, simply set it zero or one depending upon whether it appears in an 
additive or multiplicative manner in the models listed below. 

Model Description 
(1) Linear  

(2) Logarithmic  

(3) Inverse  

(4) Quadratic  

(5) Cubic  

(6) Compound  

(7) Power  

(8) S  

(9) Growth  

(10) Exponential  

(11) Logistic 
 
 

Assumption 
We assume that nonlinear models (6) to (11) can be expressed in linear model form by logarithmic 
transformation.  So, for models (6) to (10), 
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and for model (11), 

 

 
with being independently identically distributed . 

 
Application of Regression 

Each of the models is expressed in linear form and computational techniques described in the 
REGRESSION procedure are applied. The dependent variable and independent variables for each 
model are listed as follows: 

 

 

where                  and             . 
 

The ANOVA table, coefficient estimates and their standard errors, t-values, and significance 
levels are computed as in the REGRESSION procedure.  Note that for the nonlinear models 
(6) to (11), we have 

 

 
and 

 

Model 
(1) 

(2) 

(3) 

Dependent Variable Independent Variables Coefficients 

(4) 
 
(5) 

 
(6) 

(7) 

(8) 

(9) 

(10) 

(11) 



 

 
 
Predicted Values and Confidence 
Intervals 
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The regression coefficients for models (1) to (5) are used to obtain the predicted values. For 
the transformed models, more computations are required to obtain the predicted values for the 
original models.  The formulas are listed below: 

Model Description 
(1)  

(2)  

(3)  

(4)  

(5)  

(6)  

(7)  

(8)  

(9)  

(10)  

(11)  
 

where   in models (5) to (10), and in model (11). 

The 95% prediction interval for an observation at time t is constructed as follows: 

For models (1) to (5): 

                                                                if constant term is included 

                                                     otherwise 

For models (6) to (10): 
 

 

and for model (11): 
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where MSE is the mean square error obtained by fitting the  linear model, is the 97.5 
percentage point from Student t-distribution with MSE degrees of freedom, and  is the leverage 
(computational detail in the REGRESSION procedure). 
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DESCRIPTIVES computes univariate statistics—including the mean, standard deviation, 
minimum, and maximum—for numeric variables. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 35-1 
Notation 
Notation Description 

Value of the variable for case 

Weight for case 

Number of cases 

Sum of the weights for the first cases 

                 Mean for the first   cases 

 

Moments 
Moments about the mean are calculated recursively using a provisional means algorithm (Spicer, 
1972): 

 

 

 

 
  

 

 

 
 

 
    

 
 

 

 
 

 
  

 

 

 
 

 

 
   

 

 

 

After the last observation has been processed, 
 

      sum of weights for all cases 
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      mean 
 
 

 

 

  
 
Basic Statistics 

Mean 
 

 

Variance 
 

 
Standard Deviation 

 

 
Standard Error 

 

 
Minimum 

min  
 

 
Maximum 

 

 

Sum 
 

 

Skewness and Standard Error of Skewness 
 

 

If         or       , and its standard error are not calculated. 

Kurtosis (Bliss, 1967, p.  144) and Standard Error of Kurtosis 
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If         or       , and its standard error are not calculated. 

Z-Scores 
 

  

 
 

If  is missing or ,  is set to the system missing value. 
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DETECTANOMALY  Algorithms 
The Anomaly Detection procedure searches for unusual cases based on deviations from the 
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for data-
auditing purposes in the exploratory data analysis step, prior to any inferential data analysis. This 
algorithm is designed for generic anomaly detection; that is, the definition of an anomalous case 
is not specific to any particular application, such as detection of unusual payment patterns  in the 
healthcare industry or detection of money laundering in the finance industry, in which the 
definition of an anomaly can be well-defined. 

 
Data Assumptions 

Data. This procedure works with both continuous and categorical variables. Each row represents 
a distinct observation, and each column represents a distinct variable upon which the peer groups 
are based. A case identification variable can be available in the data file for marking output, but it 
will not be used in the analysis. Missing values are allowed. The weight variable, if  specified, 
is ignored. 

 
The detection model can be applied to a new test data file. The elements of the test data must be the 
same as the elements of the training data. And, depending on the algorithm settings, the missing 
value handling that is used to create the model may be applied to the test data file prior to scoring. 

Case order. Note that the solution may depend on the order of cases. To minimize order effects, 
randomly order the cases. To verify the stability of a given solution, you may want to obtain several 
different solutions with cases sorted in different random orders. In situations with extremely large 
file sizes, multiple runs can be performed with a sample of cases sorted in different random orders. 

Assumptions. The algorithm assumes that all variables are nonconstant and independent and 
that no case has missing values for any of the input variables. Each continuous variable is 
assumed to have a normal (Gaussian) distribution, and each categorical variable is assumed to 
have a multinomial distribution. Empirical internal testing indicates that the procedure is fairly 
robust to violations of both the assumption of independence and the distributional assumptions, 
but be aware of how well these assumptions are met. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

ID The identity variable of each case in the data file. 
n The number of cases in the training data Xtrain . 
Xok, k = 1, …, K The set of input variables in the training data. 
Mk, k ∈ {1, …, K} If Xok is a continuous variable, Mk represents the grand mean, or average of 

the variable across the entire training data. 
SDk, k ∈ {1, …, K} If Xok is a continuous variable, SDk represents the grand standard deviation, 

or standard deviation of the variable across the entire training data. 
XK+1 A continuous variable created in the analysis. It represents the percentage of 

variables (k = 1, …, K) that have missing values in each case. 
Xk, k = 1, …, K The set of processed input variables after the missing value handling is 

applied. For more information, see the topic “Modeling Stage”. 
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H, or the boundaries of H: 
[Hmin, Hmax] 

H is the pre-specified number of cluster groups to create. Alternatively, the 
bounds [Hmin, Hmax] can be used to specify the minimum and maximum 
numbers of cluster groups. 

nh, h = 1, …, H The number of cases in cluster h, h = 1, …, H, based on the training data. 
ph, h = 1, …, H The proportion of cases in cluster h, h = 1, …, H, based on the  training 

data.  For each h, ph = nh/n. 
Mhk, k = 1, …, K+1, h = 1, 
…, H 

 
 

SDhk, k ∈ {1, …, K+1}, h 
= 1, …, H  
{nhkj}, k ∈ {1, …, K}, h = 
1, …, H, j = 1, …, Jk 

If Xk is a continuous variable, Mhk represents the cluster mean, or average 
of the variable in cluster h based on the training data. If Xk is a categorical 
variable, it represents the cluster mode, or most popular categorical value of 
the variable in cluster h based on the training data. 
If Xk is a continuous variable, SDhk represents the cluster standard deviation, 
or standard deviation of the variable in cluster h based on the training data. 
The frequency set {nhkj} is defined only when Xk is a categorical variable. 
If Xk has Jk categories, then nhkj is the number of cases in cluster h that fall 
into category j. 

m An adjustment weight used to balance the influence between continuous and 
categorical variables. It is a positive value with a default of 6. 

VDIk, k = 1, …, K+1 The variable deviation index of a case is a measure of the  deviation of 
variable value Xk from its cluster norm. 

GDI The group deviation index GDI of a case is the log-likelihood distance d(h, 
s), which is the sum of all of the variable deviation indices {VDIk, k = 1, 
…, K+1}. 

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average 
GDI for the cluster group to which the case belongs. 

variable contribution 
measure 

The variable contribution measure of variable Xk for a case is the ratio of 
the VDIk to the case’s corresponding GDI. 

pctanomaly or nanomaly A pre-specified value pctanomaly determines the percentage of cases to be 
considered as anomalies. Alternatively, a pre-specified positive integer value 
nanomaly determines the number of cases to be considered as anomalies. 

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than 
cutpointanomaly are considered anomalous. 

kanomaly A pre-specified integer threshold 1≤kanomaly≤K+1 determines the number of 
variables considered as the reasons that the case is identified as an anomaly. 

 
 
Algorithm Steps 

This algorithm is divided into three stages: 
 

Modeling. Cases are placed into cluster groups based on their similarities on a set of input 
variables. The clustering model used to determine the cluster group of a case and the sufficient 
statistics used to calculate the norms of the cluster groups are stored. 

Scoring. The model is applied to each case to identify its cluster group and some indices are 
created for each case to measure the unusualness of the case with respect to its cluster group. 
All cases are sorted by the values of the anomaly indices. The top portion of the case list is 
identified as the set of anomalies. 

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable 
deviation indices. The top variables, their values, and the corresponding norm values are presented 
as the reasons why a case is identified as an anomaly. 



 
 

 

Modeling Stage 
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This stage performs the following tasks: 
 

1. Training Set Formation. Starting with the specified variables and cases, remove any case with 
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value 
handling is not in effect, also remove cases with a missing value on any variable. Remove variables 
with all constant nonmissing values or all missing values. The remaining cases and variables are 
used to create the anomaly detection model. Statistics output to pivot table by the procedure are 
based on this training set, but variables saved to the dataset are computed for all cases. 

 
2. Missing Value Handling (Optional). For each input variable Xok, k = 1, …, K, if Xok is a 

continuous variable, use all valid values of that variable to compute the grand mean Mk and grand 
standard deviation SDk. Replace the missing values of the variable by its grand mean. If Xok is a 
categorical variable, combine all missing values into a “missing value” category. This category is 
treated as a valid category. Denote the processed form of {Xok} by {Xk}. 

3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, XK+1, is 
created that represents the percentage of variables (both continuous and categorical) with missing 
values in each case. 

 
4. Cluster Group Identification.  The processed input variables {Xk, k = 1, …, K+1} are used to 

create  a clustering model. The two-step clustering algorithm is used with noise handling turned 
on (see the TwoStep Cluster algorithm document for more information). 

 
5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables 

by cluster are stored for the Scoring stage: 
 The grand mean Mk and standard deviation SDk of each continuous variable are stored, 

k ∈ {1, …, K+1}. 
 For each cluster h = 1, …, H, store the size nh. If Xk is a continuous variable, store the cluster 

mean Mhk and standard deviation SDhk of the variable based on the cases in cluster h. If Xk is 
a categorical variable, store the frequency nhkj of each category j of the variable based on the 
cases in cluster h. Also store the modal category Mhk. These sufficient statistics will be used 
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s. 

 

Scoring Stage 

This stage performs the following tasks on scoring (testing or training) data: 
 

1. New Valid Category Screening. The scoring data should contain the input variables {Xok,k= 1, 
…, K} in the training data. Moreover, the format of the variables in the scoring data should be the 
same as those in the training data file during the Modeling Stage. 

 
Cases in the scoring data are screened out if they contain a categorical variable with a valid 
category that does not appear in the training data. For example, if Region is a categorical variable 
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid 
category FL for Region will be excluded from the analysis. 
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2. Missing Value Handling (Optional).  For each input variable Xok, if Xok is a continuous 
variable, use all valid values of that variable to compute the grand mean Mk and grand standard 
deviation SDk. Replace the missing values of the variable by its grand mean. If Xok is a 
categorical variable, combine all missing values and put together a missing value category. This 
category is treated 
as a valid category. 

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage).  If XK+1 is 
created in the Modeling Stage, it is also computed for the scoring data. 

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the 
Modeling Stage  is applied to the processed variables of the scoring data file to create a cluster 
ID for each case. Cases belonging to the noise cluster are reassigned to their closest non-noise 
cluster. See the TwoStep Cluster algorithm document for more information on the noise cluster. 

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable 
deviation index VDIk of variable Xk is defined as the contribution dk(h, s) of the variable to its 
log-likelihood distance d(h, s). The corresponding norm value is Mhk, which is the cluster sample 
mean of Xk if Xk is continuous, or the cluster mode of Xk if Xk is categorical. 

6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-
likelihood distance d(h, s), which is the sum of all the variable deviation indices {VDIk, k = 1, 
…, K+1}. 

7. Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are 
calculated that are easier to interpret than the group deviation index and the variable deviation 
index. 

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the 
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this 
index correspond to greater deviations from the average and indicate better anomaly candidates. 

A variable’s variable contribution measure of a case is an alternative to the VDI, which is 
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution 
of the variable to the deviation of the case.  The larger the value of this measure, the greater 
the variable’s contribution to the deviation. 

 
Odd Situations 

 
Zero Divided by Zero 

 
The situation in which the GDI of a case is zero and the average GDI of the cluster that the case 
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and 
the case in question is the same as the identical cases. Whether this case is considered as an 
anomaly or not depends on whether the number of identical cases that make up the cluster is large 
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are 
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine 
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it 
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to 
set it as the ratio of average cluster size to the size of the cluster h, which is: 
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Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster 
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly. 
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of 
processed variables in the analysis. 

 
Nonzero Divided by Zero 

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case 
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases 
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster 
h, which has a zero average GDI; that is, average(GDI)h = 0, but the GDI between case i and 
cluster h is nonzero; that is, GDI(i, h) ≠ 0. One choice for the anomaly index calculation of case i 
could be to set the denominator as the weighted average GDI over all other clusters if this value is 
not 0; else set the calculation as the ratio of average cluster size to the size of cluster h. That is, 

 
if  

 

otherwise 

This situation triggers a warning that the case is assigned to a cluster that is made up of identical 
cases. 

 
Reasoning Stage 

Every case now has a group deviation index and anomaly index and a set of variable deviation 
indices and variable contribution measures. The purpose of this stage is to rank the likely 
anomalous cases and provide the reasons to suspect them of being anomalous. 

1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the 
anomaly index. The top pctanomaly % (or alternatively, the top nanomaly) gives the anomaly list, 
subject 
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not 
considered anomalous. 

2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the 
variables by their corresponding VDIk values in descending order. The top kanomaly variable 
names, its value (of the corresponding original variable Xok), and the norm values are displayed 
as reasoning. 

 
Key Formulas from Two-Step Clustering 

The two-step clustering algorithm consists of: (a) a pre-cluster step that pre-clusters cases into 
many sub-clusters and (b) a cluster step that clusters the sub-clusters resulting from pre-cluster 
step into the desired number of clusters. It can also select the number of clusters automatically. 

 
The formula for the log-likelihood distance d(j, s) between 2 clusters j and s is as follows: 

 

where 
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and 
 

 
in which > 0 is a positive adjustment included in the formula to avoid the logarithm of zero in 
the calculation.  Its value is set as: 

 

 
where m is user-specified and set to m = 6 by default, and  is the sample variance of variable 
Xk over the entire training sample. 

The log-likelihood distance can be computed as follows: 
 

 

where 

 

depending on whether the corresponding variable Xk is continuous or categorical.  

For more information, see the topic “TWOSTEP CLUSTER Algorithms”. 



 

 

DISCRIMINANT Algorithms 
No analysis is done for any subfile group for which the number of non-empty groups is less 
than two or the number of cases or sum of weights fails to exceed the number of non-empty 
groups. An analysis may be stopped if no variables are selected during variable selection or 
the eigenanalysis fails. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 37-1 
Notation 
Notation Description 
g Number of groups 
p Number of variables 
q Number of variables selected 

                                      Value of variable i for case k in group j 

                                         Case weights for case k in group j 

Number of cases in group j 

Sum of case weights in group j 

n Total sum of weights 
 

Basic Statistics 
The procedure calculates the following basic statistics. 

 

Mean 
 

 

 
 

 

Variances 

 
variable   in group   

 
 
variable 

 
 

                                                           variable in group  

variable 
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Within-Groups Sums of Squares and Cross-Product Matrix (W) 
 

 
Total Sums of Squares and Cross-Product Matrix (T) 

 

 

Within-Groups Covariance Matrix 
 

 
Individual Group Covariance Matrices 

 

 

Within-Groups Correlation Matrix (R) 
if 

SYSMIS otherwise 
 
Total Covariance Matrix 

 

 
Univariate F and Λfor Variable I 

 

with g−1 and n−g degrees of freedom 
 

with 1, g−1 and n−g degrees of freedom 
 
Rules of Variable Selection 

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be 
specified. 



 
 

 

Method = Direct 
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For direct variable selection, variables are considered for inclusion in the order in which they are 
written on the ANALYSIS = list.  A variable is included in the analysis if, when it is included, 
no variable in the analysis will have a tolerance less than the specified tolerance limit (default 
= 0.001). 

 

Stepwise Variable Selection 

At each step, the following rules control variable selection: 
 Eligible variables with higher inclusion levels are entered before eligible variables with lower 

inclusion levels. 
 The order of entry of eligible variables with the same even inclusion level is determined by 

their order on the ANALYSIS = specification. 
 The order of entry of eligible variables with the same odd level of inclusion is determined 

by their value on the entry criterion. The variable with the “best” value for the criterion 
statistic is entered first. 

 When level-one processing is reached, prior to inclusion of any eligible variables, all 
already-entered variables which have level one inclusion numbers are examined for removal. 
A variable is considered eligible for removal if its F-to-remove is less than the F value for 
variable removal, or, if probability criteria are used, the significance of its F-to-remove 
exceeds the specified probability level. If more than one variable is eligible for removal, that 
variable is removed that leaves the “best” value for the criterion statistic for the remaining 
variables.  Variable removal continues until no more variables are eligible for removal. 
Sequential entry of variables then proceeds as described previously, except that after each step, 
variables with inclusion numbers of one are also considered for exclusion as described before. 

 A variable with a zero inclusion level is never entered, although some statistics for it are 
printed. 

 

Ineligibility for Inclusion 

A variable with an odd inclusion number is considered ineligible for inclusion if: 
 The tolerance of any variable in the analysis (including its own) drops below the specified 

tolerance limit if it is entered, or 
 Its F-to-enter is less than the F-value for a variable to enter value, or 
 If probability criteria are used, the significance level associated with its F-to-enter exceeds the 

probability to enter. 
 

A variable with an even inclusion number is ineligible for inclusion if the first condition above 
is met. 
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Computations During Variable Selection 
During variable selection, the matrix W is replaced at each step by a new matrix using the 
symmetric sweep operator described by Dempster (1969). If the first q variables have been 
included in the analysis, W may be partitioned as: 

 

 

where W11 is q×q.  At this stage, the matrix is defined by 
 

In addition, when stepwise variable selection is used, T is replaced by the matrix , defined 
similarly. 

 
The following statistics are computed. 

 
Tolerance 

 
TOL 

 
 

if 
if variable is not in the analysis and 
if variable   is in the analysis and 

 

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the 
analysis would reduce the tolerance of another variable in the equation to or below the limit, the 
following statistics are not computed for it or any set including it. 

 

F-to-Remove 
 

with degrees of freedom g−1 and n−q−g+1. 
 

F- to-Enter 
 

with degrees of freedom g−1 and n−q−g. 
 

Wilks’ Lambda for Testing the Equality of Group Means 
 

with degrees of freedom q, g−1 and n−g. 
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The Approximate F Test for Lambda (the “overall F”), also known as Rao’s 
R (Tatsuoka, 1971) 

 

 

where 
 
 

 
 

if           
 otherwise 

 
   

  
 

 
 

  
 

with degrees of freedom qh and r/s+1−qh/2. The approximation is exact if q or h is 1 or 2. 

 
Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976) 

 

 

When n−g is large, V, under the null hypothesis, is approximately distributed as  with q(g−1) 
degrees of freedom. When an additional variable is entered, the change in V, if positive, has 
approximately a  distribution with g−1 degrees of freedom. 

 
The Squared Mahalanobis Distance (Morrison, 1976) between groups a and 
b 

 

The F Value for Testing the Equality of Means of Groups a and b 
 

The Sum of Unexplained Variations (Dixon, 1973) 
 

 

Classification Functions 
Once a set of q variables has been selected, the classification functions (also known as Fisher’s 
linear discriminant functions) can be computed using 

 

for the coefficients, and 
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for the constant, where is the prior probability of group j. 
 

Canonical Discriminant Functions 
The canonical discriminant function coefficients are determined by solving the general eigenvalue 
problem 

 

 
where V is the unscaled matrix of discriminant function coefficients and λ is a diagonal matrix of 
eigenvalues.  The eigensystem is solved as follows: 

 
The Cholesky decomposition 

 

 
is formed, where L is a lower triangular matrix, and  . 

The symmetric matrix is formed and the system 

 

is solved using tridiagonalization and the QL method.  The result is m eigenvalues,  where 
  and corresponding orthonormal eigenvectors, UV. The eigenvectors of the 

original system are obtained as 
 

 
For each of the eigenvalues, which are ordered in descending magnitude, the following statistics 
are calculated. 

 

Percentage of Between-Groups Variance Accounted for 
 

 

Canonical Correlation 
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Wilks’ Lambda 

Testing the significance of all the discriminating functions after the first k: 
 

 

The significance level is based on 
 

 
which is distributed as a  with (q−k)(g−k−1) degrees of freedom. 

 

The Standardized Canonical Discriminant Coefficient Matrix D 

The standard canonical discriminant coefficient matrix D is computed as 
 

 
where 

 
S=diag 

 

S11= partition containing the first q rows and columns of S 

V is a matrix of eigenvectors such that =I 

The Correlations Between the Canonical Discriminant Functions and the 
Discriminating Variables 

The correlations between the canonical discriminant functions and the discriminating variables 
are given by 

 

 

If some variables were not selected for inclusion in the analysis (q<p), the eigenvectors are 
implicitly extended with zeroes to include the nonselected variables in the correlation matrix. 
Variables for which         are excluded from S and W for this calculation; p then 
represents the number of variables with non-zero within-groups variance. 

 

The Unstandardized Coefficients 

The unstandardized coefficients are calculated from the standardized ones using 
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The associated constants are: 
 

 

The group centroids are the canonical discriminant functions evaluated at the group means: 
 

 

Tests For Equality Of Variance 

Box’s M is used to test for equality of the group covariance matrices. 

 
log log 

 
where 

 

  = pooled within-groups covariance matrix excluding groups with singular covariance matrices 
 

  = covariance matrix for group j. 
 

Determinants of   and   are obtained from the Cholesky decomposition. If any diagonal 
element of the decomposition is less than 10-11, the matrix is considered singular and excluded 
from the analysis. 

 

 

where is the ith diagonal entry of L such that                      . Similarly, 
 

where 
 

= sum of weights of cases in all groups with nonsingular covariance matrices 
 

The significance level is obtained from the F distribution with t1 and t2 degrees of freedom 
using (Cooley and Lohnes, 1971): 

if 
if 

 

where 
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if  
if  

If           is zero, or much smaller than e2, t2 cannot be computed or cannot be computed 
accurately. If 

 

 
the program uses Bartlett’s  statistic rather than the F statistic: 

 

 
with t1 degrees of freedom. 

 
For testing the group covariance matrix of the canonical discriminant functions, the procedure is 
similar. The covariance matrices   and   are replaced by   and  , where 

 

 
is the group covariance matrix of the discriminant functions. 

The pooled covariance matrix in this case is an identity, so that 

  
 

 
 

 
 

where the summation is only over groups with singular . 
 
Classification 

The basic procedure for classifying a case is as follows: 
 If X is the 1×q vector of discriminating variables for the case, the 1×m vector of canonical 

discriminant function values is 
 

 A chi-square distance from each centroid is computed 
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where 
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where   is the covariance matrix of canonical discriminant functions for group j and   is 
the group centroid vector.  If the case is a member of group j,  has a  distribution with 
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance 
level of such a   . 

 The classification, or posterior probability, is 

is the prior probability for group j. A case is classified into the group for which 
is highest. 

 
The actual calculation of is 

 

if 
 

otherwise 

If individual group covariances are not used in classification, the pooled within-groups covariance 
matrix of the discriminant functions (an identity matrix) is substituted for   in the above 
calculation, resulting in considerable simplification. 

 
If any   is singular, a pseudo-inverse of the form 

 

replaces and replaces .    is a submatrix of   whose rows and columns 
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded 
only if the rank of        , function 2 will be excluded only if it is dependent on function 1, and 
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of  , but 
maximizes the discrimination power of the remaining functions. 

 

Cross-Validation 

The following notation is used in this section: 
Table 37-2 
Notation 
Notation Description 

Sample mean of jth group 
 



 
 

 

 
 

Notation Description 
Sample mean of jth group excluding point 

 
 

 

   

Polled sample covariance matrix 

                                          Sample covariance matrix of jth group 

                                        Polled sample covariance matrix without point 
 

 

 
Cross-validation applies only to linear discriminant analysis (not quadratic).   During 
cross-validation, all cases in the dataset are looped over. Each case, say , is extracted once and 
treated as test data. The remaining cases are treated as a new dataset. 

 
Here we compute                     and                                              . If there is an i         that

 
satisfies (                                                 ), then the extracted point 

is misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified 
case weights and the sum of all case weights. 

To reduce computation time, the linear discriminant method is used instead of the canonical 
discriminant method. The theoretical solution is exactly the same for both methods. 

 
Rotations 

Varimax rotations may be performed on either the matrix of canonical discriminant function 
coefficients or on that of the correlation between the canonical discriminant functions and the 
discrimination variables (the structure matrix). The actual algorithm for the rotation is described in 
FACTOR. For the Kaiser normalization 

 

squared multiple correlation if coefficients rotated 

if correlations rotated 
 

The unrotated structure matrix is 
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If the rotation transformation matrix is represented by K, the rotated standardized coefficient 
matrix  is given by 

 

 
The rotated matrix of pooled within-groups correlations between the canonical discriminant 
functions and the discriminating variables  is 

 

 
The eigenvector matrix V satisfies 

 

diag 
 

where the  are the eigenvalues. The equivalent matrix for the rotated coefficient   
 

 

is not diagonal, meaning the rotated functions, unlike the unrotated ones, are correlated for the 
original sample, although their within-groups covariance matrix is an identity. The diagonals of 
the above matrix may still be interpreted as the between-groups variances of the functions. They 
are the numerators for the proportions of variance printed with the transformation matrix. The 
denominator is their sum. After rotation, the columns of the transformation are exchanged, if 
necessary, so that the diagonals of the matrix above are in descending order. 

 
References 

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley & 
Sons, Inc.. 

 
Cooley, W. W., and P. R. Lohnes. 1971. Multivariate data analysis. New York: John Wiley & 
Sons, Inc.. 

 
Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA: 
Addison-Wesley. 

 
Dixon, W. J. 1973. BMD Biomedical computer programs. Los Angeles: University of California 
Press. 

 
Tatsuoka, M. M. 1971. Multivariate analysis. New York:  John Wiley & Sons, Inc.  . 



 

 

Ensembles Algorithms 
Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging), 
and build models for very large datasets (pass, stream, merge). 
 For more information, see the topic “Very large datasets (pass, stream, merge) algorithms”. 
 For more information, see the topic “Bagging and Boosting Algorithms”. 

 
Bagging and Boosting Algorithms 

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and 
accuracy. Bagging works well for unstable base models and can reduce variance in predictions. 
Boosting can be used with any type of model and can reduce variance and bias in predictions. 

 

Notation 

The following notation is used for bagging and boosting unless otherwise stated: 

K The number of distinct records in the training set. 
Predictor values for the kth record. 

Target value for the kth record. 

                                          Frequency weight for the kth record. 

Analysis weight for the kth record. 

N The total number of records; . 
M The number of base models to build; for bagging, this is the number of 

bootstrap samples. 
The model built on the mth bootstrap sample. 

                                         Simulated frequency weight for the kth record of the mth bootstrap sample. 

                                          Updated analysis weight for the kth record of the mth bootstrap sample. 

                                         Predicted target value of the kth record by the mth model. 
 

For a categorical target, the probability that the kth record belongs to 
category    , i=1, ..., C, in model m. 
For any condition   , is 1 if holds and 0 otherwise. 
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Bootstrap Aggregation 

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with 
replacement from the original dataset. This creates bootstrap samples of equal size to the original 
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency 
weights: 

 
Then a model is built on each replicate. Together these models form an ensemble model. The 
ensemble model scores new records using one of the following methods; the available methods 
depend upon the measurement level of the target. 

 
Scoring a Continuous Target 
 Mean 

 
 

 
 Median 

Sort and relabel them 
 

  

 
 

if is odd 

if is even 
 

Scoring a Categorical Target 
 Voting 

 

 

where 
 Highest probability 

 

 

    
 Highest mean probability 
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Bagging Model Measures 
 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 
 

For continuous targets, it is 
 

 
where 

 
Note that R2 can never be greater than one, but can be less than zero. 

 
For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 

 
Diversity 

 
Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how 
much predictions vary across base models. 

 
For categorical targets, diversity is 

 

 
 

where . 
 

For continuous targets, diversity is 
 

D 
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Adaptive Boosting 

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets 
(Freund and Schapire 1996, Drucker 1997). 

1. Initialize values. 
 

Set 
if analysis weights specified 

otherwise 

Set m=1,           , and       .  Note that analysis weights are initialized even if the 
method used to build base models does not support analysis weights. 

2. Build base model m, , using the training set and score the training set. 
 
 

Set the model weight for base model m,  
 
 
 

where                             . 
 

3. Set weights for the next base model. 
 

 

 

where                                                                    . Note that analysis weights are always updated.  If 
 

the method used to build base models does not support analysis weights, the frequency weights 
are updated for the next base model as follows: 

 

 
otherwise 

 

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete. 
 

Note:  base models where or              are removed from the 

ensemble. 

Scoring 
 

AdaBoost uses the weighted median method to score the ensemble model. 
 

Sort  and relabel them                , retaining the association of the model weights, , 
and relabeling them 
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The ensemble predicted value  is then  , where i is the value such that 

 

 
 

 
 

 
Stagewise Additive Modeling using Multiclass Exponential loss 

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an 
algorithm that extends the original AdaBoost algorithm to categorical targets. 

1. Initialize values. 
 

Set 
if analysis weights specified 

otherwise 

Set m=1,           , and       .  Note that analysis weights are initialized even if the 
method used to build base models does not support analysis weights. 

2. Build base model m, , using the training set and score the training set. 

Set the model weight for base model m,  

where  . 
 

3. Set weights for the next base model. 
 

where                                         . Note that analysis weights are always updated. If the 
method used to build base models does not support analysis weights, the frequency weights are 
updated for the next base model as follows: 

 

 
otherwise 

 

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete. 
 

Note: base models where or are removed from the ensemble. 
 

Scoring 
 

SAMME uses the weighted majority vote method to score the ensemble model. 
 

The predicted value of the kth record for the mth base model is                                   . 
 

The ensemble predicted value is then                                                    . Ties are resolved at 

random. 
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The ensemble predicted probability is                                               . 
 
 

Boosting Model Measures 
 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 

For continuous targets, it is 
 

 

where 
 

Note that R2 can never be greater than one, but can be less than zero. 
 

For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 
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Very large datasets (pass, stream, merge) algorithms 

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling. 
PASS builds models on very large data sets with only one data pass; STREAM updates the 
existing model with new cases without the need to store or recall the old training data; MERGE 
builds models in a distributed environment and merges the built models into one model. 
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In an ensemble model, the training set will be divided into subsets called blocks, and a model will 
be built on each block. Because the blocks may be dispatched to different threads (here one process 
contains one thread) and even different machines, models in different processes can be built at the 
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it 
can easily handle the data stream and perform incremental learning for ensemble modeling. 

 

Pass 
 

The PASS operation includes following steps: 
 

1. Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight, 
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being 
entirely represented by a single case) but is accounted for when creating the testing and holdout 
sets. 

 
2. Build base models on training blocks and build a reference model on the testing set. A single 

model is built on the testing set and each training block. 
 

3. Evaluate each base model by computing the accuracy based on the testing set. Select a subset 
of base models as ensemble elements according to accuracy. 

 
4. Evaluate the ensemble model and the reference model by computing the accuracy based on 

the holdout set. If the ensemble model’s performance is not better than the reference model’s 
performance on the holdout set, we use the reference model to score the new cases. 

 

Computing Model Accuracy 
 

The accuracy of a base model is assessed on the testing set. For each vector of predictors and 
the corresponding label observed in the testing set T, let be the label predicted by the 
given model.  Then the testing error is estimated as: 

Categorical target.   

Continuous target.  
 

Where              is 1 if            and 0 otherwise. 
 

The accuracy for the given model is computed by A=1−E. The accuracy for the whole ensemble 
model and the reference model is assessed on the holdout set. 
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Stream 

When new cases arrive and the user wants to update the existing ensemble model with these 
cases, the algorithm will: 

1. Start a PASS operation to build an ensemble model on the new data, then 

2. MERGE the newly created ensemble model and the existing ensemble model. 
 

Merge 

The MERGE operation has the following steps: 

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable 
size. 

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size. 

3. Build a merged reference model on the merged testing set. 

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a 
subset of base models as elements of the merged ensemble model according to accuracy. 

5. Evaluate the merged ensemble model and the merged reference model by computing the accuracy 
based on the merged holdout set. 

 
Adaptive Predictor Selection 

There are two methods, depending upon whether the method used to build base models has an 
internal predictor selection algorithm. 

 
Method has predictor selection algorithm 

 
The first base model is built with all predictors available to the method’s predictor selection 
algorithm. Base model j (j > 1) makes the ith predictor available with probability 

 

 
where is the number of times the ith predictor was selected by the method’s predictor selection 
algorithm in the previous j−1 base models, is the number of times the ith predictor was made 
available to the method’s predictor selection algorithm in the previous j−1 base models, C is a 
constant to smooth the value of , and  is a lower limit on . 

 
Method does not have predictor selection algorithm 

 
Each base model makes the ith predictor available with probability 



 

 

 
 

 
 
 

if 
otherwise 

 

where is the p-value of a test for the ith predictor, as defined below. 
 For a categorical target and  categorical predictor, is a chi-square test  of 

where                                                         and with degrees   
else 

freedom              . is the number of cases with X=i and Y=j,                      
,                      , and  . 

 For a categorical target and   continuous predictor, is  an F test  of 

with degrees of freedom .    is the 

number of cases with Y=j, and  are the sample mean and sample variance of X given 
Y=j, and 

 For a continuous target and   categorical predictor, is  an F test  of 
with degrees of freedom .    is the 

number of cases with X=i, and  are the sample mean and sample variance of Y given 
X=i, and . 

 For a continuous target and continuous predictor, is a two-sided t test of where 

and with degrees of freedom .   is the sample variance 

of X and is the sample variance of Y. 

 
Automatic Category Balancing 

When a target category occurs relatively infrequently, many models do a poor job of predicting 
members of that rarely occurring category, even if the overall prediction rate of the model is fairly 
good. Automatic category balancing should improves the model’s accuracy when predicting 
infrequently occurring values. 

 
As records arrive, they are added to a training block until it is full. Then the proportion of records 
in each category is computed:            ,   where is the weighted number of records taking 
category i and w is the total weighted number of records. 

E   If there is any category such that                          , where is the number of target categories 
and   = 0.3, then randomly remove each record from the training block with probability 

 

This operation will tend to remove records from frequently-occurring categories. Add new records 
to the training block until it is full again, and repeat this step until the condition is not satisfied. 

E   If there is any category such that       , then recompute the frequency weight for record k as 
                                                        , where is the category of the kth record. This operation 

gives greater weight to infrequently occurring categories. 
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Model Measures 

The following notation applies. 

N Total number of records 
M Total number of base models 

                                          The frequency weight of record k 

The observed target value of record k 

                                          The predicted target value of record k by the ensemble model 

                                           The predicted target value of record k by base model m 

 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 
 
 

where  
 

if  
otherwise 

 
For continuous targets, it is 

 

 

where 
 

Note that R2 can never be greater than one, but can be less than zero. 
 

For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 

 
Diversity 

 
Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how 
much predictions vary across base models. 

 
For categorical targets, diversity is 



 

 

 
 

 
 
 

 
 
 

where  and  is defined as above. 

Diversity is not available for continuous targets. 

Scoring 
 
 

There are several strategies for scoring using the ensemble models. 
 
Continuous Target 

 
Mean.  

 
Median.      

where  is the final predicted value of case i, and  is the mth base model’s predicted 
value of case i. 

 
Categorical Target 

 
Voting. Assume that dm,k represents the label output of the mth base model for a given vector 
of predictor values. dm,k = 1if the label assigned by the mth base model is the kth target category 
and 0 otherwise. There are total of M base models and K target categories. The majority vote 
method selects the jth category if it is assigned by the plurality of base models. It satisfies the 
ollowing equation: 

 
 
 
 

Let  be the testing error estimated for the mth base model. Weights for the weighted majority 
vote are then computed according to the following expression: 

 

 
Probability voting.  Assume that pm,k is the posterior probability estimated for the kth target 
category by the mth base model for a given vector of predictor values. The following rules 
combine the probabilities computed by the base models. The jth category is selected such that it 
satisfies the corresponding equation. 
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Ties are resolved at random. 
 

Softmax smoothing.  The softmax function can be used for smoothing the probabilities: 
 

 

 
 

where is the rule-based confidence for category i and is the smoothed value. 



 

 

 

ERROR BARS Algorithms  
This section describes the algorithms for error bar computation of the mean, median and their 
confidence intervals for a simple random sample. 

 
Notation 

The following notation is used throughout this section unless otherwise noted: 
 

Let be m ordered observations for the sample and be the corresponding 
case weights. Then 

 
cumulative sum of weights up to and including 

 
and 

 
total sum of weights 

 
 

CI is the confidence interval level 
 
Descriptive  Statistics 

The following statistics are available. 
 

Mean 
 

 

Confidence Interval for the Mean 

Lower bound =   

Upper bound =  

where SE is the standard error, and IDF.T is the inverse student t function documented in the 
COMPUTE command. 

 

Variance 
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Standard Deviation 

 

 
Standard Error 

 

 

Median   
The Aempirical method in the EXAMINE procedure is used for computation of the median. 

 
Let 

 

 
and 𝑘𝑘 satifies 
 

Then, 
 

 
   

 

Let m be the estimated median, then it is defined as 
 

 
Confidence Interval for the Median 

Note: the case weights must be integers for the following computation. If at least one 
weight is not integer, an error message is issued. 

 
Let 

 
 
 
 
 

where IB is the incomplete Beta function. 

Define 

, 
 

 

and define 
 

  if W is even; 



 

 

 

 

327 
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  if W is odd. 
 
Algorithm: Hettmansperger-Sheather Interpolation (1986) 

1. Re-index all the cases to be in which 
 

 

       
. 
. 

2. If W is even, compute 
If W is odd, compute 

3. Choose the smallest index k such that .  If k is found, go to Step 4; otherwise, stop 
and issue a message. 

4. Compute 
 

, 

and 
 

. 
 

The p confidence interval is 

Lower bound =  

Upper bound =   
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EXAMINE Algorithms 
EXAMINE provides stem-and-leaf plots, histograms, boxplots, normal plots, robust estimates of 
location, tests of normality, and other descriptive statistics. Separate analyses can be obtained for 
subgroups of cases. 

 
Univariate Statistics 

This section discusses the computation of statistics for a variable considered on its own. 
 

Notation 

The following notation is used throughout this chapter unless otherwise noted: 
 

Let be m distinct ordered observations for the sample and be the 
corresponding caseweights. Then 

 
cumulative frequency up to and including 

 
and 

 
total sum of weights. 

 
 

Descriptive Statistics 

The following statistics are available. 
 

Minimum and Maximum 
 

 
Range 

 
range 

 
 

Mean 
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Confidence Interval for the Mean 
 

 
where SE is the standard error. 

 

Median 
 

The median is the 50th percentile, which is calculated by the method requested. The default 
method is HAVERAGE. 

 

Interquartile Range 
 

(IQR) IQR = 75th percentile − 25th percentile, where the 75th and 25th percentiles are calculated 
by the method requested for percentiles. 

 

Variance 
 
 

 
 

  
 
 

Standard Deviation 
 

 
Standard Error 

 

 
 

Skewness and SE of Skewness 
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Kurtosis and SE of Kurtosis 
 

 
 

 
 

  
 
 

 
 

  
 

 
5% Trimmed Mean 

 

 
where   and   satisfy the following conditions 

 

 

and 
 

 

Note:  If k1 + 1 = k2, then T0.9 = Yk2 
 

Percentiles 

There are five methods for computation of percentiles. Let 
 

 
where p is the requested percentile divided by 100, and   and  satisfy 

 

 
Then, 
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Let x be the pth percentile; the five definitions are as follows: 

Waverage (Weighted Average) 

Round (Closest Observation) 
 

Empirical (Empirical Distribution Function) 

Haverage (Weighted Average) 

Aempirical (Empirical Distribution Function with Averaging) 
 

Waverage (Weighted Average) 
 

This is a weighted average at . 
 
 
 

  

 
 

if  
if and  
if and 

 
 

Round (Closest Observation) 

This is the observation closest to . 

If , then 

if  
 

if  
 

If , then 
 

if 
 

if  
 
 

Empirical (Empirical Distribution Function) 

if 
if 
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Haverage (Weighted Average) 

This is a weighted average at . 
 
 
 

  

 
 
 

if  
if and  
if and 

 

Aempirical (Empirical Distribution Function with Averaging) 

                             if 
if 

 

Note: If either the 25th, 50th, or 75th percentiles is request, Tukey Hinges will also be printed. 
 

Tukey Hinges 

Let , , and  be the 25th, 50th, and 75th percentiles. If , where , 
define 

greatest integer +  
 

 

 
 
 

Otherwise 
 

 
and 

 
 
 
 
 

Then for every i, , find   such that 
 

 

and  
 

 
where 

greatest integer + 
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M-Estimation (Robust Location Estimation) 

 
The M-estimator T of location is the solution of 

 

 

where is an odd function and s is a measure of the spread. 

An alternative form of M-estimation is 

 

where 
 

 
After rearranging the above equation, we get 

 

 

Therefore, the algorithm to find M-estimators is defined iteratively by 
 

 

The algorithm stops when either 
 

, where 
 

or the number of iterations exceeds 30. 
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M-Estimators 
 

Four M-estimators (Huber, Hampel, Andrew, and Tukey) are available. Let 
 

 

 

where 
 

median of with caseweights 
 
 

and 
 

                        where   is the median. 
 
 

Huber (k), k > 0 

if  
if 

 
 

The default value of 
 

Hampel (a, b, c), 0 < a ≤ b ≤ c 

 
 

By default, a = 1.7, b = 3.4 and c =  8.5. 
 

Andrew’s Wave (c), c > 0 
 

 

By default, 
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Tukey’s Biweight (c) 
 

 
 

By default, c = 4.685. 
 

Tests of Normality 

The following tests are available. 
 

Shapiro-Wilk Statistic (W) 

Since the W statistic is based on the order statistics of the sample, the caseweights have to be 
restricted to integers. Hence, before W is calculated, all the caseweights are rounded to the closest 
integer and the series is expanded. Let   be the closest integer to ; then 

 
 

 

 

 
 

 
 

 

 
 

The original series is expanded to 
 

 
where 

 

 
Then the W statistic is defined as 

 

 

where 
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if                   

if  

 

 
where is the c.d.f. of a standard normal distribution 

 

 

 

 

Based on the computed W statistic, the significance is calculated by linearly interpolating within 
the range of simulated critical values given in Shapiro and Wilk (1965). 

 
If non-integer weights are specified, the Shapiro-Wilk’s statistic is calculated when the weighted 
sample size lies between 3 and 50. For no weights or integer weights, the statistic is calculated 
when the weighted sample size lies between 3 and 5000. 

 
If , the critical value of 99th percentile, the significance is reported as >0.99. Similarly, 
if , the critical value of first percentile, the significance is reported as <0.01. 

 
Kolmogorov-Smirnov Statistic with Lilliefors’ Significance 

Lilliefors (Lilliefors, 1967) presented a table for testing normality using the Kolmogorov-Smirnov 
statistic when the mean and variance of the population are unknown. This statistic is 

 

 
where 

 

 
where  is the sample cumulative distribution and  is the cumulative normal distribution 
whose mean and variance are estimated from the sample. 
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Dallal and Wilkinson (Dallal and Wilkinson, 1986) corrected the critical values for testing 
normality reported by Lilliefors. With the corrected table they derived an analytic approximation 
to the upper tail probabilities of  for probabilities less than 0.1. The following formula is used 
to estimate the critical value  for probability 0.1. 

 

 

where, if , 
 

 
If W > 100 

 
 

 
The Lilliefors significance p is calculated as follows: If                          .    

If                                                                            . 

If             , linear interpolation between   and  where   is the critical value 
for probability 0.2 is done. 

 
If               is reported as          . 

 
Group Statistics 

Assume that there are   combinations of grouping factors.  For every combination i, 
, let be the sample observations with the corresponding caseweights 
. 

 
Spread versus Level 

If a transformation value, a, is given, the spread(s) and level(l) are defined based on the 
transformed data. Let x be the transformed value of y; for every 

 
if 
otherwise 

 
Then the spread     and the level      are respectively defined as the Interquartile Range and the 
median of with corresponding caseweights . However, if a is not 
specified, the spread and the level are natural logarithms of the Interquartile Range and of the 
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median of the original data. Finally, the slope is the regression coefficient of s on l, which is 
defined as 

 
 

 
 
 

In some situations, the transformations cannot be done. The spread-versus-level plot and Levene 
statistic will not be produced if: 
 a is a negative integer and at least one of the data is 0 
 a is a negative non-integer and at least one of the data is less than or equal to 0 
 a is a positive non-integer and at least one of the data is less than 0 
 a is not specified and the median or the spread is less than or equal to 0 

 

Levene Test of Homogeneity of Variances 

The Levene test statistic is based on the transformed data and is defined by 
 
 

 
 

 

 
 

where 
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The significance of  is calculated from the F distribution with degrees of freedom and 
. 

 
Groups with zero variance are included in the test. 

 

Robust Levene’s Test of Homogeneity of Variances 

With the current version of Levene’s  the followings can be considered as options in order to 
obtain robust Levene’s tests: 
 Levene’s test based on   = |  −  | where is the median of   ’s for group i. 

Median calculation is done by the method requested. The default method is HAVERAGE. 
Once the ’s and hence  ’s are calculated, apply the formula for  , shown in the section 
above, to obtain  by replacing ,  and with  ,   and respectively. 
Two significances of  are given. One is calculated from a F-distribution with degrees of 
freedom k − 1 and W − k. Another is calculated from a F-distribution with degrees of freedom 
k − 1 and v.  The value of v is given by: 

 

 

where 
 

 
in which 

 
 
 
 
 

and 
 

 
 Levene’s test based on                       where  is the 5% trimmed mean of ’s 

for group i. 
Once the ’s and hence ’s are calculated, apply the formula of  to obtain  by 
replacing z  , and with ,   and respectively. 
The significance of  is calculated from a F-distribution with degrees of freedom k − 1 
and W − k. 



 
 

 
Plots 

 
 
 
 

The following plots are available. 
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Normal Probability Plot (NPPLOT) 

For every distinct observation is the rank (the mean of ranks is assigned to ties). The 
normal score   is calculated by 

 

 
where  is the inverse of the standard normal cumulative distribution function. The NPPLOT is 
the plot of . 

 
Detrended Normal Plot 

The detrended normal plot is the scatterplot of , where  is the difference 
between the Z-score and normal score, which is defined by 

 

 
and 

 

 

 
where is the average and s is the standard deviation. 

 

Boxplot  
 
The boundaries of the box are Tukey’s hinges. The length of the box is the interquartile range 
based on Tukey’s hinges.  That is, 

 

 
Define 

 
STEP = 1.5 IQR 

 
A case is an outlier if 

 

or 
 

      

  
 
A case is an extreme if 
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or 
   

  
 

References 
 

Brown, M. B., and A. B. Forsythe. 1974b. Robust tests for the equality of variances. Journal of 
the American Statistical Association, 69, 364–367. 

 
Dallal, G. E., and L. Wilkinson. 1986. An analytic approximation to the distribution of Lilliefor’s 
test statistic for normality. The American Statistician, 40(4): 294–296 (Correction: 41: 248), – . 

 
Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1987. Some implementations for the boxplot. In: 
Computer Science and Statistics Proceedings of the 19th Symposium on the Interface, R. M. 
Heiberger, and M. Martin, eds. Alexandria, Virginia: AmericanStatistical Association. 

 
Glaser, R. E. 1983. Levene’s Robust Test of Homogeneity of Variances. In: Encyclopedia of 
Statistical Sciences 4, New York:  Wiley, p608–610. 

 
Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1983. Understanding robust and exploratory data 
analysis.  New York:  John Wiley and Sons. 

 
Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1985. Exploring data tables, trends, and shapes. 
New York:  John Wiley and Sons. 

 
Levene, H. 1960.  Robust tests for equality of variances.  In:  Contributions to Probability 
and Statistics: Essays in Honor of Harold Hotelling, I. Olkin, ed. Palo Alto, Calif.: Stanford 
University Press, 278–292. 

 
Lilliefors, H. W. 1967. On the Kolmogorov-Smirnov tests for normality with mean and variance 
unknown. Journal of the American Statistical Association, 62, 399–402. 

 
Loh, W. Y. 1987. Some Modifications of Levene’s Test of Variance Homogeneity. Journal of the 
Statistical Computation and Simulation, 28, 213–226. 

 
Shapiro, S. S., and M. B. Wilk. 1965. An analysis of variance test for normality. Biometrika, 
52:3, 591–599. 

 
Tukey, J. W. 1977. Exploratory data analysis. Reading, MA:  Addison-Wesley. 

 
Velleman, P. F., and D. C. Hoaglin. 1981. Applications, basics, and computing of exploratory 
data analysis.  Boston, Mass.:  Duxbury Press. 



 

 

EXSMOOTH Algorithms 
EXSMOOTH produces one period ahead forecasts for different models. 

 

Notation 
The following notation is used throughout this section unless otherwise stated: 

Observed series,  

                              Forecast of one period ahead from time t 

P Number of periods 
K Number of complete cycles   

tth residual   
                              Initial value for series 

Initial value for trend 

Initial values for seasonal factors 

Mean for the lth cycle, 

 

Note the following points: 
    are obtained from the SEASON procedure with MA = EQUAL if p is even; 

otherwise MA = CENTERED is used for both multiplicative and additive models. 
 The index for the fitted series starts with zero. 
 The value saved in the FIT variable for the tth case is . 

 

Models 
The following models are available. 

 

No Trend, No Seasonality Model 
 

 
Initial value 

 

 
 

then 
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No Trend, Additive Seasonality Model 

 

 
Initial value 

 
 

 
 

 
 

then 
 

 
 

 

 

 
 
No Trend, Multiplicative Seasonality Model 

 

 
Initial value 

 
 

 
 

 
 

then 
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Linear Trend, No Seasonality Model 
 

 
Initial values 

 

 

then 
 

 
 

 

 

 
 
Linear Trend, Additive Seasonality Model 

 

 
Initial values 

 

 

 

then 
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Linear Trend, Multiplicative Seasonality Model 
 

 
Initial values 

 

 

 

then 
 

 
 
 
 
 
 
 

Exponential Trend, No Season Model 
 

 
Initial values 

 

 

 

then 
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Exponential Trend, Additive Seasonal Model 
 

 
Initial values 

 

 

 

then 
 

 

 

 

 
 

Exponential Trend, Multiplicative Seasonality Model 
 

 
Initial values 

 

 

 

then 
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Damped Trend, No Seasonality Model 
 

 
Initial values 

 

 

 

then 
 

 

 

 
 

Damped Trend, Additive Seasonality Model 
 

 
Initial values 

 

 

 

then 
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Damped Trend, Multiplicative Seasonality Model 
 

 
Initial values 

 

 

 
then 
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FACTOR Algorithms 
FACTOR performs factor analysis based either on correlations or covariances and using one of the 
seven extraction methods. 

 
Extraction of Initial Factors 

The following extraction methods are available. 
 
Principal Components Extraction (PC) 

The matrix of factor loadings based on factor m is 
 

 
where 

 

 

The communality of variable i is given by 
 
 

 
 

  
 

Analyzing a Correlation Matrix 
 

are the eigenvalues and are the corresponding eigenvectors of R, where 
R is the correlation matrix. 

Analyzing a Covariance Matrix 

are the eigenvalues and are the corresponding eigenvectors of   , where 
is the covariance matrix. 

 

The rescaled loadings matrix is                           . 
 

The rescaled communality of variable i is              . 
 
Principal Axis Factoring 

Analyzing a Correlation Matrix 
 

An iterative solution for communalities and factor loadings is sought. At iteration i, the 
communalities from the preceding iteration are placed on the diagonal of R, and the resulting R 
is denoted by . The eigenanalysis is performed on  and the new communality of variable j 
is estimated by 
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The factor loadings are obtained by 
 

 
Iterations continue until the maximum number (default 25) is reached or until the maximum 
change in the communality estimates is less than the convergence criterion (default 0.001). 

 
Analyzing a Covariance Matrix 

 
This analysis is the same as analyzing a correlation matrix, except is used instead of the 
correlation matrix R. Convergence is dependent on the maximum change of rescaled communality 
estimates. 

 
At iteration  , the rescaled loadings  matrix is . The rescaled 
communality of variable i is                . 

 
Maximum Likelihood (ML) 

The maximum likelihood solutions of and  are obtained by minimizing 
 

 

with respect to and , where p is the number of variables, is the factor loading matrix, and 
2 is the diagonal matrix of unique variances. 

The minimization of F is performed by way of a two-step algorithm. First, the conditional 
minimum of F for a given is found.  This gives the function , which  is minimized 
numerically using the Newton-Raphson procedure. Let   be the column vector containing the 
logarithm of the diagonal elements of at the sth iteration; then 

 

 
where   is the solution to the system of linear equations 

 

 
and where 

 

 
and   is the column vector containing . The starting point   is 
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                                        for ML and GLS 
for ULS 

 

where m is the number of factors and  is the ith diagonal element of  . 
 

The values of , , and can be expressed in terms of the eigenvalues 
 

 
and corresponding eigenvectors 

 
1 2 p 

of matrix .  That is, 
 

 

 

 

where 
 

if 
if  

 
The approximate second-order derivatives 

 

 

are used in the initial step and when the matrix of the exact second-order derivatives is not positive 
definite or when all elements of the vector are greater than 0.1. If (Heywood 
variables), the diagonal element is replaced by 1 and the rest of the elements of that column and 
row are set to 0.  If the value of   is not decreased by step  , the step is halved and halved  
again until the value of  decreases or 25 halvings fail to produce a decrease. (In this case, the 
computations are terminated.) Stepping continues until the largest absolute value of the elements 
of is less than the criterion value (default 0.001) or until the maximum number of iterations 
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(default 25) is reached.  Using the converged value of  (denoted by ), the eigenanalysis is 
performed on the matrix . The factor loadings are computed as 

 

 

where  

diag 
 

 

   
 
Unweighted and Generalized Least Squares (ULS, GLS) 

The same basic algorithm is used in ULS and GLS methods as in maximum likelihood, except that 
 

 
 

for the ULS method, the eigenanalysis is performed on the matrix , where 
are the eigenvalues. In terms of the derivatives, for ULS 

 

 

 
and 

 

 

For GLS 
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and 
 

 
Also, the factor loadings of the ULS method are obtained by 

 

 
 

The chi-square statistics for m factors for the ML and GLS methods is given by 
 

 
 

with 
 
Alpha (Harman, 1976) 

Iteration for Communalities 

At each iteration i: 

E  The eigenvalues and eigenvectors of 

are computed. 
 

E   The new communalities are 
 

 
The initial values of the communalities, , are 

 
 

 

   
otherwise 

and all      

 
 

where   is the ith diagonal entry of   . 
 

If  and all  are equal to one, the procedure is terminated. If for some i, , 
the procedure is terminated. 
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E   Iteration stops if any of the following are true: 

EPS 
 

MAX 

for any 
 

Final Communalities and Factor Pattern Matrix 
 

The communalities are the values when iteration stops, unless the last termination criterion is true, 
in which case the procedure terminates. The factor pattern matrix is 

 

 
where f is the final iteration. 

 
Image (Kaiser, 1963) 

Factor Analysis of a Correlation Matrix 
 

E   Eigenvalues and eigenvectors of are found.  
      diag 
       th diagonal element of 

E   The factor pattern matrix is 
 

   
where  and  correspond to the m eigenvalues greater than 1. 

If , the procedure is terminated. 

E   The communalities are 
 
 

 
 

 
 

 

 

E   The image covariance matrix is 
 

 
E   The anti-image covariance matrix is 

 

 

Factor Analysis of a Covariance Matrix 
 

We are using the covariance matrix instead of the correlation matrix .  The calculation is 
similar to the correlation matrix case. 
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The rescaled factor pattern matrix is                           . The rescaled communality of 
variable i is             . 

 
Factor Rotations 

The following rotation methods are available. 
 

Orthogonal Rotations (Harman, 1976) 

Rotations are done cyclically on pairs of factors until the maximum number of iterations is 
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations, 
differing only in computations of the tangent values of the rotation angles. 

 
E   The factor pattern matrix is normalized by the square root of communalities: 

 

 

where 
 

                             is the factor pattern matrix 
 

diag is the diagonal matrix of communalities 
 

E   The transformation matrix T is initialized to 
 

E   At each iteration i 
 

(1) The convergence criterion is 
 

 
 

where the initial value of   is the original factor pattern matrix. For subsequent iterations, the 
initial value is the final value of   when all factor pairs have been rotated. 

 
(2) For all pairs of factors where , the following are computed: 

 
(a) Angle of rotation 

 

 

where 
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If , no rotation is done on the pair of factors. 
 

(b) New rotated factors 
 

 

where   are the last values for factor j calculated in this iteration. 

(c) Accrued rotation transformation matrix 
 

 

where   and are the last calculated values of the jth and kth columns of T. 
 

(d) Iteration is terminated when 
 

 
or the maximum number of iterations is reached. 

 
(e) Final rotated factor pattern matrix 

 

 
where 
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is the value of the last iteration. 
 

(f) Reflect factors with negative sums 

If 

 
 

 

 

 
 

then 
 

 

(g) Rearrange the rotated factors such that 
 
 

 
 

    
 

 

(h) The communalities are 
 

 

Oblique Rotations 

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user 
can choose the parameter   .  The default value is . 

 
(a) The factor pattern matrix is normalized by the square root of the communalities 

 

 
where 

 
 

 

 

 
 

If no Kaiser is specified, this normalization is not done. 
 

(b) Initializations 



 

FACTOR Algorithms 

 
 

 
 

The factor correlation matrix C is initialized to . The following are also computed: 
 

if Kaiser 
     if no Kaiser 
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(c) At each iteration, all possible factor pairs are rotated. For a pair of factors  and  , 
the following are computed: 

 

 

 

 
 

 

 

 
 

 
 

 

 

 
 

 
 

 
 

  
 

 
 

 
 

  
 

 
 

  

 

 

 
 

    
 

 

 

 

► A root, a, of the equation 
 

 
► The rotated pair of factors is 

 
 
 
 
These replace the previous factor values. 

► New values are computed for 
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All values designated as  replaces V and are used in subsequent calculations. 
 

► The new factor correlations with factor p are 
 

 

 

 
► After all factor pairs have been rotated, iteration is terminated if 

MAX iterations have been done or 
   

 
where 

 

 
 

  

  
 

Otherwise, the factor pairs are rotated again. 
 

► The final rotated factor pattern matrix is 
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where   is the value in the final iteration. 

► The factor structure matrix is 
 

 
where  is the factor correlation matrix in the final iteration. 

 

Promax Rotation 

(Hendrickson and White, 1964) proposed a computationally fast rotation. The speed is achieved 
by first rotating to an orthogonal varimax solution and then relaxing the orthogonality of the 
factors to better fit simple structure. 

► Varimax rotation is used to get an orthogonal rotated matrix               . 

► The matrix is calculated, where 
 

 

Here, k (k > 1) is the power of promax rotation. 

► The matrix L is calculated. 
 

► The matrix L is normalized by column to a transformation matrix 
 

 
where                       is the diagonal matrix that normalizes the columns of L. 

At this stage, the rotated factors are 

. 
 

Because 
 

var , 
 

and the diagonal elements do not equal 1, we must modify the rotated factor to 
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where 
 

 

The rotated factor pattern is 
 

 

The correlation matrix of the factors is 
 

 
The factor structure matrix is 

 

 
Factor Score Coefficients (Harman, 1976) 

Creates one new variable for each factor in the final solution. The following alternative methods 
for calculating the factor scores are available. 

 

Regression 
 

 

 

 
 
PC without rotation 
PC with rotation 
otherwise 

 

where 
 

 

 
 

factor structure matrix   
for orthogonal rotations 

 

For PC without rotation if any , factor score coefficients are not computed. For PC 
with rotation, if the determinant of  is less than , the coefficients are not computed. 
Otherwise, if R is singular, factor score coefficients are not computed. 

 

Bartlett 
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where 
 

 
Anderson Rubin 

 

where the symmetric square root of the parenthetical term is taken. 
 
Optional Statistics (Dziubin and Shirkey, 1974) 

► The anti-image covariance matrix is given by 
 
 

 

 
 

► The chi-square value for Bartlett’s test of sphericity is 
 

with degrees of freedom. 

► The Kaiser-Mayer-Olkin measure of sample adequacy is 
 

 

where   is the anti-image correlation coefficient. 
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FIT Algorithms 
FIT displays a variety of descriptive statistics computed from the residual series as an aid in 
evaluating the goodness of fit of one or more models. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

DFH Hypothesis degrees of freedom 
DFE Error degrees of freedom 

Residual (error) series 

Observed series 

n Number of cases 
 

Statistics Computed in FIT 
Mean Error (ME) 

 
 

 
 

 
 

Mean Percent Error (MPE) 
 

 

Mean Absolute Error (MAE) 
 

 
 

Mean Absolute Percent Error (MAPE) 
 

 
 

Sum of Square Error (SSE) 
 
 

 
 

 
 

Mean Square Error (MSE) 
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              if none of and is specified 
if is specified or is specified; 
then  =  − . 

Root Mean Square Error (RMS) 

Durbin-Watson Statistics (DW) 
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Introduction

When ratings are made on a categorical scale, we are often interested in assessing the interrater agreement
to determine the reliability among the various raters. It is obvious that a higher agreement would give us
more confidence in the ratings reflecting the true circumstance [Green, 1997]. [Fleiss, 1971] generalized the
unweighted kappa statistic to measure the agreement among any constant number of raters while assuming

• There is no connection between raters;

• The number of raters is a constant;

• Each subject is rated by the same group containing only a single rater; and

• No weights can be assigned to the various disagreements.

In this document, we describe the estimation of κ, or the Fleiss’ multiple-rater statistic, and discuss how the
algorithm will handle the data containing multiple ratings in IBM SPSS Statistics.

General Notations

The following notations defined in this section will be used for the subsequent sections.

N : The number of cases being rated in the data set. Note that N is a positive integer.

i: i = 1, 2, . . . , N denoting the subject index. i is an integer.

fi: The optional frequency weight for the i-th case. A noninteger fi is rounded to the nearest integer. If
either fi ≤ 0.5 or fi is missing, we set fi = 0, and the corresponding case is not used.

W : The total number of effective subjects being rated, and W =
∑N

i fi. If there are no frequency weights
in presence, W = N .

k: The number of categories into which assignments are made. Note that k is a positive integer.

j: j = 1, 2, . . . , k denoting the category index. j is an integer.

nij : Observed count of raters who assigned the i-th subject to the j-th category. Note that nij is a
nonnegative integer.

n: The number of ratings per effective subject. Note that n =
∑

j nij , which is a constant for all effective
subjects.

r: r = 1, 2, . . . , n denoting the rater index. Note that r is a positive integer.

air: The rating of case i assigned by rater r, which may be either strings or numerical values. For numerical
rating values, nonintegers and negative values are also allowed.

Implementation Notes

The input data structure, illustrated by Table 1, contains subjects as rows and rating variables as columns.
Before estimating the desired κ and its relevant statistics, we have to compute the quantities summarized
by Table 2. The implementation notes are described as follows:

• Delete the entire row if it contains any missing values.

• For numerical rating values, truncate any non-integers if existing.

• Identify all unique air’s specified by the rating variables rater 1, rater 2, . . . , rater n in the rest of the
data set.

• Sort the unique items in ascending order. The ordered items are the categories labeled in Table 2,
and also the rating category names listed in Table 4.
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Rating Data

case rater 1 rater 2 . . . rater n

1 a11 a12 . . . a1n

2 a21 a22 . . . a2n

...
...

...
...

...
N aN1 aN2 . . . aNn

Table 1: Input Data with Rating Variables

Category Counting Data

case category 1 category 2 . . . category k

1 n11 n12 . . . n1k

2 n21 n22 . . . n2k

...
...

...
...

...
N nN1 nN2 . . . nNk

Table 2: Input Data with Category Countings

• Compute nij =
∑n

r=1 Icategory j(air), where i = 1, 2, . . . , N , j = 1, 2, . . . , k, and I denotes the indicator
function. Note that nij is the frequency of assigning subject i to category j. Once all nij ’s are
determined, the subsequent procedure may be followed to estimate κ.

Fleiss’ Multiple Rater Kappa Statistic

To implement the following methods, we require that

• At least two rating variables must be specified by users. Otherwise, we issue a warning message that
“At least two rating variables must be specified. This procedure is not executed.”, and do not estimate
κ or any other relevant statistics.

• After the rows with missing values are removed, the remaining data set should contain at least two
effective subjects, or W ≥ 2. Otherwise, we issue a warning message that “There are too few complete
subjects. This procedure is not executed,” and do not estimate κ or any other relevant statistics.

• There should be at least two different rating categories, or k ≥ 2. Otherwise, we issue a warning
message that “All ratings are the same. This procedure is not executed,” and do not estimate κ or
any other relevant statistics.

Measure Overall Agreement

The extent of agreement among the n raters for the i-th subject is indexed by the proportion of agreeing
pairs out of all of the possible pairs:

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1) =
1

n(n− 1)

 k∑
j=1

n2
ij

− n
 . (1)

The overall extent of agreement, measured by the mean of Pi, is

P̄o =
1

W

N∑
i=1

fiPi =
1

Wn(n− 1)

 N∑
i=1

k∑
j=1

fin
2
ij

−Wn

 . (2)

Besides, we define the proportion of all assignments to the j-th category to be

pj =
1

Wn

N∑
i=1

finij , (3)

and note that
∑

j pj = 1. If the assignments were made totally at random, the expected proportion of
agreement would be

P̄e =

k∑
j=1

p2
j . (4)



FLEISS MULTIRATER KAPPA Algorithms

Thus, the normalized measure of overall agreement, corrected for the amount expected by chance, is

κ =
P̄o − P̄e

1− P̄e
=

∑N
i=1

∑k
j=1 fin

2
ij −Wn

[
1 + (n− 1)

∑k
j=1 p

2
j

]
Wn(n− 1)(1−

∑k
j=1 p

2
j )

, (5)

where all the quantities are aforementioned. When the sample size is large, to estimate the asymptotic
variance of κ under the null hypothesis of no agreement beyond chance, we refer to the discussions in
[Fleiss et al., 1979], which took proper account of the variation in both numerators and denominators of κ.
Hence,

V(κ) =
2

Wn(n− 1)

[∑k
j pj(1− pj)

]2
−
∑k

j pj(1− pj)(1− 2pj)[∑k
j pj(1− pj)

]2 , (6)

and the the asymptotic standard error is
√
V(κ). By the central limit theorem, κ/

√
V(κ) ∼ Normal(0, 1)

when the null hypothesis is true. So, the two-sided significance is computed by

2×
[
1− CDFNORM

(
|κ|/

√
V(κ)

)]
, (7)

and the α% asymptotic confidence interval bounds are determined by

κ± IDF.NORMAL(1− α/200, 0, 1)×
√
V(κ) , (8)

where α ∈ (0, 100) is specified by users. We set α = 95 by default.

Measure Agreement on a Particular Category

[Fleiss, 1971] also discussed the extent of agreement in assigning a subject to a particular category. Note
that the conditional probability that the second assignment is to the category j, given that the first was to
the category j is

P̄ (j)
o =

∑N
i=1 finij(nij − 1)∑N
i=1 finij(n− 1)

=

∑N
i=1 fin

2
ij −Wnpj

Wn(n− 1)pj
, (9)

where pj is defined by Equation (3). Thus, a measure of the extent of agreement beyond chance on the
category j is

κj =
P̄

(j)
o − pj
1− pj

=

∑N
i=1 fin

2
ij −Wnpj [1 + (n− 1)pj ]

Wn(n− 1)pj(1− pj)
. (10)

When the sample size is large, the variance of κj under the null hypothesis of no agreement beyond chance
is

V(κj) =
2

Wn(n− 1)
, (11)

and the the asymptotic standard error is
√
V(κj). By the central limit theorem, κj/

√
V(κj) ∼ Normal(0, 1)

when the null hypothesis is true. So, the two-sided significance is computed by

2×
[
1− CDFNORM

(
|κj |/

√
V(κj)

)]
, (12)

and the α% asymptotic confidence interval bounds are determined by

κj ± IDF.NORMAL(1− α/200, 0, 1)×
√
V(κj) , (13)

where α ∈ (0, 100) is specified by users. We set α = 95 by default.
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Overall Agreementa,b

Asymptotic 95.0% Asymptotic CI

Kappa Standard Error z Sig. Lower Bound Upper Bound

Overall Agreement -.085 .031 -2.788 .005 -.145 -.025

a. Sample data contain 30 effective subjects and 5 raters.

b. Rating category values are case sensitive.

Table 3: Measuring Overall Agreement

Agreement on Individual Categoriesa,b

Conditional Asymptotic 95.0% Asymptotic CI

Rating Category Probability Kappa Standard Error z Sig. Lower Bound Upper Bound

Category 1 .511 -.163 .058 -2.825 .005 -.276 -.050

Category 2 .083 -.042 .058 -.722 .470 -.155 .071

. . . . . . . . . . . . . . . . . . . . . . . .

Category k .000 -.042 .058 -1.506 .132 -.200 .026

a. Sample data contain 30 effective subjects and 5 raters.

b. Rating category values are case sensitive.

Table 4: Agreement on a Parituclar Category

Output Design

The output design is illustrated by the following tables:
Table 3 is required, which summarizes the overall agreement information. Kappa is compute by Equation

(5). Asymptotic Standard Error =
√
V(κ) and Z = κ/

√
V(κ), where V(κ) is estimated by Equation

(6). Significance is computed by Equation (7). Asymptotic confidence interval (CI) Bounds and α% are
determined by Equation (8). Footnote a is required and appended to count the number of subjects and
raters. The number of subjects is the total effective subjects W in the data set for analysis. The number of
raters is the effective number of rating variables specified by users for the procedure. For the string variables,
Footnote b is required, which is either “Rating category values are case sensitive,” or “Rating category values
are not case sensitive,” depending on the user-setting.

Table 4 is optional, which is requested by users and summarizes the agreement information on the agree-
ment in assigning a subject to a particular category. Each row of the table represents one category. Condi-
tional Probability is computed by Equation (9). Kappa is compute by Equation (10). Asymptotic Standard Error =√

V(κj) and Z = κj/
√
V(κj), where V(κj) is estimated by Equation (11). Significance is computed by Equa-

tion (12). Asymptotic CI Bounds and α% are determined by Equation (13). Footnote a is required and
appended to count the number of subjects and raters, which is the same as that in Table 3. For the string
variables, Footnote b is required, which is either “Rating category values are case sensitive,” or “Rating
category values are not case sensitive,” depending on the user-setting.
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If the absolute value of any observation is greater than 1013, no calculations are done. For sorting 
of the observations, see Sorting and Searching. For information on percentiles for grouped data, 
see Grouped Percentiles. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 44-1 
Notation 
Notation Description 

Value of the variable for case k 

Weight for case k 

NV Number of distinct values the variable assumes 
N Number of cases 
W Sum of weights of the cases 

 

Basic Statistics 
The values are sorted into ascending order and the following statistics are calculated. 

 
Sum of Weights of Cases Having Each Value of X 

 

 

where 
 

  

 

if  
otherwise 

where Xj is the jth largest distinct value of X. 
 
Relative Frequency (Percentage) for each Value of X 

 

where 
 

                 (sum over all categories including those declared as missing values) 
 

Adjusted Frequency (Percentage) 
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where 

(sum over nonmissing categories) 

and 
 

 

 
 
 

if  has been declared missing 
otherwise 

 

For all Xj declared missing, an adjusted frequency is not printed. 

 
Cumulative Frequency (Percentage) 

 

 

Minimum 
 

 
Maximum 

 

 
Mode  

 
Value of Xj which has the largest observed frequency. If several are tied, the smallest value 
is selected. 

 
Range 

 

Maximum – Minimum 
 

The pth percentile 

Find the first score interval (x2) containing more than tp cases. 
 

if 
th percentile if 

 

where 

 
1 



 

 

 
 
 
 
 

and are the values corresponding to and respectively 
is the cumulative frequency up to 
is the cumulative percent up to 

Note:  when p=50, this is the median. 
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Mean 
 

 

 
 
 
Variance 

Moments about the mean are calculated as: 
 

 
 

  
 

Standard Deviation 
 

 
Standard Error of the Mean 

 

Skewness (Bliss, 1967, p.  144) 
 

The skewness if computed only if W≥3 and Variance>0. 

 
Kurtosis 

 

The kurtosis is computed only if W≥4 and Variance>0. 
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algorithms 

Generalized linear mixed models extend the linear model so that: 
 The target is linearly related to the factors and covariates via a specified link function. 
 The target can have a non-normal distribution. 
 The observations can be correlated. 

 
Generalized linear mixed models cover a wide variety of models, from simple linear regression to 
complex multilevel models for non-normal longitudinal data. 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

n Number of complete cases in the dataset. It is an integer and n ≥ 1. 
p Number of parameters (including the constant, if it exists) in the model. It is an integer 

and p ≥ 1. 
px Number of non-redundant columns in the design matrix of fixed effects. It is an integer 

and px ≥ 1. 
K Number of random effects. 
y n× 1 target vector.  The rows are records. 
r n× 1 events vector for the binomial distribution representing the number of “successes” 

within a number of trials. All elements are non-negative integers. 
m n× 1 trials vector for the binomial distribution. All elements are positive integers and mi 

≥ ri, i=1,...,n. 
μ n× 1 expected target value vector. 
η n× 1 linear predictor vector. 
X n× p design matrix. The rows represent the records and the columns represent the 

parameters. The ith row is xT   where the superscript T means transpose 
of a matrix or vector, with if the model has an intercept. 

Z n× r design matrix of random effects. 
O n× 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be 

a categorical field. 
β p× 1 parameter vector. The first element is the intercept, if there is one. 
γ r× 1 random effect vector. 
ω n× 1 scale weight vector.  If an element is less than or equal to 0 or  missing, the 

corresponding record is not used. 
f n× 1 frequency weight vector. Non-integer elements are treated by rounding the value 

to the nearest integer. For values less than 0.5 or missing, the corresponding records 
are not used. 

N 
Effective sample size, . If frequency weights are not used, N = n. 

 
θ covariance parameters of the kth random effect 

 
covariance parameters of the random effects, θ θT θT 
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θ T T 

 

 
 

θ covariance parameters of the residuals 
 

θ θT θT θT θT  θT 

VY Covariance matrix of y, conditional on the random effects 
 

Model 
 
 
 
The form of a generalized linear mixed model for the target y with the random effects γ is 
 

 
 
where η is the linear predictor; g(.) is the monotonic differentiable link function; γ is a (r× 1) 
vector of random effects which are assumed to be normally distributed with mean 0 and variance 
matrix G, X is a (n× p) design matrix for the fixed effects; Z is a (n× r) design matrix for the 
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the 
conditional target probability distribution. Note that if there are no random effects, the model 
reduces to a generalized linear model (GZLM). 

 
The probability distributions without random effects offered (except multinomial) are listed 
in Table 45-1. The link functions offered are listed in Table 45-3. Different combinations of 
probability distribution and link function can result in different models. 

 
See “Nominal multinomial distribution” for more information on the nominal multinomial 
distribution. 

 
See “Ordinal multinomial distribution” for more information on the ordinal multinomial 
distribution. 

 
Note that the available distributions depend on the measurement level of the target: 
 A continuous target can have any distribution except multinomial. The binomial 

distribution is allowed because the target could be an “events” field. The default 
distribution for a continuous target is the normal distribution. 

 A nominal target can have the multinomial or binomial distribution. The default is 
multinomial. 

 An ordinal target can have the multinomial or binomial distribution. The default is 
multinomial. 

Table 45-1 
Distribution, range and variance of the response, variance function, and its first derivative 

 

Distribution Range of y V(μ) Var(y) V’(μ) 
Normal (−∞,∞) 1 

 

 0 

Inverse Gaussian (0,∞) μ3 μ3 3μ2 
Gamma (0,∞) μ2 μ2 2μ 
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ 
Poisson 0(1)∞ μ μ 1 
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ 
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Notes 

 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z. 
 For the binomial distribution, the binomial trial variable m is considered as a part of the 

weight variable ω. 
 If a scale weight variable ω is presented,  is replaced by /ω. 
 For the negative binomial distribution, the ancillary parameter (k) is estimated by the 

maximum likelihood (ML) method. When k = 0, the negative binomial distribution reduces to 
the Poisson distribution. When k = 1, the negative binomial is the geometric distribution. 

 
The full log-likelihood function (ℓ), which will be used as the objective function for parameter 
estimation, is listed for each distribution in the following table. 

Table 45-2 
The log-likelihood function for probability distribution 

 

Distribution ℓ 
Normal  

   
 

 
 

Inverse Gaussian  

   
 

 
 

Gamma  
 

   
 

  
 

Negative 
binomial 

 
 

   
      

 
Poisson 

 
 

   
    

 
Binomial(m) 

 
 

     
where  

 
The following tables list the form, inverse form, range of , and first and second derivatives 
for each link function. 

Table 45-3 
Link function name, form, inverse of link function, and range of the predicted mean 

 

Link function η=g(μ) Inverse μ=g−1(η) Range of   
Identity μ η  

   

Log ln(μ) exp(η) 
 

   

Logit 
 

  

 

 
 

 

    
 

Probit Φ   , where 

Φ  

Φ(η) 
 

    
 
 

Complementary 
log-log 

ln(−(ln(1−μ)) 1−exp(−exp(η)) 
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Link function η=g(μ) Inverse μ=g−1(η) Range of   

Power(α)  
 

 
 

if  is odd integer  
    otherwise 

Log-complement ln(1−μ) 1−exp(η) 
 

   

Negative log-log −ln(−ln(μ)) exp(−exp(−η)) 
 

    

 
Note: In the power link function, if |α| < 2.2e-16, α is treated as 0. 

Table 45-4 
The first and second derivatives of link function 

 

Link function First derivative  Second derivative  
Identity 1 0 
Log 

 

 
 

 
 

Logit 
 

 

 

 

   

Probit Φ ,  where 
 

 
  

Φ  

Complementary log-log    
 
 

 

    
 

  

Power(α) 
  

 
 

Log-complement 
 

 
 

 
 

Negative log-log 
 

 
 

     

 
When the canonical parameter is equal to the linear predictor, , then the link function is 
called the canonical link function. Although the canonical links lead to desirable statistical 
properties of the model, particularly in small samples, there is in general no a priori reason why 
the systematic effects in a model should be additive on the scale given by that link. The canonical 
link functions for probability distributions are given in the following table. 

Table 45-5 
Canonical and default link functions for probability distributions 

 

Distribution Canonical link function 
Normal Identity 
Inverse Gaussian Power(−2) 
Gamma Power(−1) 
Negative binomial Negative binomial 
Poisson Log 
Binomial Logit 

 
The variance of y, conditional on the random effects, is 

 
y γ A RA 
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The matrix A is a diagonal matrix and contains the variance function of the model, which 
is the function of the mean μ, divided by the corresponding scale weight variable; that is, 
Α     diag .  The variance functions, V(μ), are different for different 
distributions. The matrix R is the variance matrix for repeated measures. 

 
Generalized linear mixed models allow correlation and/or heterogeneity from random effects 
(G-side) and/or heterogeneity from residual effects (R-side). resulting in 4 types of models: 

 
1. If a GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0 and R I  where I 

is the identity matrix and  is the scale parameter. For continuous distributions (normal, inverse 
Gauss and gamma),  is an unknown parameter and is estimated jointly with the regression 
parameters by the maximum likelihood (ML) method. For discrete distributions (negative 
binomial, Poisson, binomial and multinomial),  is estimated by Pearson chi-square as follows: 

 

 
 

where for the restricted maximum pseudo-likelihood (REPL) method. 
 

 
 
3. If a model only has R-side residual effects, then G = 0 and the R matrix is user-specified. All 

covariance parameters in R are estimated using the REPL method, defined in “Estimation”. 
 

4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly 
estimated using the REPL method. 

 
For the negative binomial distribution, there is the ancillary parameter k, which is first estimated 
by the ML method, ignoring random and residual effects, then fixed to that estimate while other 
regression and covariance parameters are estimated. 

 
 
Fixed effects transformation 

 
To improve numerical stability, the X matrix is transformed according to the following rules. 

 
The ith row of X is x T, i=1,...,n with if the model has an intercept. 
Suppose x   is the transformation of x  then the jth entry of x   is defined as 

 
 

x 
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where cj and sj are centering and scaling values for , respectively, for j=1,...,p and choices 
of cj and sj , are listed as follows: 
a. For a non-constant continuous predictor or a derived predictor which includes a continuous 

predictor, if the model has an intercept, and       where   is the sample 

mean of the jth predictor, and and where  is 

the sample standard deviation of the jth predictor and                                 Note 

that the intercept column is not transformed.  If the model has no intercept, and 

b. For a constant predictor         , and , that is, scale it to 1. 
c. For a dummy predictor that is derived from a factor or a factor interaction, and ; 

that is, leave it unchanged. 
 

Estimation 

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood 
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow 
and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on 
the similar principle that the GLMMs are approximated by an LMM so that well-established 
estimation methods for LMMs can be applied. More specifically, the mean target function; that is, 
the inverse link function is approximated by a linear Taylor series expansion around the current 
estimates of the fixed-effect regression coefficients and different solutions of random effects (0 
is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear 
approximation of the mean target leads to a linear mixed model for a transformation of the original 
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring 
technique and the estimates then are used to update the linear approximation. The algorithm 
iterates between two steps until convergence. In general, the method is a doubly iterative process. 
The outer iterations are to update the transformed target for an LMM and the inner iterations are to 
estimate parameters of the LMM. 

 
It is well known that parameter estimation for an LMM can be based on maximum likelihood 
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation 
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted 
maximum pseudo-likelihood (REPL). 

 
 
Linear mixed pseudo model 

 
Following Wolfinger and O’Connell (1993), a first-order Taylor series of μ in (1) about  and 
yields 

 

μ                   X      Z      O X Z γ 
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where Z O   is a diagonal matrix with elements consisting of evaluations of 

the 1st derivative of . Since Z O , this equation can be 
rearranged as 

 
μ      Z       Zγ 

 
If we define a pseudo target variable as 

 
v y      Z                y                   O 

 
then the conditional expectation and variance of v, based on E  y γ  and y γ A RA , 
are 

 
E v γ μ      Z  

v γ  A  RA 

where A diag 
 

Furthermore, we also assume v  is normally distributed. Then we consider the model of v 
 

v Zγ ε 
 

as a weighted linear mixed model with fixed effects β, random effects γ 0  G , error terms 
ε 0 A RA , because ε v γ    and diagonal weight matrix 

     A .  Note that the new target v (with O if an offset variable exists) is a Taylor 
series approximation of the linked target y . The estimation method of unknown parameters 
of β and θ, which contains all unknowns in G and R, for traditional linear mixed models can  
be applied to this linear mixed pseudo model. 

 
The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed 
model for v are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 

where 
V  θ ZG  θ  Z R  θ r  θ v X  XTV θ X XTV θ v v N 
denotes the effective sample size, and px denotes the rank of the design matrix of X or the number 
of non-redundant parameters in X. Note that the regression parameters in β are profiled from the 
above equations because the estimation of β can be obtained analytically.  The covariance 
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parameters in θ are estimated by Newton-Raphson or Fisher scoring algorithm. Following the 
tradition in linear mixed models, the objection functions of minimization for estimating θ would 
be θ v  or θ  v   Upon obtaining   , estimates for β and γ are computed as 

 

          XTV X XTV v 

ZTV 

where  is the best linear unbiased estimator (BLUE) of β and  is the estimated best linear 
unbiased predictor (BLUP) of γ in the linear mixed pseudo model.  With these statistics, v and 

are recomputed based on and the objective function is minimized again to obtain updated 
.  Iteration between θ v   and the above equation yields the PL estimation procedure and 

between θ  ν  and the above equation the REPL procedure. 
 

There are two choices for  (the current estimates of γ): 

1.    for PQL; and 

2.   0 for MQL. 
 

On the other hand,  is always used as the current estimate of the fixed effects. Based on the two 
objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4 
estimation methods can be implemented for GLMMs: 

1. PL-PQL: pseudo-likelihood with = ; 

2. PL-MQL: pseudo-likelihood with =  ; 

3. REPL-PQL: residual pseudo-likelihood with = ; 

4. REPL-MQL: residual pseudo-likelihood with =  . 
 

We use method 3, REPL-PQL. 
 
Iterative process 

The doubly iterative process for the estimation of θ is as follows: 

1. Obtain an initial estimate of 𝜇𝜇,𝜇𝜇(0). Specifically, 𝜇𝜇𝑖𝑖0 = (𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 + 0.5)/(𝑚𝑚𝑖𝑖 + 1) for a binomial 
distribution (𝑦𝑦𝑖𝑖 can be a proportion or 0/1 value) and 𝜇𝜇𝑖𝑖0 = 𝑦𝑦𝑖𝑖 for a non-binomial distribution. 
Also set the outer iteration index 𝑗𝑗 = 0. 

2. Based on , compute 
 

v O y and      A 

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random 
effects design matrix Z, and diagonal weight matrix .  The fitting procedure, which is called 
the inner iteration, yields the estimates of θ, and is denoted  as θ .  The procedure uses the 
specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining 
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convergence of the linear mixed model. If j = 0, go to step 4; otherwise go to the next step. See 
“MIXED Algorithms” for more information on fitting the linear mixed model. 

3. Check if the following criterion with tolerance level is satisfied: 
 

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step. 

4. Compute  by setting θ then set      .  Depending on the choice of random effect 
estimates, set = . 

5. Compute the new estimate of μ by 

                         Z O 

set j = j + 1 and go to step  2. 

 
Wald confidence intervals for covariance parameter estimates 

Here we assume that the estimated parameters of G and R are obtained through the above doubly 
iterative process. Then their asymptotic covariance matrix can be approximated by  Η , where 
H is the Hessian matrix of the objective function θ v  or θ  v ) evaluated at   . The 
standard error for the ith covariance parameter estimate in the   vector, say , is the square root of 
the ith diagonal element of   Η . 

 
Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter 
can be obtained by using the asymptotic normality. However, these can be unreliable in small 
samples, especially for variance and correlation parameters that have a range of and 

respectively. Therefore, following the same method used in linear mixed models, these 
parameters are transformed to parameters that have range . Using the delta method, these 
transformed estimates still have asymptotic normal distributions. 

 
For variance type parameters in G and R, such as  in the autoregressive, autoregressive moving 
average, compound symmetry, diagonal, Toeplitz, and variance components, and   in the 
unstructured type, the 100(1 – α)% Wald confidence interval is given, assuming the variance 
parameter estimate is and its standard error is se   from the corresponding diagonal element 
of   Η , by 
 

 
 
For correlation type parameters in G and R, such as in the autoregressive, autoregressive moving 
average, and Toeplitz types and in the autoregressive moving average type, which usually come 
with the constraint of , the 100(1 – α)% Wald confidence interval is given, assuming the 
correlation parameter estimate is  and its standard error is  from the corresponding diagonal 
element of   Η , by 
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C C 

 

 
 

where and   are hyperbolic tangent and inverse 
hyperbolic tangent, respectively. 

 
For general type parameters, other than variance and correlation types, in G and R, such as in 
the compound symmetry type and (off-diagonal elements) in the unstructured type, no 
transformation is done. Then the 100(1 – α)% Wald confidence interval is simply, assuming the 
parameter estimate is  and its standard error is se from the corresponding diagonal element 
of   Η , 

 

se se 
 

The 100(1 – α)% Wald confidence interval for  is 
 

 
where ln . 

 
Note that the z-statistics for the hypothesis            where  is a covariance parameter in   
θ vector, are calculated; however, the Wald tests should be considered as an approximation and 
used with caution because the test statistics might not have a standardized normal distribution. 

 
Statistics for estimates of fixed and random effects 

The approximate covariance matrix of (�̂�𝛽 −  𝛽𝛽, 𝛾𝛾� − 𝛾𝛾) is 

XTR X XTR Z 
−

 

ZTR X ZTR Z G 
C C

 
 
 

where R v γ A RA is evaluated at the converged estimates and 

T 1 
 

              ΖT  

 
          ΖT 1Z+ 1   T 1Z 

 
 

Statistics for estimates of fixed effects on original scale 
 

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different 
based on transformed and original scale, so the REPL on the transformed scale should be 
transformed back on the final iteration so that any post-estimation statistics based on REPL can 
be calculated correctly. Suppose the final objective function value based on the transformed and 

T 



 
 

A 

AT 
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original scales are θ v  and θ  v , respectively, then θ  v  can be obtained 
from θ  v   as follows: 

 

θ v θ v A 
 

Because REPL has the following extra term involved the X matrix 

X TV θ  X  XA TV θ XA 

AT XV θ  X 

XV θ X A 

XV θ X A 
 

then XV θ X X TV θ X A  and θ v θ v A . Please 
note that PL values are the same whether the X matrix is transformed or not. 

In addition, the final estimates of β, C11, C21 and C22 are based on the transformed scale, denoted 
as and respectively. They are transformed back to the original scale, denoted as 

and respectively, as follows: 
 

       Α 

T 

AT 
 

 

Note that A could reduce toS ; hereafter, the superscript * denotes a quantity on the transformed 
scale. 

 
Estimated covariance matrix of the fixed effects parameters 

 
Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based 
and robust. 

 
The model-based estimated covariance matrix of the fixed effects parameters is given by 

 
Σm  

 

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as 
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized 
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by 
subjects, then the robust estimator is defined as follows 
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Σr=Σm 1 T 1 Σm 

 
 

where v X 
 

Standard errors for estimates in fixed effects and predictions in random effects 

Let  denote a non-redundant parameter estimate in fixed effects. Its standard error is the square 
root of the ith diagonal element of Σm or  Σr, 

 

The standard error for redundant parameter estimates is set to a system missing value. 
 

Let   denote a prediction in random effects. Its standard error is the square root of the ith 
diagonal element of : 

 

 
Test statistics for estimates in fixed effects and predictions in random effects 

 
The hypothesis           is tested for each non-redundant parameter in fixed effects using the 
t statistic: 

 

 

which has an asymptotic t distribution with degrees of freedom. See “Method for computing 
degrees of freedom” for details on computing the degrees of freedom. 

 
Wald confidence intervals for estimates in fixed effects and predictions in random effects 

 
The 100(1 – α)% Wald confidence interval for  is given by 

 

where   is the           100th percentile of the distribution. 

For some models (see the list below), the exponentiated parameter estimates, their standard 
errors, and confidence intervals are computed. Using the delta method, the estimate of is 

 , the standard error estimate is          and the corresponding                 
100(1−  𝛼𝛼)% Wald confidence interval for exp (𝛽𝛽𝑖𝑖) is 

 

T 
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The list of models is as follows: 

1. Logistic regression (binomial distribution + logit link). 

2. Nominal logistic regression (nominal multinomial distribution + generalized logit link). 

3. Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link). 

4. Log-linear model (Poisson distribution + log link). 

5. Negative binomial regression (negative binomial distribution + log link). 
 
Testing 

 

After estimating parameters and calculating relevant statistics, several tests for the given model 
are performed. 

 
Goodness of fit 

 
Information criteria 

 
Information criteria are used when comparing different models for the same data. The formulas 
for various criteria are as follows. 

Finite sample corrected (AICC) 

Bayesian information criteria (BIC) 

 

where ℓ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL, 
N is the effective sample size minus the number of non-redundant parameters in fixed effects 

( ) and d is the number of covariance parameters. 

 
Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the 
original scale. Thus the information criteria should not be compared across models with different 
distribution and link function and they should be interpreted with caution. 

 
Tests of fixed effects 

For each effect specified in the model, a type III test matrix L is constructed and H0: Liβ = 0 is 
tested. Construction of L and the generating estimable function (GEF) is based on the generating 
matrix H XTΨX XTΨX  where Ψ diag such that Liβ is estimable; that 
is, L L H  . It involves parameters only for the given effect and the effects containing the given 
effect. For type III analysis, L does not depend on the order of effects specified in the model. If 
such a matrix cannot be constructed, the effect is not testable. 

 
Then the L matrix is then used to construct the test statistic 
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where ∑   T  .  The statistic has an approximate F distribution. The numerator 
degrees of freedom is and the denominator degrees of freedom is   . See “Method for computing 
degrees of freedom” for details on computing the denominator degrees of freedom. 

 
In addition, we test a null hypothesis that all regression parameters (except intercept if there is 
one) equal zero. The test statistic would be the same as the above F statistic except the L matrix is 
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L 
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the 
“corrected model” in linear models. 

 
Estimated marginal means 

There are two types of estimated marginal means calculated here. One corresponds to the 
specified factors for the linear predictor of the model and the other corresponds to those for the 
original scale of the target. 

 
Estimated marginal means are based on the estimated cell means. For a given fixed set of factors, 
or their interactions, we estimate marginal means as the mean value averaged over all cells 
generated by the rest of the factors in the model. Covariates may be fixed at any specified value. 
If not specified, the value for each covariate is set to its overall mean estimate. 

 
Estimated marginal means are not available for the multinomial distribution. 

 
Estimated marginal means for the linear predictor 

 
Calculating estimated marginal means for the linear predictor 

 
Estimated marginal means for the linear predictor are based on the link function transformation, 
and constructed such that LB is estimable. 

 
Suppose there are r combined levels of the specified categorical effect. This r×1 vector can be 
expressed in the form . The variance matrix of is then computed by 

V =LΣLT 
 

The standard error for the jth element of    is the square root of the jth diagonal element of . 
Let the jth element of    and its standard error be  and  , respectively, then the corresponding 
100(1 – α)% confidence interval for is given by 

 

T  T ∑ T 1 
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where is the                 percentile of the t distribution with   degrees of freedom.  
See “Method for computing degrees of freedom” for details on computing the degrees of 
freedom. 

 
Comparing estimated marginal means for the linear predictor 

 
We can compare estimated marginal means for the linear predictor based on a selected contrast 
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix 
C used for testing the hypothesis     C 0.  An F statistic is used for testing given set of 
contrasts for the factor as follows: 

 
 

 

 
which has an asymptotic F distribution with degrees of freedom, where rank  CV CT  . 
See “Method for computing degrees of freedom” for details on computing the denominator 
degrees of freedom. The p-values can be calculated accordingly. Note that adjusted p-values 
based on multiple comparisons adjustments won’t be computed for the overall test. 

Each row cT of matrix C is also tested separately. The estimate for the ith row is given by cT and 
its standard error by cTV c . The corresponding 100(1 – α)% confidence interval is given by 

cT 
 

The test statistic for cT is 

cT 
 

 
It has an asymptotic t distribution. See “Method for computing degrees of freedom” for details 
on computing the degrees of freedom. The p-values can be calculated accordingly. In addition, 
adjusted p-values for multiple comparisons can also computed. 

 
Estimated marginal means in the original scale 

 
Estimated marginal means for the target are based on the original scale. As a conditional predictor 
defined by Lane and Nelder (1982), estimated marginal means for the target are derived from 
those for the linear predictor. 

 
Calculating estimated marginal means for the target 

 
The estimated marginal means for the target are defined as 

 
                 L 

C T CV CT C 
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The variance of estimated marginal means for the target is 
 

 

where is a r×r matrix and is the derivative of the inverse of 
the link with respect to the jth value in and  where is 
from Table 45-4. 

 
The 100(1 – α)% confidence interval for is given by 

 

 
Note:   is estimated marginal means for the proportion, not for the number of events when 
events and trials variables are used for the binomial distribution. 

 
Comparing estimated marginal means for the target 

 
This is similar to comparing estimated marginal means for the linear predictor; just replace with 

 and  with . For more information, see the topic “Estimated marginal means for the 
linear predictor”. 

 
Multiple comparisons 

 
The hypothesis                  can be tested using the multiple row hypotheses testing technique. 
Let  be the ith row vector of matrix C. The ith row hypothesis is          . Testing is the 
same as testing multiple non-redundant row hypotheses simultaneously, where R is the 
number of non-redundant row hypotheses, and  represents the ith non-redundant hypothesis. A 
hypothesis  is redundant if there exists another hypothesis      such that     . 

 
Adjusted p-values.  For each individual hypothesis 𝐻𝐻0𝑖𝑖, test statistics can be calculated. Let 
𝑝𝑝𝑖𝑖 denote the p-value for testing 𝐻𝐻0𝑖𝑖 and 𝑝𝑝𝑖𝑖∗ denote and adjusted p-value. The conclusion 
from multiple testing is, at level α (the family-wise type I error), 

 

reject               if         ; 

reject                 if             . 
 

Several different methods to adjust p-values are provided here. Please note that if the adjusted 
p-value is bigger than 1, it is set to 1 in all the methods. 

 
Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above 
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values. 
The only item needed to be adjusted in the confidence intervals is the critical value from the 
standard normal distribution. Assume that the original critical value is 𝑧𝑧1−𝛼𝛼/2 and the adjusted 
critical value is 𝑧𝑧∗.



 

Generalized linear mixed models algorithms 

 
 

 
 

LSD (Least Significant Difference) 

The adjusted p-values are the same as the original p-values: 
 

The adjusted critical value is: 
 

 
Sequential Bonferroni 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 
 

 
 
Sequential Sidak 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 
 

where .  

 
Method for computing degrees of freedom 

 
Residual method 

 
The value of degrees of freedom is given by 𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(X), where N is the effective sample size 
and X is the design matrix of fixed effects. 
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Satterthwaite’s approximation 
 

First perform the spectral decomposition        where Γ is an orthogonal matrix of 
eigenvectors and D is a diagonal matrix of eigenvalues.  If  is the mth row of      ,  is the 
mth eigenvalues and 

 

 
where and   is the asymptotic covariance matrix of obtained from the 
Hessian matrix of the objective function; that is,        H . If 

 

then the denominator degree of freedom is given by 
 

Note that the degrees of freedom can only be computed when E>q. 
 
Kenwald-Roger approximation 
 
Kenward and Roger (1997) proposed a scaled Wald statistic: 
 

𝐹𝐹∗ = 𝜆𝜆𝐹𝐹 =
𝜆𝜆
𝑟𝑟0

(𝐿𝐿0�̂�𝛽 − 𝐿𝐿0𝛽𝛽)𝑇𝑇�𝐿𝐿0�̂�𝐶11𝐴𝐴 𝐿𝐿0𝑇𝑇�
−(𝐿𝐿0�̂�𝛽 − 𝐿𝐿0𝛽𝛽) 

 
where r0 = rank(𝑳𝑳0𝑪𝑪�11𝐴𝐴 𝑳𝑳0𝑇𝑇),  𝑪𝑪�11𝐴𝐴  is an approximate variance-covariance of the fixed effects 
parameters, λ and the degree of freedom of denominator, 𝜈𝜈, are computed as following: 
 

                                                                             𝜈𝜈 = 4 + 𝑟𝑟0+2
𝑟𝑟0∗𝜌𝜌−1

                                                                  
and  

                                                                               𝜆𝜆 = 𝜈𝜈
𝐸𝐸(𝐹𝐹)(𝜈𝜈−2)

                                                                   
where 
 

𝜌𝜌 =
𝑉𝑉(𝐹𝐹)

2𝐸𝐸(𝐹𝐹)2
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Scoring 

For GLMMs, predicted values and relevant statistics can be computed based on solutions of 
random effects. PQL-type predictions use  as the solution for the random effects to compute 
predicted values and relevant statistics. 
 
PQL-type predicted values and relevant statistics 

 
Predicted value of the linear predictor 

xT      zT 
 

Standard error of the linear predictor 
 

= 
 

Predicted value of the mean 

xT      zT 
 

For the binomial distribution with 0/1 binary target variable, the predicted category x  is 
 

(or success) if    
(or failure) otherwise 

 

Approximate 100(1−α)% confidence intervals for the mean 

xTΣx zT z zT x 

x 
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xT      zT 
 
 

Raw residual on the link function transformation 
 

 

Raw residual on the original scale of the target 
 

 

Pearson-type residual on the link function transformation 
 

 
where γ  is the ith diagonal element of v γ  and v γ A A where 

is an n× 1 vector of PQL-type predicted values of the mean. 
 

Pearson-type residual on the original scale of the target 
 

 
where γ   is the ith diagonal element of y A A and       . 

 
Classification Table 

 
Suppose that is the sum of the frequencies for the observations whose actual target 
category is j (as row) and predicted target category is   (as column), (note that J = 
2 for binomial), then 

 

 
 

 

 
 

 
 

 

 
 

where is indicator function. 
 

Suppose that is the 
th 

element of the classification table, which is the row 
percentage, then 

γ 

γ 
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T T 

 

 
 
 

 

The percentage of total correct predictions of the model (or “overall percent correct”) is 
 

 

Nominal multinomial distribution 

The nominal multinomial distribution requires some extra notation and explanation. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 

S Number of super subjects. 
Number of cases in the sth super subject. 

Nominal categorical target for the tth case in the sth super subject. Its category values 
are denoted as 1, 2, and so on. 

J The total number of categories for target. 

Dummy vector of  , T, where if , 
otherwise . The superscript T means the transpose of a matrix or vector. 

y yT yT  T 

T 

Probability of category j for the tth case in the sth super subject; that is, 
. 

T 
 

T 
  

T 

T T 

T T 
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T T 

T 
1 

 

 
 

Linear predictor value for category j of the tth case in the sth super subject. 

T 
 

T 
  

  

(n (J−1)) × 1 vector of linear predictor. T T
 

p× 1 vector of predictor variables for the tth case in the sth super subject. The first 
element is 1 if there is an intercept. 

X (n (J−1)) × (J−1)p design matrix of fixed effects, 
r× 1 vector of coefficients for the random effect corresponding to the tth case in the 
sth super subject. 

Z 
Design matrix of random effects, , where ⊕ is the direct sum of matrices. 

O n× 1 vector of offsets, , where       is the offset value of 
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors 
(X). The offset must be continuous. 

1      , where 1   is a length q vector of 1. 
 

                           p× 1 vector of unknown parameters for category j,                                , . 
The first element in   is the intercept for the category j, if there is one. 

r × 1 vector of random effects for category j in the sth super subject, . 
 

 

Random effects for the sth super subject,    T
.
 

 
   

Scale weight of the tth case in the sth super subject. It does not have to be integers. If 
it is less than or equal to 0 or missing, the corresponding case is not used. 

ω n× 1 vector of scale weight variable, ω T. 
                          Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it 

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing, 
the corresponding cases are not used. 

f n× 1 vector of frequency count variable, T 
N 

Effective sample size, . If frequency count variable f is not used, N = n. 
 
 

Model 
 

The form of a generalized linear mixed model for nominal target with the random effects is 
 

T T 



 

Generalized linear mixed models algorithms 

 

T 

d 
d 

 

 
 

where is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for 
random effects; γ is a vector of random effects which are assumed to be normally distributed with 
mean 0 and variance matrix G; is the logit link function such that 

 

 

And its inverse function is 
 

 
 
The variance of y, conditional on the random effects is 
 

  
 

where and R I which means that R-side effects 
      

are not supported for the multinomial distribution.   is set to 1. 
 
Estimation 

 
Linear mixed pseudo model 

 
Similarly to “Linear mixed pseudo model”, we can obtain a weighted linear mixed model 

 

 
where v D y O   and error terms ε 𝐷𝐷−1𝐴𝐴𝜋𝜋�

1/2𝑅𝑅𝐴𝐴𝜋𝜋�
1/2𝐷𝐷 with 

 

D D 
             

 

and 
 

 
And block diagonal weight matrix is 

T 

T 
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D D= D 
   

 
The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed 
model for v are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 

where V  θ  G  θ R  θ θ N denotes the effective sample 
size, and denotes the total number of non-redundant parameters for . 

 
The parameter can be estimated by linear mixed model using the objection function θ  v or 

θ  v ,  and are computed as 
 

T T 
 

T 
 
 

Iterative process 
 

The doubly iterative process for the estimation of   is the same as that for other distributions, if we 
replace  and with and O   respectively, and set initial estimation 
of as 

 

For more information, see the topic “Iterative process”. 
 

Post-estimation statistics 

Wald confidence intervals 

The Wald confidence intervals for covariance parameter estimates are described in “Wald 
confidence intervals for covariance parameter estimates”. 

 
Statistics for estimates of fixed and random effects 

Similarly to “Statistics for estimates of fixed and random effects”, the approximate covariance 
matrix of (𝛽𝛽 −  𝛽𝛽, 𝛾𝛾� −  𝛾𝛾) is
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T 

 

 
 
 

 
 

Where with = , and 
      

 

 
 

 
 

 

 
Statistics for estimates of fixed and random effects on original scale 

 
If the fixed effects are transformed when constructing matrix X, then the final estimates of , 

 ,  , and   above are based on transformed scale, denoted as  ,  , and  , 
respectively.  They would be transformed back on the original scale, denoted as   , ,  , 
and , respectively, as follows: 

 

 
T 

 
T 

 
 

 

where A . 
 

  

 
Estimated covariance matrix of the fixed effects parameters 

 
Model-based estimated covariance 

 

 
Robust estimated covariance of the fixed effects parameters 
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where                    , and is a part of corresponding to the sth super subject. 
 

Standard error for estimates in fixed effects and predictions in random effects 
 

Let  denote a non-redundant fixed effects parameter estimate. Its standard error is the square 
root of the                  diagonal element of 

 

 
The standard error for redundant parameter estimates is set to system missing value. 

 
Similarly, let   denote the ith random effects prediction. Its standard error is the square root 
of the ith diagonal element of : 

 

 
Test statistics for estimates in fixed effects and predictions in random effects 

 
Test statistics for estimates in fixed effects and predictions in random effects are as those described 
in “Statistics for estimates of fixed and random effects”. 

 
Wald confidence intervals for estimates in fixed effects and random effects predictions 

 
Wald confidence intervals are as those described in “Statistics for estimates of fixed and random 
effects”. 

 

Testing 
 

Information criteria 
 

These are as described in “Goodness of fit”. 
 

Tests of fixed effects 
 

For each effect specified in the model, a type III test matrix L is constructed from    
the generating matrix                          where, and 

. Then the test statistic is 
 
 

 
 

where and      L. The statistic has an approximate F distribution. 
The numerator degrees of freedom is  and the denominator degree of freedom is   . For more 
information, see the topic “Method for computing degrees of freedom”. 
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Scoring 
 

PQL-type predicted values and relevant statistics 
 

        predicted vector of the linear predictor 

T                 z T 
 

Estimated covariance matrix of the linear predictor 
 

 
where  is a diagonal block corresponding to the sth super subject, the approximate covariance 
matrix of          ;   is a part of   corresponding to the sth super subject. 

The estimated standard error of the jth element in , , is the square root of the jth diagonal 
element of  , 

 

 
Predicted value of the probability for category j 

 

 
 
Predicted category 

 
x 

 
If there is a tie in determining the predicted category, the tie will be broken by choosing the 

category with the highest                    If there is still a tie, the one with the lowest  

category number is chosen. 

Approximate 100(1−α)% confidence intervals for the predicted probabilities 

The covariance matrix of   can be computed as 



 
 

. 

T T 

λT 

. 
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where 
 
 

                                                        . 
. 

 
 

with 
 

 
then the confidence interval is 

 

 
where is the jth diagonal  element of and the estimated variance  of 

. 
 
Ordinal multinomial distribution 

The ordinal multinomial distribution requires some extra notation and explanation. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 

S Number of super subjects. 
Number of cases in the sth super subject. 

Ordinal categorical target for the tth case in the sth super subject. Its category values 
are denoted as consecutive integers from 1 to J. 

J The total number of categories for target. 

Indicator vector of  , T, where if , 
otherwise . The superscript T means the transpose of a matrix or vector. 

y yT yT  T 

T 

                       Cumulative target probability for category j for the tth case in the sth super subject; 

λ 
λ λT  T, where λ λT λT T 

and λT , 
and 

Probability of category j for the tth case in the sth super subject; that is, 
and . 

.. . 



 
 

T T 

T 
1 
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T 
 

T 
  

T 
 

Linear predictor value for category j of the tth case in the sth super subject. 

T 
 

T 
  

  

(n (J−1)) × 1 vector of linear predictor. T T
 

p× 1 vector of predictors for the tth case in the sth super subject. 

r× 1 vector of coefficients for the random effect corresponding to the tth case in the 
sth super subject. 

O n× 1 vector of offsets, , where       is the offset value of 
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors 
(X). The offset must be continuous. 

1      , where 1   is a length q vector of 1’s. 

ψ J−1 × 1 vector of threshold  parameters, ψ T and 

                            p× 1 vector of unknown parameters. 

(J−1+p) × 1 vector of all parameters Β=  ψT  βT  T 
Scale weight of the tth case in the sth super subject. It does not have to be integers. If 
it is less than or equal to 0 or missing, the corresponding case is not used. 

ω n× 1 vector of scale weight variable, ω T. 
                          Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it 

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing, 
the corresponding cases are not used. 

f n× 1 vector of frequency count variable, T 
N 

Effective sample size, . If frequency count variable f is not used, N = n. 

A B B B B 
direct (or Kronecker ) product of A and B, which is equal to 

 
m× 1 vector of 1’s; T 

B B B 
B B B 

 
 
Model 

 

The form of a generalized linear mixed model for an ordinal target with random effects is 

 
λ γ  

T T 

T T 
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T 

. 

  

 

 
 

where is the expanded linear predictor vector; λ is the expanded cumulative target probability 
vector;  is a cumulative link function; X is the expanded design matrix for fixed effects 
arranged as follows 

     

Β=  ψT  βT  T 
ψ ψ  βT  T 

Z is the expanded design matrix for random effects 
arranged as follows 

 
γ is a vector of random effects which are assumed to be normally distributed with mean 0 and 
variance matrix G. 

 
The variance of y, conditional on the random effects is 
 

 
 

where and R I which means that R-side effects 
      

are not supported for the multinomial distribution.   is set to 1. 
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Estimation 

 
Linear mixed pseudo model 

 
Similarly to “Linear mixed pseudo model”, we can obtain a weighted linear mixed model 

 

 

 
and 

 

 
And block diagonal weight matrix is 

DT D 

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in , corresponding to the linear mixed 
model for are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 

where V  θ  G  θ R  θ θ N denotes the effective sample 
size, and denotes the total number of non-redundant parameters for . 

 
The parameter can be estimated by linear mixed model using the objection function θ  v or 

θ v , and are computed as 

T 
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. 

β 

.. 
β 

ψ 

 

 
 
 

T T 

 
T 

 
 

Iterative process 
 

The doubly iterative process for the estimation of   is the same as that for other distributions, if 
we replace 𝜇𝜇� and 𝑋𝑋𝑩𝑩� + 𝑍𝑍𝛾𝛾� + 𝑂𝑂 with 𝜋𝜋�  and 𝑋𝑋𝑩𝑩� + 𝑍𝑍𝛾𝛾� + 𝑂𝑂∗ respectively, and set initial estimation 
of    as 

 

 
For more information, see the topic “Iterative process”. 

 

Post-estimation statistics 
 

Wald confidence intervals 
 

The Wald confidence intervals for covariance parameter estimates are described in “Wald 
confidence intervals for covariance parameter estimates”. 

 
Statistics for estimates of fixed and random effects 

is the approximate covariance matrix of                             and in should be 

D D T. 
 

Statistics for estimates of fixed and random effects on original scale 
 

If the fixed effects are transformed when constructing matrix X, then the final estimates of B, 
denoted as . They would be transformed back on the original scale, denoted as , as follows: 

 

B β A ψ AB 
 
 

where 
 

A I 1  TS 
S 
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Estimated covariance matrix of the fixed effects parameters 

 
The estimated covariance matrix of the fixed effects parameters are described in “Statistics for 
estimates of fixed and random effects”. 

 
Standard error for estimates in fixed effects and predictions in random effects 

 
Let be threshold parameter estimates and denote 
non-redundant regression parameter estimates. Their standard errors are the square root of the 
diagonal elements of Σm or Σr:        and                                  , respectively, w h e r e  

is the ith diagonal element of Σm or Σr. 
 

Standard errors for predictions in random effects are as those described in “Statistics for estimates 
of fixed and random effects”. 

 
Test statistics for estimates in fixed effects and predictions in random effects 

 
The hypotheses                                                           are tested for threshold parameters using the 
t statistic: 

 

 

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as 
those described in “Statistics for estimates of fixed and random effects”. 

 
Wald confidence intervals for estimates in fixed effects and random effects predictions 

 
The 100(1 – α)% Wald confidence interval for threshold parameter is given by 

 

 
Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and 
random effects”. 

 
The degrees of freedom can be computed by the residual, Satterthwaite, or Kenwald-Roger 
method. For the residual method, 𝑣𝑣 = 𝑁𝑁 − (𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥). For the Satterthwaite and Kenward-
Roger methods, it should be similar to that described in “Method for computing degrees of 
freedom”. 

 

Testing 
 

Information criteria 
 

These are as described in “Goodness of fit”, with the following modifications. 
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l 
is the part 

l l 

T Z T 

 

 
 

For REPL, the value of N is chosen to be effective sample size minus number of non-redundant 

parameters in fixed effects, , where is the number of non-redundant 

parameters in fixed effects, and d is the number of covariance parameters. 

 
For PL, the value of N is effective  sample size, , and d is the number of number  of 

non-redundant parameters in fixed effects, , plus the number of covariance parameters. 
 

Tests of fixed effects 

For each effect specified in the model excluding threshold parameters, a type I or III test 
matrix Li is constructed and H0:  LiB = 0 is tested.  Construction of matrix Li is based  on 
matrix H XT   X XT   X  , where X 1 X   and such that LiB is estimable. 
Note that LiB is estimable if and only if L0 L0H  , where L0  l   L β   . Construction 
of L0 considers a partition of the more general test  matrix L L   ψ  L  β first, where 
L  ψ 
L  β 

sum 

l  consists of columns corresponding to the threshold parameters and 
of Li corresponding to regression parameters, then replace L    ψ  with their 

to get L0. 

Note that the threshold-parameter effect is not tested for both type I and III analyses and 
construction of Li is the same as in GENLIN. For more information, see the topic “Default Tests 
of Model Effects”. Similarly, if the fixed effects are transformed when constructing 
matrix X, then H   should be constructed based on transformed values. 

 

Scoring 
 

PQL-type predicted values and relevant statistics 
 

predicted vector of the linear predictor 
 

 

Estimated covariance matrix of the linear predictor 

T Z 
T 

 
where  is a diagonal block corresponding to the sth super subject, the approximate covariance 
matrix of          ;   is a part of   corresponding to the sth super subject. 

 
The estimated standard error of the jth element in , , is the square root of the jth diagonal 
element of , 

 

T 
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Predicted value of the cumulative probability for category j 

 
 = 

 
with 

 

Predicted category 
 

x 
 

where 
 

If there is a tie in determining the predicted category, the tie will be broken by choosing the 

category with the highest                    If there is still a tie, the one with the lowest  

category number is chosen. 

Approximate 100(1−α)% confidence intervals for the cumulative predicted probabilities 
 

 
If either endpoint in the argument is outside the valid range for the inverse link function, the 
corresponding confidence interval endpoint is set to a system missing value. 

 
The degrees of freedom can be computed by the residual, Satterthwaite, or Kenward-
Roger methods. For the residual method, 𝑣𝑣 = 𝑁𝑁 − (𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥). For Satterthwaite’s 
approximation, the L matrix is constructed by (𝑋𝑋𝑠𝑠𝑠𝑠,𝑗𝑗 ,𝑍𝑍𝑠𝑠𝑠𝑠,𝑗𝑗) where 𝑋𝑋𝑠𝑠𝑠𝑠,𝑗𝑗  and 𝑍𝑍𝑠𝑠𝑠𝑠,𝑗𝑗  are the jth 
rows of 𝑋𝑋𝑠𝑠𝑠𝑠  and 𝑍𝑍𝑠𝑠𝑠𝑠, respectively, corresponding to the jth category. For example, the L 
matrix is (1,0, … ,0,−𝑋𝑋𝑠𝑠𝑠𝑠𝑇𝑇 ,𝑍𝑍𝑠𝑠𝑠𝑠𝑇𝑇 ) 1×(𝐽𝐽 − 1 + 𝑝𝑝 + 𝑟𝑟)  for the 1st category.  The computation should 
then be similar to that described in “Method for computing degrees of freedom”. 
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GENLIN Algorithms 
Generalized linear models (GZLM) and generalized estimating equations (GEE) are commonly 
used analytical tools for different types of data. Generalized linear models cover not only widely 
used statistical models, such as linear regression for normally distributed responses, logistic 
models for binary data, and log linear model for count data, but also many useful statistical 
models via its very general model formulation. However, the independence assumption prohibits 
application of generalized linear models to correlated data. Generalized estimating equations were 
developed to extend generalized linear models to accommodate correlated longitudinal data and 
clustered data. 

 
Generalized Linear Models 

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later 
expanded by McCullagh and Nelder (1989). The following discussion is based on their works. 

 

Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 46-1 
Notation 

Notation Description 
n Number of complete cases in the dataset. It is an integer and n ≥ 1. 
p Number of parameters (including the intercept, if exists) in the model.  It is an integer 

and p ≥ 1. 
px Number of non-redundant columns in the design matrix. It is an integer and px ≥ 1. 
y n × 1 dependent variable vector. The rows are the cases. 
r n × 1 vector of events for the binomial distribution; it usually represents the number of 

“successes.” All elements are non-negative integers. 
m n × 1 vector of trials for the binomial distribution.  All elements are positive integers 

and mi ≥ ri, i=1,...,n. 
μ n × 1 vector of expectations of the dependent variable. 
η n × 1 vector of linear predictors. 
X n × p design matrix.  The rows represent the cases and the columns  represent the 

parameters. The ith row is (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇, i=1,…, n with 𝑥𝑥𝑖𝑖1 = 1 if the model has an 
intercept. 

O n × 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of 
the predictor variables (X). 

                       p × 1 vector of unknown parameters. The first element in  is the intercept, if there is one. 

ω n × 1 vector of scale weights.  If an element is less than or equal to 0 or missing, the 
corresponding case is not used. 

f n × 1 vector of frequency counts. Non-integer elements are treated by rounding the value 
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are 
not used. 

N 
Effective sample size. If frequency count variable f is not used, N = n. 
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Model 

 
 
 
 

A GZLM of y with predictor variables X has the form 
 

E  
 

where η is the linear predictor; O is an offset variable with a constant coefficient of 1 for each 
observation; g(.)  is the monotonic differentiable link function which states how the mean of  
y, , is related to the linear predictor η ; F is the response probability  distribution. 
Choosing different combinations of a proper probability distribution and a link function can 
result in different models. 

 
Some combinations are well known models and have been provided in different IBM® SPSS® 
Statistics procedures. The following table lists these combinations and corresponding procedures. 
Table 46-2 
Distribution, link function, and corresponding procedure 
Distribution Link function Model Procedure 
Normal Identity Linear regression GLM, REGRESSION 
Binomial Logit Logistic regression LOGISTIC REGRESSION 
Poisson Log Loglinear GENLOG 

 
In addition, GZLM also assumes yi are independent for i=1,….,n. This is the main assumption 
which separates GZLM and GEE. Then for each observation, the model becomes 

T 
 

Notes 
 X can be any combination of scale variables (covariates), categorical variables (factors), 

and interactions. The parameterization of X is the same as in the GLM procedure. Due to 
use of the over-parameterized model where there is a separate parameter for every factor 
effect level occurring in the data, the columns of the design matrix X are often dependent. 
Collinearity between scale variables in the data can also occur. To establish the dependencies 
in the design matrix, columns of XTΨX, where diag , are examined by 
using the sweep operator.  When a column is found to be dependent on previous columns, 
the corresponding parameter is treated as redundant. The solution for redundant parameters 
is fixed at zero. 

 When y is a binary dependent variable which can be character or numeric, such as 
“male”/”female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing 
a success or some other positive result.  In this document, we assume to be  modeling 
the probability of success. In this document, we assume that y has been transformed to 
0/1 values and we always model the probability of success; that is, Prob(y = 1).  Which 
original value should be transformed to 0 or 1 depends on what the reference category is. If 
the reference category is the last value (REFERENCE=LAST in the syntax), then the first 
category represents a success and we are modeling the probability of it. For example, if 
REFERENCE=LAST is used in the syntax, “male” in “male”/”female” and 2 in 1/2 are the last 
values (since “male” comes later in the dictionary than “female”) and would be transformed 
to 0, and “female” and 1 would be transformed to 1 as we model the probability of  them, 



 
 
 

 

GENLIN Algorithms 

 
respectively. However, one way to change to model the probability of “male” and 2 instead 
is to specify REFERENCE=FIRST in the syntax. Note if original binary format is 0/1 and 
REFERENCE=LAST is specified, then 0 would be transformed to 1 and 1 to 0. 

 When r, representing the number of successes (or number of 1s) and m, representing  
the number of trials, are used for the binomial distribution, the response is the binomial 
proportion y = r/m. 

 
Multinomial Distribution 

 
The response variable y is assumed to be ordinal; its values have an intrinsic ordering and 
correspond to consecutive integers from 1 to J. The design matrix X includes model predictors, 
but not an intercept. The following new notations are needed to define the model form: 
Table 46-3 
Notation 
Notation Description 
J The number of values for the ordinal response variable, J ≥ 1. 

J – 1 × 1 vector of threshold   parameters ψ and 
                      . 

β p × 1 vector of regression parameters associated with model   predictors, 
β 

B 
(J – 1 + p) × 1 vector of all parameters, 
Conditional cumulative response probability for category j given observed independent 
variable vector, xi 
Conditional response probability for category j given observed independent variable 
vector, xi  and for 
Linear predictor value of case i for category j. It is related to through a cumulative 
link function. 

 
xTβ 

 
Probability Distribution 

 
GZLMs are usually formulated within the framework of the exponential family of distributions. 
The probability density function of the response Y for the exponential family can be presented as 

 

 
where θ is the canonical (natural) parameter,  is the scale parameter related to the variance of y 
and ω is a known prior weight which varies from case to case. Different forms of b(θ) and c(y,    
/ω) will give specific distributions. In fact, the exponential family provides a notation that allows 

us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are 
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative 
binomial, Poisson, binomial, ordinal multinomial; and a mixed distribution: Tweedie. 

 
The mean and variance of y can be expressed as follows 
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where    and    denote the first and second derivatives of b with respect to θ, respectively; 
is the variance function which is a function of   . 

 
In GZLM, the distribution of y is parameterized in terms of the mean (μ) and a scale parameter 
( ) instead of the canonical parameter (θ). The following table lists the distribution of y, 
corresponding range of y, variance function (V(μ)), the variance of y (Var(y)), and the first 
derivative of the variance function   ), which will be used later. 
Table 46-4 
Distribution, range and variance of the response, variance function, and its first derivative 

 

Distribution Range of y V(μ) Var(y) V’(μ) 
Normal (−∞,∞) 1 

 

 0 

Inverse Gaussian (0,∞) μ3 μ3 3μ2 
Gamma (0,∞) μ2 μ2 2μ 
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ 
Poisson 0(1)∞ μ μ 1 
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ 
Tweedie(q) [0,∞) μq μq qμq−1 

Multinomial 1(1)J There are not simple forms for ordinal multinomial, but they 
are not needed for parameter estimation. 

 
Notes 
 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z. 
 For the binomial distribution, the binomial trial variable m is considered as a part of the 

weight variable ω. 
 If a weight variable ω is presented,  is replaced by /ω. 
 For the negative binomial distribution, the ancillary parameter (k) can be user-specified or 

estimated by the maximum likelihood (ML) method. When k = 0, the negative binomial 
distribution reduces to the Poisson distribution. When k = 1, the negative binomial is the 
geometric distribution. 

 The Tweedie class of distributions includes discrete, continuous and mixed densities as long 
as q ≤ 0 or q ≥ 1, where q is the exponent in the variance function. Special cases include the 
normal (q = 0), Poisson (q = 1), gamma (q = 2) and inverse Gaussian (q = 3). Except for these 
special cases, the Tweedie distributions cannot be written in closed form. Here, we only 
consider the Tweedie distributions for 1 < q < 2, which can be represented as Poisson mixtures 
of gamma distributions and are mixed distributions with mass at zero and with support on   
the non-negative real values. These distributions are sometimes called “compound Poisson”, 
“compound gamma” and “Poisson-gamma” distributions. q must be user-specified. 
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Scale parameter handling. The expressions for V(μ) and Var(y) for continuous distributions and 
Tweedie distributions include the scale parameter  which can be used to scale the relationship 
of the variance and mean (Var(y) and μ). Since it is usually unknown, there are three ways to fit 
the scale parameter: 

 
1. It can be estimated with  jointly by maximum likelihood method. 

 
2. It can be set to a fixed positive value. 

 
3. It can be specified by the deviance or Pearson chi-square. For more information, see the topic 

“Goodness-of-Fit Statistics”. 
 

On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal 
to one). Because of it, the variance of y might not be equal to the nominal variance in practice 
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k). 
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have 
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML 
method. So for discrete distributions, there are two ways to obtain the value of : 

 
1. It can be specified by the deviance or Pearson chi-square. 

 
2. It can be set to a fixed positive value. 

 
To ensure the data fit the range of response for the specified distribution, we follow the rules: 
 For the gamma or inverse Gaussian distributions, values of y must be real and greater than 

zero. If a value of y is less than or equal to 0 or missing, the corresponding case is not used. 
 For the negative binomial and Poisson distributions, values of y must be integer  and 

non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is 
not used. 

 For the binomial distribution and if the response is in the form of a single variable, y must 
have only two distinct values. If y has more than two distinct values, the algorithm terminates 
in an error. 

 For the binomial distribution and the response is in the form of ratio of two variables denoted 
events/trials, values of r (the number of events) must be nonnegative integers, values of m 
(the number of trials) must be positive integers and mi ≥ ri, ∀ i. If a value of r is not integer, 
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less 
than or equal to 0, less than the corresponding value of r, or missing, the corresponding 
case is not used. 

 For the Tweedie distributions, values of y must be zero or positive real. If a value of y is less 
than 0 or missing, the corresponding case is not used. 

 
The ML method will be used to estimate  and possibly  for continuous distributions and the 
Tweedie distribution, or k for the negative binomial. The kernels of the log-likelihood function 
(ℓk) and the full log-likelihood function (ℓ), which will be used as the objective function for 
parameter estimation, are listed for each distribution in the following table. Using ℓ or ℓk won’t 
affect the parameter estimation, but the selection will affect the calculation of information criteria. 
For more information, see the topic “Goodness-of-Fit Statistics”. 
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Table 46-5 
The log-likelihood function for probability distribution 

 

Distribution ℓk and ℓ 
Normal 

 

 
 

 
  

  
 

   
 

 
 

Inverse Gaussian    
 

   

 
 

   
 

 
 

Gamma  

  
 
 

 
 

   
 

  
 

Negative 
binomial 

 
 

 
 

    
 

 
           

 

  
 

 
 

 

   
      

 
Poisson 

 
 

 
 

    
 

 
 

 
 

 

   
    

 
Binomial(m)  

  
 
 

 

where 

Tweedie 
 

 
  

 
   

 

 
 

 
       

Multinomial  
 

where if . otherwise 

 
When an individual y = 0 for the negative binomial, Poisson or Tweedie distributions and y = 0 
or 1 for the binomial distribution, a separate value of the log-likelihood is given.  Let ℓk,i be   
the log-likelihood value for individual case i when yi = 0 for the negative binomial,  Poisson 
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and Tweedie and 0/1 for the binomial. The full log-likelihood for i is equal to the kernel of the 
log-likelihood for i; that is, ℓi=ℓk,i. 
Table 46-6 
Log-likelihood 

 

Distribution ℓk,i 
Negative binomial      if 

Poisson   if 

Binomial(m)        if 
if 

Tweedie  if 

 

 Γ(z) is the gamma function and ln(Γ(z)) is the log-gamma function (the logarithm of the 
gamma function), evaluated at z. 

 For the negative binomial distribution, the scale parameter is still included in ℓk for flexibility, 
although it is usually set to 1. 

 For the negative binomial distribution, yi must be a non-negative integer, which  

means             and                                      .  In addition,   can be 

 
written as because 

 

. Some potential computational problems can be avoided by using 

this form.  See Cameron and Trivedi (1998, P. 72). 
 For the binomial distribution (r/m), the scale weight variable becomes in ℓk; that 

is, the binomial trials variable m is regarded as a part of the weight. However, the scale 
weight in the extra term of ℓ is still . 

   in the Tweedie distribution is an infinite series as follows: 

and 

 

 
 

where  and. To evaluate the infinite summation for , the value of j is determined for 
which   reaches a maximum and sum the necessary terms of the series in that region. The 
method proposed by Dunn and Smyth (2005) is adopted here. 

 

Link Function 
 

The following tables list the form, inverse form, range of , and first and second derivatives 
for each link function. 
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Table 46-7 
Link function name, form, inverse of link function, and range of the predicted mean 

 

   

 
Note: In the power link function, if |α| < 2.2e-16, α is treated as 0. 
Table 46-8 
The first and second derivatives of link function 

 

Link function First derivative  Second derivative  
Identity 1 0 
Log 

 

 
 

 
 

Logit 
 

 

 

 

   

Probit Φ ,  where 
 

 
  

Φ  

Complementary log-log    
 

    
 

  

Power(α) 
  

 
 

Log-complement 
 

 
 

 
 

Negative log-log 
 

 
 

     

Negative binomial 
 

 

 

 

    

Odds power(α)  
 
  

   

 



 

GENLIN Algorithms 

 
 

 
 

Table 46-9 
Cumulative Link Function Name, Form, Inverse Form and Range of the Predicted Cumulative Probability 

 

Link function η=g(γ) Inverse γ=g−1(η) Range of   
Cumulative logit 

 

  

 

 
 

 

    
 

Cumulative probit Φ , where 

Φ                              

Φ  
 

    
 
 

Cumulative 
complementary 
log-log 

 

   
 

  
 
 

 

 

     
 
 

 

    
 
 

Cumulative negative 
log-log 

 

     
 

 

    
 

 

    
 

Cumulative Cauchit 
 

   
 

    
 

    

 
Note: π in the formulae is the number, not the response probability. 
Table 46-10 
The Inverse First and Second Derivatives of Cumulative Link Function 

 

Link function Inverse first derivative   Inverse second derivative   
Cumulative logit 

 

 

  
 

 

  

Cumulative probit Φ ,  where 
 

 
  

Φ  

Cumulative complementary 
log-log 

 

   
 

  
 

 

   
 

  
 

Cumulative negative log-log 
 

   
 

    

Cumulative Cauchit 
 

   
 

    
 

 
When the canonical parameter is equal to the linear predictor, , then the link function is 
called the canonical link function. Although the canonical links lead to desirable statistical 
properties of the model, particularly in small samples, there is in general no a priori reason why 
the systematic effects in a model should be additive on the scale given by that link. The canonical 
link functions for probability distributions are given in the following table. 
Table 46-11 
Canonical and default link functions for probability distributions 

 

Distribution Canonical link function 
Normal Identity 
Inverse Gaussian Power(−2) 
Gamma Power(−1) 
Negative binomial Negative binomial 
Poisson Log 
Binomial Logit 
Tweedie Power(1−q) 
Multinomial Cumulative logit 



 
 

 
Β 

ψ 

β 
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Estimation 

Having selected a particular model, it is required to estimate the parameters and to assess the 
precision of the estimates. 

 
Parameter estimation 

 
The parameters are estimated by maximizing the log-likelihood function (or the kernel of the 
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of 
the log-likelihood with respect to each parameter, then we wish to solve 

 

0 
 
 

or, for the multinomial distribution, 
 
 

s 0 

 
In general, there is no closed form solution except for a normal distribution with identity link 
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson 
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation 
of the first derivative of the log-likelihood. 

 
First Derivatives 

 
If the scale parameter  is not estimated by the ML method, s is a p×1 vector with the form: 
 

 
 

where and are defined in Table 46-7 “Link function name, form, inverse of link 
function, and range of the predicted mean”, Table 46-4 “Distribution, range and variance of the 
response, variance function, and its first derivative”, and Table 46-8 “The first and second 
derivatives of link function”, respectively. 

 
If the scale parameter  is estimated by the ML method, it is handled by searching for ) since    
 is required to be greater than zero. Similarly, if the ancillary parameter k for negative binomial 

is estimated by the ML method, it is still handled by searching for ln(k) since k is also required to 
be greater than zero. 

 
Let τ = ) so  = exp(τ) (or τ= ln(k) and k = exp(τ) for negative binomial), then s is a (p+1)×1 
vector with the following form 
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where  is the same as the above with  is replaced with exp(τ) (though for negative 
binomial, φ is not replaced),  has a different form depending on the distribution as follows: 
Table 46-12 
The 1st derivative functions w.r.t. the scale parameter for probability distributions 
Distribution 

 

 

Normal 
 

 

 
 

Inverse Gaussian    

Gamma  

 

 
 

 
 

 
 

 
 

Negative Binomial                                            

where for all appropriate link functions other than negative binomial link 
function, 

 
 
 
and for the negative binomial link function, 

 
 

  
 

Tweedie 
 

   
 
where 

 
for 

 

                                           for 

 
Note: is a digamma function, which is the derivative of logarithm of a gamma function, 
evaluated at z; that is, . 

As mentioned above, for normal distribution with identity link function which is a classical linear 
regression model, there is a closed form solution for both  and τ, so no iterative process is 
needed. The solution for , after applying the SWEEP operation in GLM procedure, is 

 
  

                          xTx xT   XTΨX XTΨ , 



 

GENLIN Algorithms 

 
 

 
 

where Ψ diag and  Z is the generalized inverse of a matrix Z. If the scale 
parameter  is also estimated by the ML method, the estimate of τ is 

 

xT     
 
 

For the ordinal multinomial model: 
 

s 
 

where 
 

 
 

 
and 

 

for 

 

Note: if         or        then for all cumulative link functions. 

Second Derivatives 

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML 
method, H is a p×p matrix with the following form 

 
T 

 
 

where W is an n×n diagonal matrix. There are two definitions for W depending on which 
algorithm is used: We for Fisher scoring and Wo for Newton-Raphson. The ith diagonal element 
for We is 

 

 

and the ith diagonal element for Wo is 

   
T 
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where        and are defined in Table 46-4 “Distribution, range and variance of the 
response, variance function, and its first derivative” and Table 46-8 “The first and second 
derivatives of link function”, respectively. Note the expected value of Wo is We and 
when the canonical link is used for the specified distribution, then Wo = We. 

If the scale parameter is estimated by the ML method, H becomes a (p+1)×(p+1) matrix with the 
form 

 

 

where is a p×1 vector and T is a 1×p vector and the transpose of . 
For all three continuous distributions: 

 
 

 

x 
 

 
The forms of β for negative binomial are as follows depending on the link functions: 

For all appropriate link functions other than negative binomial link function, 

 
 

 

x 
  

 
for the negative binomial link function, 

 

x 
 
 

The forms of   are listed in the following table. 
Table 46-13 
The second derivative functions w.r.t. the scale parameter for probability distributions 
Distribution 

 

 
Normal  

 
 

 
 

Inverse Gaussian  

 
 

 
 

T 

T 

β 

β 
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Distribution 

 

 
Gamma  

 

Negative 
Binomial 

 
 
 
 
 
where for all appropriate link functions other than negative binomial link function, 

 
 
 

and for the negative binomial link function, 
 

 
  

 
Tweedie 

 
 

Note: is a trigamma function, which is the derivative of , evaluated at z. 
 

and the evaluation of it is similar to that of the series               . 
 
 

For the ordinal multinomial model: 
 
 

. 

 
 

The elements of H have two forms: (1) the expected first derivatives of the estimating equation 
s which is applied to Fisher scoring and (2) the first derivatives of the estimating equation s 
which is applied to Newton Raphson. 

 
Expected second derivatives have the following expressions: 

 

Β ΒT 
ψ 
 
β 

ψT 

ψT 

ψ 
 
β 

βT 

βT 
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for 
 
 
 
 
 
 
 
 
 
 

Second derivatives have the following expressions: 
 

 
Iterations 

 

An iterative process to find the solution for  (which might include , k for negative binomial 
or Ψ for multinomial) is based on Newton-Raphson (for all iterations), Fisher scoring (for all 
iterations) or a hybrid method. The hybrid method consists of applying Fisher scoring steps for 
a specified number of iterations before switching to Newton-Raphson steps. Newton-Raphson 
performs well if the initial values are close to the solution, but the hybrid method can be used  
to improve the algorithm’s robustness from bad initial values. Apart from improved robustness, 
Fisher scoring is faster due to the simpler form of the Hessian matrix. 
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The following notation applies to the iterative process: 
Table 46-14 
Notation 
Notation Description 
I Starting iteration for checking complete separation and quasi-complete separation. It 

must be 0 or a positive integer. This criterion is not used if the value is 0. 
J The maximum number of steps in step-halving method. It must be a positive integer. 
K The first number of iterations using Fisher scoring, then switching to Newton-Raphson. 

It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all 
iterations and a value greater or equal to M means using Fisher scoring for all iterations. 

M The maximum number of iterations. It must be a non-negative integer. If the value is 
0, then initial parameter values become final estimates. 

p, Tolerance levels for three types of convergence criteria. 

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria 
and Abs = 0 if relative change is used. 

 
And the iterative process is outlined as follows: 

1. Input values for I, J, K, M, p, and Abs for each type of three convergence criteria. 

2. Input initial values 𝛽𝛽(0) or if no initial values are given, 

3. Let ξ=1. 

4. Compute estimates of ith iteration: 

( ) ( )  ( ( , where is a generalized inverse of H. Then compute the 

log-likelihood based on    ( ). 

5. Use step-halving method if : reduce ξ by half and repeat step (4). The set of values 
of ξ is {0.5 j : j = 0, …, J – 1}. If J is reached but the log-likelihood is not improved, issue a 
warning message, then stop. 

6. Compute gradient vector and Hessian matrix  based on    ( ). Note that We is  used 
to calculate if i ≤ K; Wo is used to calculate if i>K. 

7. Check if complete or quasi-complete separation of the data is established (see below) if 
distribution is binomial or ordinal multinomial and the current iteration i ≥ I. If either complete or 
quasi-complete separation is detected, issue a warning message, then stop. 

8. Check if all three convergence criteria (see below) are met. If they are not but M is reached, 
issue a warning message, then stop. 

9. If all three convergence criteria are met, check if complete or quasi-complete separation of the 
data is established if distribution is binomial or ordinal multinomial and i<I (because checking 
for complete or quasi-complete separation has not started yet). If complete or quasi-complete 
separation is detected, issue a warning message, then stop, otherwise, stop (the process converges 
for binomial or ordinal multinomial successfully). If all three convergence criteria are met for the 
distributions other than binomial or ordinal multinomial, stop (the process converges for other 
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set = 0. 

 

 
 

distributions successfully). The final vector of estimates is denoted by  (and and  for ordinal 
multinomial).  Otherwise, go back to step (3). 

 
Initial Values 

 
If initial values are not specified by the user, they are calculated as follows: 

 
1. Set the initial fitted values   i  for a binomial distribution (yi can be 

a proportion or 0/1 value) and   i for a non-binomial distribution.  From these derive  
= , and If  becomes undefined, set        . 

2. Calculate the weight matrix with the diagonal element                          , where is 
set to 1 or a fixed positive value. If the denominator of  becomes 0, 

3. Assign the adjusted dependent variable z with the ith observation 
for a binomial distribution and for a non-binomial 

distribution. 

4. Calculate the initial parameter values 
 

β XT X XT z 
 

and 

 
if the scale parameter is estimated by the ML method. 

 
For the ancillary parameter k of the negative binomial model, the initial k = 1, so the initial τ = 0. 

For the ordinal multinomial model, let                      be the number of responses in category j, 

and be the effective sample size. Initial values for the threshold parameters, with and 

without the offset variable, are then computed according to the following formulae: 
 

 
and 
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for j=1,...,J−1, where 
 

Initial values for all regression parameters are set to zero. 

Scale Parameter Handling 

1. For normal, inverse Gaussian, gamma and Tweedie response, if the scale parameter is estimated 
by the ML method, then it will be estimated jointly with the regression parameters; that is, the last 
element of the gradient vector s is with respect to τ. 

2. If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for 
in each iteration of the above process. 

3. If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of 
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative 
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values 
and obtain the scale parameter estimate. 

 
Checking for Separation 

 
For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note 
here v refers to cases in the dataset) 

 

 

 

 

where 
 
 

 
 

if  success  
if  failure 

 

( is the probability of the observed response for case v) and xTβ 
 

For the ordinal multinomial model, the definitions are modified as follows: 
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The rules for checking complete separation or quasi-complete separation for binomial or 
multinomial models are otherwise the same. 

 
If   we consider there to be complete separation. Otherwise, if 

or and if there are very small diagonal elements (absolute  value 
) in the non-redundant parameter locations in the lower triangular matrix 

in Cholesky decomposition of –H, where H is the Hessian matrix, then there is a quasi-complete 
separation. 

 
Convergence Criteria 

 
The following convergence criteria are considered: 
 

  

where p and are the given tolerance levels for each type. 

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change 
with H = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If 
Hessian convergence is not met, a warning is displayed. 

 
Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors 

The parameter estimate covariance matrix, correlation matrix and standard errors can be 
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by 
ML, parameter estimate covariance and correlation matrices are listed for  only because the 
covariance between  and should be zero. 

If the ancillary parameter k (τ) of negative binomial is estimated by ML method, the parameter 
estimate covariance and correlation matrices are still listed for  only even though the covariance 
between  and is generally not zero. 

For the ordinal multinomial model, parameter estimate covariance and correlation matrices are 
listed for  and . 

Model-Based Parameter Estimate Covariance 
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Β 

 
B 

 
β 

 

 
 

The model-based parameter estimate covariance matrix is given by 
 

Σm Η 
 

where is the generalized inverse of the Hessian matrix evaluated at the parameter estimates. 
The corresponding rows and columns for redundant parameter estimates should be set to zero. 

 
Robust Parameter Estimate Covariance 

 
The validity of the parameter estimate covariance matrix based on the Hessian depends on the 
correct specification of the variance function of the response in addition to the correct specification 
of the mean regression function of the response. The robust parameter estimate covariance 
provides a consistent estimate even when the specification of the variance function of the response 
is incorrect.  The robust estimator is also called Huber’s estimator because Huber (1967) was 
the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity 
consistent covariance matrix) estimator because White (1980) independently showed that this 
variance estimate is consistent under a linear regression model including heteroskedasticity; or 
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich) 
estimator is defined as follows 

T 
Σr Σm Σm Σm T Σm 

 
For the ordinal multinomial model, 

T 
Σr=Σm Σm 

 
where 

 
 

Β = 

 
T T  T T 

 
       

   

 

 

 
 

 
 

 
 

 

     

 

 
 

  
 

Parameter Estimate Correlation 
 

The correlation matrix is calculated from the covariance matrix as usual. Let    be an element of 
Σm or Σr, then the corresponding element of the correlation matrix is . The corresponding 
rows and columns for redundant parameter estimates should be set to system missing values. 

 
Parameter Estimate Standard Error 

 
ψ 
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Let  denote a non-redundant parameter estimate for all distributions except multinomial. Its 
standard error is the square root of the ith diagonal element of Σm or Σr: 

 

 
The standard error for redundant parameter estimates is set to a system missing value. If the 
scale parameter is estimated by the ML method, we obtain and its standard error estimate 

, where  can be found in Table 46-13 “The second derivative functions w.r.t. 

the scale parameter for probability distributions”. Then the estimate of the scale parameter 
is exp (�̂�𝜏) and the standard error estimate is (exp (�̂�𝜏) ∙ 𝜎𝜎�𝜏𝜏) 

For the ordinal multinomial model, let be threshold parameter estimates and 
denote non-redundant regression parameter estimates. Their standard errors are 

the square root of the ith diagonal element of Σm or Σr:        and                                    
,respectively. 

 
Confidence Intervals 

There are two methods of computing confidence intervals for the non-redundant parameters. 
One is based on the asymptotic normality of the parameter estimators, and the other is based on 
the profile likelihood function. The latter is time consuming because it needs to run iterative 
processes many times. 

 
Wald Confidence Intervals 

 
Wald confidence intervals are based on the asymptotic normal distribution of the parameter 
estimates. The 100(1 – α)% Wald confidence interval for   j is given  by 

                                                     , 

where is the 100pth percentile of the standard normal distribution. 
 

If exponentiated parameter estimates are requested for logistic regression or log-linear models, 
then using the delta method, the estimate of is , the standard error estimate of 

is                         and the corresponding 100(1 – α)% Wald confidence interval 
for   is 

 

                                                                                    . 

Wald confidence intervals for redundant parameter estimates are set to system missing values. 

Similarly, the 100(1 – α)% Wald confidence interval for  or k of the negative binomial model is 

 

Additionally, for the ordinal multinomial model, the 100(1 – α)% Wald confidence interval for 

𝜓𝜓𝑗𝑗 is given by
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the estimate of is , the standard error  estimate of   is 

                     and the corresponding 100(1 – α)% Wald confidence interval for is 

Profile Likelihood Confidence Intervals 
 

The construction of profile likelihood confidence interval (PLCI) is first derived from the 
asymptotic Chi-square distribution of the generalized likelihood ratio test by Venzon and 
Moolgavkav (1988). We use the modified algorithm, which is equivalent to theirs, by Heinze and 
Ploner (2002). The computation is iterative and very time consuming, especially if the number 
of predictors is large because the number of iterative processes needed is 2px; for the ordinal 
multinomial model, it is 2(J – 1 + px). PLCIs for redundant parameter estimates are set to system 
missing values and won’t involve iterative processes. 

 
The iterative process is as follows: 

 
1. Let initial values    ( ) (note it might include τ; Ψ for multinomial) be the maximum likelihood 

estimates and initial log-likelihood ℓ(0), gradient vector s(0) and Hessian matrix H(0) are obtained 
based on    ( ). 

2. Calculate        , where   is the 100(1 – α)% percentile of the Chi-square 
distribution with one degree of freedom. 

3. Set the parameter number j = 1. 

4. Set the iteration number i = 1. 

5. Compute the incremental value λ at the (i – 1)th iteration: 
 

where e   is the jth unit vector. Take the positive values of λ first. 

In rare cases, the value in the above braces is negative or   is missing or undefined. In that 
case,   is undefined (note that   is highly unlikely to be undefined) and the parameters 
can’t be updated. To solve this problem, in general, we just take a simple average of parameters 
from the two previous iterations β( ) β( ) β( )  . If based on β( ) is still undefined, 

we continue the process up to 5 times by taking the average of the current β ( ) value and β( ) till 
  becomes defined, otherwise, we issue a warning and stop. 

6. Compute the step size d ( ) ( ) e . 

( ) ( ) ( ) 

e ( ) e 
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7. Update parameter estimates    ( )= ( ) d( ) 

8. Compute log-likelihood ℓ(𝑖𝑖), gradient vector 𝒔𝒔(𝑖𝑖) and Hessian matrix H(i) based on 𝛽𝛽(𝑖𝑖). Note 
that whether We or Wo is used to calculate H(i) should be based on what had been used in the 
maximum likelihood estimates of β. 

9. Check if the following two criteria with tolerance levels 𝜖𝜖ℓ and 𝜖𝜖𝐻𝐻 are satisfied: 

(a) ( )    

(b) ( ) ( 
     

( ) ( ) (           . 

If both criteria are met or the maximum number of iterations is reached, stop. Otherwise, set i = i 
+ 1 and go back to step (5). 

10. The final vector of estimates is denoted by , then  is the upper confidence limit for . 

11. Repeat steps (4) – (9) with negative values of λ in step (5) to find the lower confidence limit . 

12. Repeat steps (4) – (11) by setting the parameter number j = 2, …, px. 

Note 
 If the scale parameter or ancillary parameter k of the negative binomial model is estimated  

by ML method, then it will be estimated jointly with regression parameters for the iterative 
processes of each regression parameter βj, j = 1, …, px. Then the PLCI for will be obtained 
by the iterative processes as well, and is equal to                           .           Similarly, the profile 
likelihood confidence interval for is calculated as . 

 If the scale parameter or ancillary parameter k of the negative binomial model is set to be a 
fixed positive value, then it will be held fixed at that value for each iterative process. 

 If the scale parameter is specified for all distributions by the deviance or Pearson chi-square 
divided by degrees of freedom, then  will be held fixed at the value estimated from the 
deviance or Pearson statistic during the full model fit for each iterative process. For more 
information, see the topic “Goodness-of-Fit Statistics”. 

 
Chi-Square Statistics 

 
The hypothesis               is tested for each non-redundant parameter using the chi-square 
statistic: 

 

 

which has an asymptotic chi-square distribution with 1 degree of freedom. 
 

Chi-square statistics and their corresponding p-values are set to system missing values for 
redundant parameter estimates. 
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The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML 
method. 

 
For the ordinal multinomial model, the hypotheses                                                         and 

                                       are tested for threshold parameters and non-redundant regression 
parameters using the chi-square statistics 

 

 
and 

 

 
 

P Values 
 

Given a test statistic T and a corresponding cumulative distribution function G as specified 
above, the p-value is defined as  .  For example, the p-value for the chi-square 
test of               is . 

 

Model Testing 

After estimating parameters and calculating relevant statistics, several tests for the given model 
are performed. 

 
Lagrange Multiplier Test 

 
If the scale parameter for normal, inverse Gaussian, gamma, and Tweedie distributions is set to a 
fixed value or specified by the deviance or Pearson chi-square divided by the degrees of freedom 
(when the scale parameter is specified by the deviance or Pearson chi-square divided by the 
degrees of freedom, it can be considered as a fixed value), or an ancillary parameter k for the 
negative binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses 
the validity of the value. For a fixed  or k, the test statistic is defined  as 

 

 
 

where and  T  T evaluated at the 
parameter estimates and fixed or k value.  has an asymptotic chi-square distribution with 1 
degree of freedom, and the p-values are calculated accordingly. 
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For testing , see Table 46-12 “The 1st derivative functions w.r.t. the scale parameter for 
probability distributions” and see Table 46-13 “The second derivative functions w.r.t. the scale 
parameter for probability distributions” for the elements of s and A, respectively. 

 
If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998), 
the LM test statistic should now be based on the following auxiliary OLS regression (without 
constant) 

 

 
where and is an error term.  Let the response of the above OLS regression 

                              be and the explanatory variable be .  The estimate of the above 
regression parameter α and the standard error of the estimate of α are 

 
 
 

and  
 
 
 
 

where                       and . Then the LM test statistic is a z statistic 
 
 

 
 

 
 

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion 
in a Poisson model (               ).  Three p-values are provided.  The alternative hypothesis 
can be one-sided overdispersion (              ), underdispersion (              ) or two-sided 
non-directional (           ) with the variance function of                 . The calculation 
of p-values depends on the alternative. For            -value Φ where Φ is the 
cumulative probability of a standard normal distribution; for            -value Φ  and for 

        -value Φ 
 

Goodness-of-Fit Statistics 
 

Several statistics are calculated to assess goodness of fit of a given generalized linear model. 

Deviance 

The theoretical definition of deviance is: 
 

y y y 
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where y  is the log-likelihood function expressed as the function of the predicted mean values 

 (calculated based on the parameter estimates) given the response variable, and y  y  is the 
log-likelihood function computed by replacing  with y. The formula used for the deviance is 

, where the form of for the distributions are given in the following table: 
Table 46-15 
Deviance for individual case 

 
 

Note 
 When y is a binary dependent variable with 0/1 values (binomial distribution), the deviance 

and Pearson chi-square are calculated based on the subpopulations; see below. 
 When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r 

= m) for binomial distribution with r/m format, separate values are given for the deviance. 
Let be the deviance value for individual case i when yi = 0 for negative binomial and 
Poisson and 0/1 for binomial. 

Table 46-16 
Deviance for individual case 
Distribution 

 

 
 

Negative Binomial     if 

Poisson  if 

Binomial(m) 
 

  
 

 

       if 
if 

 

 

or 
or 

 
Pearson Chi-Square 

 
 

 
 

 
 

where for the binomial distribution and for other distributions. 

Scaled Deviance and Scaled Pearson Chi-Square 
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The scaled deviance is  and the scaled Pearson chi-square is               . 
 

Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution 
with N – px degrees of freedom, the deviance or Pearson chi-square divided by its  degrees 
of freedom can be used as an estimate of the scale parameter for both continuous and discrete 
distributions. 

 
                or            . 

 
If the ancillary parameter k of the negative binomial model is estimated by the ML method, the 
scale parameter is measured by the deviance or Pearson chi-square divided by its degrees of 
freedom, then the degrees of freedom is because k is the extra parameter estimated 
by ML method. 

 
If the scale parameter is measured by the deviance or Pearson chi-square, first we assume        , 
then estimate the regression parameters, calculate the deviance and Pearson chi-square values  
and obtain the scale parameter estimate from the above formula. Then the scaled version of both 
statistics is obtained by dividing the deviance and Pearson chi-square by . In the meantime, some 
statistics need to be revised.  The gradient vector and the Hessian matrix are divided by  and 
the covariance matrix is multiplied by . Accordingly the estimated standard errors are also 
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter 
estimates are not affected by . 

 
Note that two log likelihood values are displayed: the original one (based on        ) and the 
revised one (based on       which is plugged into the log likelihood function of the corresponding 
distribution). Prior to version 16, only the original one is displayed. The original log  likelihood 
is used in computing the information criteria but the revised log likelihood is used in the model 
fitting omnibus test. 

 
Overdispersion 

 
For the Poisson and binomial distributions, if the estimated scale parameter is not near the 
assumed value of one, then the data may be overdispersed if the value is greater than one or 
underdispersed if the value is less than one. Overdispersion is more common in practice. The 
problem with overdispersion is that it may cause standard errors of the estimated parameters to be 
underestimated. A variable may appear to be a significant predictor, when in fact it is not. 

 
Deviance and Pearson Chi-Square for Binomial with 0/1 Binary Response and Ordinal 
Multinomial 

 
When r and m (event/trial) variables are used for the binomial distribution, each case represents m 
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a 
single trial. The trial can be repeated for several times with the same setting (i.e. the same values 
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x 
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1  case 
with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation. 
Cases with common values in the variable list that includes all predictor variables are regarded as 
coming from the same subpopulation. When the binomial distribution with binary response is 
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used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we 
calculate them based on the cases, the results might not be useful. 

 
If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the 
data should be reconstructed from the single trial format to the events/trials format. Assume the 
following notation for formatted data: 
Table 46-17 
Notation 
Notation Description 
ns Number of subpopulations. 
rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the 

jth subpopulation. So rj0 is that with y = 0 in the jth subpopulation. 
mj Total weighted observations; mj = rj1 + rj0. 
yj1 The proportion of 1s in the jth subpopulation; yj1 = rj1/ mj. 

The fitted probability in the jth subpopulation   would be the same for each case in the 
jth subpopulation because values for all predictor variables are the same for each case.) 

 
The deviance and Pearson chi-square are defined as follows: 

 
and                                  , 

 
then the corresponding estimate of the scale parameter will be 

 

   and            . 

The full log likelihood, based on subpopulations, is defined as follows: 
 

 
where  is the kernel log likelihood; it should be the same as the kernel log-likelihood computed 
based on cases before, there is no need to compute again. 

 
For the ordinal multinomial model, similarly, the data will be reconstructed based on 
subpopulations. Assume the following notation for reconstructed ordinal multinomial data: 
Table 46-18 
Notation 
Notation Description 
ns Number of subpopulations. 
rij Sum of the product of the frequencies and the scale weights associated with  the jth 

category in the ith subpopulation. 
mi 

Total weighted observations for the ith subpopulation; 
 

                    The fitted probability for the jth category in the ith subpopulation. 

 
The deviance and Pearson chi-square are defined as follows. 
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and 
 

 

with         degrees of freedom, where . The corresponding estimates of 
the scale parameter will be 

 

 
and 

 

The full log likelihood, based on subpopulations, is defined as follows: 
 

 
 

where again   is the same as before. 

Information Criteria 

Information criteria are used when comparing different models for the same data. The formulas 
for various criteria are as follows. 
 

 
 
where ℓ is the log-likelihood evaluated at the parameter estimates. Notice that d = px if only is 
included; d = px + 1 if the scale parameter is included for normal, inverse Gaussian, gamma, and 
Tweedie, or k for the negative binomial distribution; for multinomial, d = J – 1 + px. 

Notes 
 ℓ (the full log-likelihood) can be replaced with ℓk (the kernel of the log-likelihood) depending 

on the user’s choice. 
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 If the scale parameter is specified by the deviance or Pearson chi-square, then the log 

likelihood is based on        , for fair comparison among different models. 
 When r and m (event/trial) variables are used for the binomial distribution, then the N used 

here would be the sum of the trials frequencies; . In this way, the same value 

results whether the data are in raw, binary form (using single-trial syntax) or in summarized, 
binomial form (events/trials syntax). 

 
Test of Model Fit 

The model fitting omnibus test is based on –2 log-likelihood values for the model under 
consideration and the initial model. For the model under consideration, the value of the –2 
log-likelihood is 

 

 

Let the initial model be the intercept-only model if intercept is in the considered model or the 
empty model otherwise. For the intercept-only model, the value of the –2 log-likelihood is 

 

 

For the empty model, the value of the –2 log-likelihood is 
 

 
Then the omnibus (or global) test statistic is 

 

for the intercept-only model or 
 

for the empty model. 
 

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in 
the number of valid parameters between the model under consideration and the initial model. 
r = for the intercept-only model,; r = for the empty model.  The p-values then can 
be calculated accordingly. 

 
Note if the scale parameter or the ancillary parameter is estimated by the ML method in the model 
under consideration, then it will also be estimated by the ML method in the initial model. 

 
For the ordinal multinomial model, the value of –2 log-likelihood for the model under 
consideration is 

 

 

the value of –2 log-likelihood for the thresholds-only model is 

B 



 

GENLIN Algorithms 

 
 

 
 
 

B 
 
 

where B ψ β is the initial parameter values used in the iterative process. Then the 
omnibus test statistic is 

 

B 
 

and it has an asymptotic chi-square distribution with degrees of freedom. 
 

When calculating the value of –2 log-likelihood of initial model, the following rules are used to 
handle the scale parameter or the ancillary parameter k in the initial model. 

 
If the scale parameter or the ancillary parameter is estimated by the ML method in the model 
under consideration, then it will also be estimated by the ML method in the initial model. 

 
If the scale parameter or the ancillary parameter is held fixed in the model under consideration, 
then the same value is fixed in the initial model. 

 
If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees   
of freedom in the model under consideration, then that value will be held fixed in the initial 
model.  Note that the log likelihood for the model under consideration would be revised; that 
is, based on      , so the log likelihoods for both models (the model under consideration and 
initial model) are calculated based on the same scale parameter value. This is to be consistent 
with the way chi-squares statistics in type I and III analyses are computed. Prior to version 16, 
the log likelihoods for both models are calculated based on        ; thus the omnibus test statistic 
will be different between 15 and later versions. 

 
Default Tests of Model Effects 

 
For each regression effect specified in the model, type I and III analyses can be conducted. 

Type I Analysis 

Type I analysis consists of fitting a sequence of models, starting with the null model as the 
baseline model (for all distributions except ordinal multinomial), adding one additional effect, 
which can be an intercept term (if there is one), covariates, factors and interactions, of the model 
on each step. For the ordinal multinomial model, the baseline model is a thresholds-only model. 
Thus, the test depends on the order of effects specified in the model. On the other hand, type III 
analysis won’t depend on the order of effects. The reason for using the null model as the baseline 
model is to obtain the chi-square statistic for the first parameter which might be for an intercept or 
the first predictor variable. 

 
There are two kinds of test statistics for type I analysis: likelihood ratio statistics and Wald 
statistics. 

B 
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Likelihood ratio statistics. Different formulae are used to calculate likelihood ratio statistics 
depending on how the scale parameter or ancillary parameter is handled. 
 Estimated by ML method. The likelihood ratio statistics are twice the difference of the log 

likelihoods between two successive models. Unlike type III analysis, we don’t obtain the log 
likelihood of the constrained model based on the type I test matrix. 
Start by considering the first pair of models η=ο (the null model with the log  likelihood 

and φ or k might be estimated) and η=xTβ ο (with the log likelihood and and 
φ or k are estimated jointly) and the test statistic for the null hypothesis     β 0 is 

The log-likelihood convergence criterion is used estimating the above two models. The 
tolerance level is the same as that used for the parameter estimation iterative process. A 
similar rule applies to usage of relative or absolute change. 
Note the optimal estimated scale parameter would be different for the above two models. If 
either log-likelihood is not available due to numerical problems in parameter estimation, then 
the test statistic, degrees of freedom and p-value are all set to system missing values. Similar 
rules will apply to other pairs of models below. 
Then consider the second pair of two models η=xTβ ο and η=xTβ xTβ ο, the test 
statistic for the null hypothesis     β 0 based on β  is 

Then consider the third pair of models    η=  T T offset, and 
η=  T T T offset.  The likelihood ratio statistic for the null hypothesis 

             0 

Continue this way until all effects in the model are included. Similar convergence criterion 
applies to all reduced models except the full model. Each likelihood ratio statistic S has an 
asymptotic chi-square distribution with degrees of freedom equal to the difference in the 
number of parameters estimated in the successive models. The p-values can be calculated 
accordingly. 

 Set to a fixed positive value. The likelihood ratio statistics are calculated as above except  
 or k is held fixed at that value. 

For the ordinal multinomial model, the scale parameter can be set to a fixed value or be 
specified by the deviance or Pearson chi-square divided by degrees of freedom. We briefly 
describe how the statistics can be constructed when it is a fixed value here. 
First, consider the first pair of two models η=ψ ο and η=ψ−xTβ ο, the likelihood ratio 
statistic for the null hypothesis     β 0 based on Ψ is 

β 

Then consider the second pair of two models η=ψ + o and η=ψ−X1T β1 + o, the likelihood 
ratio statistic for the null hypothesis 𝐻𝐻0 ∶  𝛽𝛽2 = 0 based on  ψ and β1is 

ψ ψ 
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Again, S has an asymptotic chi-square distribution with degrees of freedom equal to the 
difference in the number of parameters in the successive models. 

 Specified from the full model by the deviance or Pearson chi-square. In this case, the likelihood 
ratio chi-square and F statistics can be computed to assess the significance of each additional 
effect. 
Suppose that is the log-likelihood from fitting a generalized model (model f) and that 

is the log-likelihood from fitting a sub-model (model s). Both models are fit assuming 
the scale parameter equals 1.  Then the test statistic is defined by 

It has an asymptotic chi-square distribution with r degrees of freedom, where r is the difference 
in the number of parameters between the two models and  is estimated from the full model. 
In some references the test statistic is defined by 

where  is the deviance from fitting model f and  is the deviance from fitting a sub-model 
s. However, this formulation can result in negative chi-square statistics for negative binomial 
responses where the ancillary parameter is estimated by maximum likelihood. 
Since  is unknown and the estimator is the deviance or Pearson chi-square statistic divided 
by its degrees of freedom, then  has an asymptotic chi-square distribution with 
N−px degrees of freedom. Thus, the F statistic can be defined as 
F 
Under the assumption that and are approximately independent, 
the F statistic has an asymptotic F distribution with r and N−px degrees of  freedom, 
and the p-values can be calculated accordingly.  Note for the negative binomial with the 
ancillary parameter k estimated by the ML method and with the scale parameter measured 
by the deviance or Pearson chi-square divided by its degrees of freedom, the degrees of 
freedom in the denominator for the F statistic are N – px – 1; for the binomial distribution 
with 0/1 binary response, the degrees of freedom for the denominator should be ns – px; 
for the ordinal multinomial model, the degrees of freedom for the denominator should be 

                          . 
For type I analysis, model f is the higher order model obtained by including one 
additional effect in model s. For example, for the second pair of two models, model f is 
η=  T T o and model s is η=  T o. 

Wald Statistics. For each effect specified in the model, type I test matrix Li is constructed 
and H0:  Li   = 0 is tested.  Construction of matrix Li is based on the generating   matrix 

T T where Ω is the scale weight matrix with ith diagonal element and 
such that Li    is estimable. It involves parameters only for the given effect and the effects 
containing the given effect. If such a matrix cannot be constructed, the effect is not testable. 

 
Since Wald statistics can be applied to type I and III analysis and custom tests, we express Wald 
statistics in a more general form. The Wald statistic for testing , where Li is a r×p full 
row rank hypothesis matrix and K is a r×1 resulting vector, is defined by 
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   T T    
 
 

where  is the maximum likelihood estimate and Σ is the parameter estimates covariance matrix. S 
has an asymptotic chi-square distribution with degrees of freedom, where LΣLT  . 

If , then   LΣLT is a generalized inverse such that Wald tests are effective for a restricted 
set of hypotheses  containing a particular subset C of independent rows from H0. 

For type I and III analysis, calculate the Wald statistic for each effect i according to the 
corresponding hypothesis matrix Li and K=0. 

For the ordinal multinomial model, first consider partitions of the more general test  matrix 
L L ψ   L  β   , where L ψ l l  consists of columns corresponding to threshold 
parameters and  L β   be the part of L corresponding to regression parameters.  Consider  
matrix L0 l   L β where the column vectors corresponding to threshold parameters are 

replaced by their sum l l  .  Then LB is estimable if and only if L0 L0H  , where 

H XT   X XT   X    is a matrix constructed using X 1 X . The 
Wald statistic for testing LB K, where L is a  full row rank hypothesis matrix 
and K is a r× 1 resulting vector, is defined by 

 
 

where B� = (ψ� ,β�) is the maximum likelihood estimate and ∑ is the estimated covariance matrix 
(Σ could be the model based or robust estimator). The asymptotic distribution of S is C, where 

C LΣLT 

For each effect specified in the model excluding intercept, a type I test matrix Li is constructed and 
H0: LiB = 0 is tested. Construction of matrix Li is based on matrix H XT   X XT   X  and 
such that Liβ is estimable. Thus the way to construct Li (type I and III) for ordinal multinomial is 
the same as that for other distributions. 

 
Type III Analysis 

 
Similar to type I analysis, two kinds of test statistics are available for type I analysis: chi-square 
statistics and Wald statistics. 

 
Likelihood ratio statistics.  The likelihood ratio statistics can be obtained as  follows: 

 
Calculate the log-likelihood evaluated at the constrained maximum likelihood estimate under the 
constraint L𝑖𝑖𝛽𝛽 = 0 for each effect: 
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where L  is the type III test matrix for the  ith effect. will be obtained by sequential 
quadratic programming. For more information, see the topic “Sequential Quadratic 
Programming”. 

 
The calculation of and are based on how the scale parameter φ or the ancillary 
parameter k is handled: 

 
1. If φ or k is estimated jointly with β by ML method, then is the log likelihood evaluated at 

 and  or and is the log likelihood evaluated at and  or  under the constraint 
L         for each effect i. Note that the constraint should be expanded by including φ or k so that 
the last element in expanded β is φ or k and the last element in expanded L  is 0. 

 
2. If φ or k is set to a fixed value, then and are calculated with φ or k held fixed at that 

value for both unconstrained and constrained estimation processes. 
 

3. If φ is specified from the full model by the deviance or Pearson chi-square divided by degrees of 
freedom, then and are calculated with φ assumed to be 1. In addition, the deviance 
values for both unconstrained and constrained models are also calculated. 

 
Then calculate the likelihood ratio statistic for each effect i. 

 
1. If φ or k is estimated jointly with β by ML method or set to a fixed value, 

 

Then Si has an asymptotic chi-square distribution with degrees of freedom r, where r is equal to 
the rank of the   matrix. 

 
2. If φ is specified from the full model by the deviance or Pearson chi-square divided by degrees of 

freedom, 
 

                               and F 
 

respectively. Then Si has an asymptotic chi-square distribution with degrees of freedom r. F has 
an asymptotic F distribution with r and N−px degrees of freedom. Note for the negative binomial 
with the ancillary parameter k estimated by the ML method and with the scale parameter measured 
by the deviance or Pearson chi-square divided by its degrees of freedom, the degrees of freedom 
in the denominator for the F statistic are N – px – 1; for the binomial distribution with 0/1 binary 
response, the degrees of freedom for the denominator should be ns – px; for the ordinal multinomial 
model, the degrees of freedom for the denominator should be                           . 

 
Wald statistics. See the discussion of Wald statistics for Type I analysis above. L𝑖𝑖 is the type III 
test matrix for the ith effect.
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Sequential Quadratic Programming 

Sequential quadratic programming is a method of linear constrained optimization that can be 
applied to type III analysis and custom tests. It has the general form: 

μ    y 
K 

 

where L is a r×p full row rank hypothesis matrix and K is a r×1 resulting vector. Note for the 
ordinal multinomial model, L is a full row rank hypothesis matrix for ordinal 
multinomial. To simplify the notation, we write the log-likelihood as here. The Lagrange 
function with an r×1 vector of Lagrange multipliers is 

 

λ λΤ L K L 
 
 

The first order conditions with respect to  and λ are 
 

 

We would like to find a solution  ( andλ ) for the above KKT (Karush-Kuhn-Tucker) equations, 
which is a set of p + r equations. The method usually used is extensions of Newton Raphson’s 
method. First we replace the log-likelihood with its second-order Taylor approximation near to 
reform the problem 

δ δ Tδ δΤ δ 
s.t. L δ K 

 

This is a quadratic optimization problem with variable δ. We use the feasible start method solve 
the KKT equations. 

 
Feasible Start Method 

 
The feasible  values satisfy =K and belong to the domain of the log-likelihood.  If the  
initial values of  are feasible, then  L =0 and the constrained problem is almost the same as  
the Newton-Raphson method without constraints. The iterative process can be outlined briefly 
as follows: 

1. Find initial values    ( ) with L K (see below), then compute , and . 

2. Let . 

3. Find a solution of δ andλ for the following KKT equations: 
 

s.t.L 
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4. Compute estimates of ith iteration: 

( ) ( ) δ( ), then compute . 

5. Use step-halving method if :  reduce ξ by half and repeat step (4). If the 
maximum number of steps in step-halving is reached but the log-likelihood is not improved, stop. 

 
6. Check if convergence criteria (see below) are met. If they are or the maximum number of iterations 

is reached, stop. The final vector of estimates is denoted by  (  ). Otherwise, go back to step (2). 
 

Initial Values 
 

The initial values for constrained optimization under the constraint L β for each effect i in type 
III analysis can be obtained by applying the method the initial values obtained for unconstrained 
parameter estimation with a constraint that type III contrast equals zero. Specifically, follow steps 
(1) to (3) of the method for computing initial values for parameter estimation (see the appropriate 
section under “Parameter estimation”), then solve the following KKT equations 

 

XT X LT β 
L λ 

XT z . 
+ 

 
The solution will be a feasible point. Then the initial value for φ or k can be obtained as before. 
For the ordinal multinomial model, initial values for unconstrained parameter estimation can be 
applied here because they are feasible values. 

 
Convergence Criteria 

 
We only consider the log-likelihood convergence criterion for the constrained optimization 
problem to speed the iterative processes here. If and relative or absolute change is user-specified 
for the unconstrained optimization problem, then they will be also apply here; otherwise, the 
internal default values will be used. 

 
Estimated Marginal Means 

 
There are two types of estimated marginal means (EMMEANS) calculated here. One corresponds 
to the specified factors for the linear predictor of the model and the other corresponds to those  
for the response of the model.  EMMEANS for the predictor are equivalent to  LSMEANS 
(least-squares means) used by SAS. EMMEANS for the response are equivalent to conditional 
marginals used by SUDAAN or conditional prediction used by Lane and Nelder (1982). 

 
EMMEANS are based on the estimated cell means. For a given fixed set of factors, or their 
interactions, we estimate marginal means as the mean value averaged over all cells generated 
by the rest of the factors in the model. Covariates may be fixed at any specified value. If not 
specified, the value for each covariate is set to its overall mean estimate. 

 
For the ordinal multinomial model, EMMEANS are not available. 
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EMMEANS for the Linear Predictor 

 
Calculating EMMEANS for the Linear Predictor 

 
EMMEANS for the linear predictor are based on the link function transformation. They are 
computed for the linear predictor. Since the given model with respect to the linear predictor is a 
linear model, the way to construct L is the same as that for the GLM procedure. Each EMMEAN 
for the linear predictor is constructed such that LB is estimable. 

 
Briefly, for a given set of factors in the model, a vector of EMMEANS for the linear predictor is 
created for all combined levels of the factors. Assume there are r levels. This r×1 vector can be 
expressed in the form         . The variance matrix of    is then computed by 

V     =LΣLT 
 

The standard error for the jth element of 𝐯𝐯� is the square root of the jth diagonal element of V(𝐯𝐯�). 
Let the jth element of 𝐯𝐯� and its standard error be 𝑣𝑣�𝑗𝑗 and 𝜎𝜎�𝑣𝑣𝑗𝑗, respectively, then the corresponding 
100(1− 𝛼𝛼)% Wald confidence interval for 𝑣𝑣𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑟𝑟, is given by 

 

 

Comparing EMMEANS for the Linear Predictor 
 

We can compare EMMEANS for the linear predictor based on a selected contrast type, for which 
a set of contrasts for the factor is created. Let this set of contrasts define matrix C used for  
testing the hypothesis     Cv 0. A Wald statistic is used for testing given set of contrasts for 
the factor as follows: 

C T  CV CT C 

S has an asymptotic chi-square  distribution with degrees of freedom,  where 
rank  CV CT  . The p-values can be calculated accordingly. Note that adjusted p-values 

based on multiple comparisons adjustments won’t be computed for the overall test. 

Each row cT of matrix C is also  tested separately.  The estimate for the ith row is given by  
cT    and its standard error by cTV c .  The corresponding 100(1 – α)% Wald confidence 
interval for is given by 

 

cT 
 

The Wald statistic for cT is 
 

cT 

cTV c 

cTV c 
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It has an asymptotic chi-square distribution with 1 degree of freedom. The p-values can be 
calculated accordingly. In addition, adjusted p-values for multiple comparisons can also computed. 

 
EMMEANS for the Response 

EMMEANS for the response are based on the original scale of the dependent variable except for 
the binomial response with events/trials format (see note below). They can be defined as the 
estimator of the expected response for a subject conditional on his/her belonging to a specified 
effect and having the averages of covariates. Note that as for the so called predicted marginals 
used by SUDAAN or marginal prediction used by Lane and Nelder (1982), we will not offer them 
because they require some assumptions about the distribution of the predictor variables. 

 
Calculating EMMEANS for the Response 

 
The way to construct EMMEANS for the response is based on EMMEANS for the linear 
predictor. Let  be EMMEANS for the response and it is defined as 

 
                 L 

 
The variance of EMMEANS for the response is 

 

 

where is a r×r matrix and is the derivative of the inverse of 
the link with respect to the jth value in and 𝜕𝜕𝑔𝑔−1(𝑣𝑣�𝑗𝑗)/𝜕𝜕𝑣𝑣�𝑗𝑗 = 1/�́�𝑔(𝑀𝑀�𝑐𝑐𝑗𝑗) where �́�𝑔(𝑀𝑀�𝑐𝑐𝑗𝑗) is from 

Table 46-8. The standard error for the jth element of M�𝑐𝑐 and the corresponding confidence 
interval are calculated similarly to those of 𝐯𝐯�. For more information, see the topic “EMMEANS 
for the Linear Predictor”. 

 
Note:   is EMMEANS for the proportion, not for the number of events when events and trials 
variables are used for the binomial distribution. 

 
Comparing EMMEANS for the Response 

 
This is similar to comparing EMMEANS for the linear predictor; just replace with  and 

  with . For more information, see the topic “EMMEANS for the Linear Predictor”. 

 
Multiple Comparisons 

The hypothesis                  can be tested using the multiple row hypotheses testing technique. 
Let  be the ith row vector of matrix C. The ith row hypothesis is          . Testing is the 
same as testing multiple non-redundant row hypotheses simultaneously, where R is the 
number of non-redundant row hypotheses, and  represents the ith non-redundant hypothesis. A 
hypothesis  is redundant if there exists another hypothesis 𝐻𝐻0𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖 such that 𝑐𝑐𝑖𝑖 = 𝑟𝑟𝑐𝑐𝑗𝑗 ,𝑟𝑟 ≠ 0.
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Several different methods to adjust p-values are provided here. Please note that if the adjusted 
p-value is bigger than 1, it is set to 1 in all the methods. 

 
Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above 
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values. 
The only item needed to be adjusted in the confidence intervals is the critical value from the 
standard normal distribution. Assume that the original critical value is 𝑧𝑧1−𝛼𝛼/2 and the adjusted 
critical value is 𝑧𝑧∗. 

 
LSD (Least Significant Difference) 

The adjusted p-values are the same as the original p-values: 
 

 
The adjusted critical value is: 

 

 
Bonferroni 

The adjusted p-values are: 
 

 
The adjusted critical value is: 

 

 
Sidak 

The adjusted p-values are: 
 

 
The adjusted critical value is: 
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Sequential Bonferroni 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 

 

Sequential Sidak 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 

 

 
 

Comparison of Adjustment Methods 

A multiple testing procedure tells not only if  is rejected, but also if each individual   is 
rejected. All the methods, except LSD, control the family-wise type I error for testing ; that is, 
the probability of rejecting at least one individual hypothesis under . In addition, sequential 
methods also control the family-wise type I error for testing any subset of . 

 
LSD is the one without any adjustment, it rejects  too often. It does not control the family-wise 
type I error and should never be used to test . It is provided here mainly for reference. 

 
Bonferroni is conservative in the sense that it rejects   less often than it should. In some 
situations, it becomes extremely conservative when test statistics are highly correlated. 

 
Sidak is also conservative in most cases, but is less conservative than Bonferroni. It gives the 
exact type I error when test statistics are independent. 

 
Sequential Bonferroni is as conservative as the Bonferroni in terms of testing  because the 
smallest adjusted p-value used in making decision is the same in both methods. But in term of 
testing individual , it is less conservative than the Bonferroni. Sequential Bonferroni rejects at 
least as many individual hypotheses as Bonferroni. 
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Sequential Sidak is as conservative as the Sidak in terms of testing , but less conservative 
than the Sidak in terms of testing individual . Sequential Sidak is less conservative than 
sequential Bonferroni. 

 

Scoring 
 

Scoring is defined as assigning one or more values to a case in a data set. Two types are considered 
here:  predicted values and model diagnostics. 

 
Predicted Values 

 
Due to the non-linear link functions, the predicted values will be computed for the linear predictor 
and the mean of the response separately. Also, since estimated standard errors of predicted values 
of linear predictor are calculated, the confidence intervals for the mean are obtained easily. 

 
Predicted values are still computed as long all the predictor variables have non-missing values 
in the given model. 

 
Predicted Values of the Linear Predictors 

T o 

For the ordinal multinomial model, a predicted value of the linear predictor for category j is 
given by 

= xTβ 
 

Estimated Standard Errors of Predicted Values of the Linear Predictors 
 

For the ordinal multinomial model, the estimated standard error of   is given by 
 

= 

TΣ 

xT Σ x 
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where Σ   is a reduced parameter estimates covariance (1 + p)×(1 + p) matrix from Σ. Suppose 
Σ for ordinal multinomial models has the following form: 

 

 

then Σ will have the following form as it takes the corresponding elements in the jth row and 
column of Σ and Σ : 
 

 
 
Predicted Values of the Means 

 

where g−1 is the inverse of the link function. For binomial response with 0/1 binary response 
variable, this the predicted probability of category 1. 

 
For the ordinal multinomial model, a predicted value of the cumulative response probability 
for category j is given by 

xTβ 
 

Confidence Intervals for the Means 
 

Approximate 100(1−α)% confidence intervals for the mean can be computed as follows 

T o 

Approximate 100(1−α)% confidence intervals for the cumulative response probability can be 
computed as follows 

T 
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xTβ 
 

If either endpoint in the argument is outside the valid range for the inverse link function, the 
corresponding confidence interval endpoint is set to a system missing value. 

 
Predicted category for binomial and multinomial distributions 

 
For the binomial distribution with 0/1 binary response variable, the predicted category is 

 
(or success) if    
(or failure) otherwise 

 

For the ordinal multinomial model, the predicted category is the one with the highest predicted 
probability; that is 

 

x 
 

 If there are ties in determining x  , choose the category with highest   
 

 If there are still ties, choose the one with lowest category number. 
 

Diagnostics 

In addition to predicted values, we can calculate some values which would be good for model 
diagnostics for all distributions except the ordinal multinomial. 

 
Leverage 

 
The leverage value hi is defined as the ith diagonal element of the hat matrix 

H W X  XTW X XTW 
 

where the ith diagonal element for W   is 
 

 

Raw Residuals 
 

 

where yi is the ith response and is the corresponding predicted mean.  Note for binomial 
response with a binary format, y values are 0 for the reference category and 1 for the category 
we are modeling. 

 
Pearson Residuals 

x 
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The Pearson residual is the square root of the ith contribution to the Pearson chi-square. 
 

Deviance Residuals 
 

The deviance residual is the square root of the contribution of the ith observation to the deviance, 
with the sign of the raw residual. 

 
       sign  

 
where di is the contribution of the ith case to the deviance and sign() is 1 if its argument is positive 
and −1 if it is negative. 

 
Standardized (and Studentized) Pearson Residuals 

 

Standardized (and Studentized) Deviance Residuals 
 

sign 
 

Likelihood Residuals 
 

sign 
 

Cook’s Distance 
 

 
Generalized Estimating Equations 

Generalized estimating equations (GEE) extend the GZLM algorithm to accommodate correlated 
data. The algorithms of generalized estimating equations are based on Liang and Zeger (1986) 
and Diggle, Heagerty, Liang and Zeger (2002). 

 
Data Format 

The data formation in GEE is very different from that in GZLM, so the data used in GEE need to 
be formatted appropriately. The structure of the correlated data has two dimensions: there are 
some independent subjects (the subject effect) where each subject has correlated measurements 
(the within-subject effect). 

 
The subject effect can be a single variable or a list of variables connected by asterisks (*). In 
general, the number of subjects equals to the number of distinct combinations of values of the 
variables except under some circumstances (see example below). 



 

GENLIN Algorithms 

 
 

 
 

The within-subject effect defines the ordering of measurements within subjects. If specified, it 
can be a single variable or a list of variables connected by asterisks (*). The start and end of 
the within-subject effect could be different for each subject, so the whole data file is checked 
to find the complete set of measurements which include all distinct combinations of values of 
within-subject effect from all subjects. The dimension of the complete set of measurement will be 
the dimension of the working correlation matrix (see “Model ” for more information). If some 
measurements do not appear in the data for some subjects, then the existing measurements are 
ordered and the omitted measurements are treated as missing values. 

 
Note that the within-subject effect might not be equally spaced. This is relevant for the time 
dependent working correlation structures. We will assume that the lags based on the data ordered 
by the within-subject effect are appropriate and fit the model. 

 
The data have to be properly grouped by the subject effect and sorted by the within-subject effect 
if it exists. If you specify not to sort the data file (SORT=NO), we assume that the cases in the data 
file are pre-sorted. If you specify to sort the data file (SORT=YES), the data will be sorted internally 
by the subject effect and the within-subject effect, if the within-subject effect is specified. 

 
Consider the following artificial data: 
Table 46-19 
Example data 

 

center id year y x1 
A 11 91 4 0 
A 11 93 5 1 
A 12 93 5 1 
A 11 94 6 1 
A 12 94 6 0 
A 12 95 7 1 
B 1 91 6 0 
B 1 94 3 0 
B 2 93 5 1 
B 2 95 7 0 
B 2 94 8 1 

 
Suppose the subject effect is specified as center*id. The number of subjects or clusters depends on 
whether the within-subject effect is specified or not and whether the data are indicated to be sorted 
or not.  Thus we consider the following cases: 

 
Within-subject effect is specified, data will be sorted by procedure (SORT=YES) 

 
There are four distinct combinations for the subject effect: (center*id) = (A*11), (A*12), (B*1), 
(B*2). The data will be grouped internally based on them, so the number of clusters or groups = 
4. The complete set of measurements = (91, 93, 94, 95) with the dimension = 4, the maximum 
and minimum sizes of the within-subject effect are 3 and 2, respectively. Note the measurements 
for the within-subject effect are not equally spaced, we assume the measurements are spaced 
appropriately when calculating the time dependent working correlation structures. 
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Figure 46-1 
GEE model information about the data 

 
The data file is then organized internally as follows (subject and withinsubject are internal 
variables): 
Table 46-20 
Data file structure 
center id year y x1 subject withinsubject 

A 11 91 4 0 1 1 
A 11 93 5 1 1 2 
A 11 94 6 1 1 3 
A 11 95 . . 1 4 
A 12 91 . . 2 1 
A 12 93 5 1 2 2 
A 12 94 6 0 2 3 
A 12 95 7 1 2 4 
B 1 91 6 0 3 1 
B 1 93 . . 3 2 
B 1 94 3 0 3 3 
B 1 95 . . 3 4 
B 2 91 . . 4 1 
B 2 93 5 1 4 2 
B 2 94 8 1 4 3 
B 2 95 7 0 4 4 

 
Within-subject effect is not specified, data will be sorted by procedure (SORT=YES) 

 
There are still 4 distinct combinations for the subject effect and the number of clusters or groups = 
4. The dimension of the working correlation matrix is3 which is determined by the maximum size 
of measurements from all subjects, the maximum and minimum sizes of repeated measurements 
are 3 and 2, respectively.  A summary is as follows: 
Figure 46-2 
GEE model information about the data 
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The data file is then organized internally as follows (subject and withinsubject are internal 
variables): 
Table 46-21 
Data file structure 
center id year y x1 subject withinsubject 

A 11 91 4 0 1 1 
A 11 93 5 1 1 2 
A 11 94 6 1 1 3 
A 12 93 5 1 2 1 
A 12 94 6 0 2 2 
A 12 95 7 1 2 3 
B 1 91 6 0 3 1 
B 1 94 3 0 3 2 
B 1 . . . 3 3 
B 2 93 5 1 4 1 
B 2 95 7 0 4 2 
B 2 94 8 1 4 3 

 
Data will not be sorted by procedure (SORT=NO) 

 
When data are not to be sorted, the within-subject effect will be ignored whether specified or not. 

 
From the original data file, we notice that the same combinations of values for the subject effect 
are in different blocks, so they will be considered as different clusters. For example: 

 
The 1st cluster (certer*id = A *11) includes the 1st and 2nd observations. 

The 2nd cluster (center*id = A*12) includes the 3rd observation. 

The 3rd cluster (center*id = A*11) includes the 4th observation. 
 

The 4th cluster (center*id = A*12) includes the 5th and 6th observations. 

The 5th cluster (center*id = B*1) includes the 7th and 8th observations. 

The 6th cluster (center*id = B*2) includes the 9th, 10th and 11th observations. 
 

So the number of clusters =6. The dimension of the working correlation matrix is 3, the maximum 
and minimum sizes of repeated measurements are 3 and 1, respectively. A summary is as follows: 
Figure 46-3 
GEE model information about the data 
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The data file is then organized internally as follows (subject and withinsubject are internal 
variables): 
Table 46-22 
Data file structure 

 

center id year y x1 subject withinsubject 
A 11 91 4 0 1 1 
A 11 93 5 1 1 2 
A 11 . . . 1 3 
A 12 93 5 1 2 1 
A 12 . . . 2 2 
A 12 . . . 2 3 
A 11 94 6 1 3 1 
A 11 . . . 3 2 
A 11 . . . 3 3 
A 12 94 6 0 4 1 
A 12 95 7 1 4 2 
A 12 . . . 4 3 
B 1 91 6 0 5 1 
B 1 94 3 0 5 2 
B 1 . . . 5 3 
B 2 93 5 1 6 1 
B 2 95 7 0 6 2 
B 2 94 8 1 6 3 

 
After reformatting the data, we assume there are i = 1, …, K subjects or clusters where each 
subject or cluster has t = 1, …, ni correlated measurements. Note now that n1 = n2 =… = nk. The 
following notations should be applied to the reformatted data, not the original data. 

 

Notation 
 

The following notation is used throughout this section unless otherwise stated: 
Table 46-23 
Notation 

Notation Description 
K Number of subjects (clusters or groups) in the data set. It is an integer and K≥1. 
ni Number of complete measurements on the ith subject. It is an integer and ni≥1. 
n Total number of measurement; . It is an integer and n ≥ 1. 
p Number of parameters (including the intercept, if exists) in the model. It is an integer 

and p ≥ 1. 
px Number of non-redundant columns in the design matrix. It is an integer and px ≥ 1. 
y 

n × 1 dependent variable vector. y yT yT  T 
with y T for 

each i. 
r n × 1 vector of events for the binomial distribution; it usually represents the number 

of “successes”. All elements are non-negative integers. 



 

GENLIN Algorithms 

 

μ 

. 

   

 

 
 

Notation Description 
m n × 1 vector of trials for the binomial distribution. All elements are positive integers 

and mi ≥ ri, i=1,...,n. 
μ n × 1 vector of expectations of the dependent variable. 
η n × 1 vector of linear predictors. 
X n × p design matrix.  The vector for the tth measurement on the ith subject  is 

T, i = 1, …, K and t = 1, …, ni with if the model has an 
intercept. 

                            p × 1 vector of unknown parameters. The first element in  is the intercept, if there is 
one. 

ω n × 1 vector of scale weights. If an element is less than or equal to 0 or missing, the 
corresponding case is not used. 

f n × 1 vector of frequency counts. Non-integer elements are treated by rounding the 
value to the nearest integer. For values less than 0.5 or missing, the corresponding 
cases are not used. 

N 
Effective sample size. 

 
 

Model  
 

GEE offers the same link functions and distributions as those for GZLM. The generalized 
estimating equation is given by 

T 
                                    V     y     μ                 , 

 

where 
 

 
 

 
 

   

diag . . . 
 

   

 

.. . . .. 

 
   

 
 

diag is an matrix, V  is the assumed covariance matrix of yi 

and V    is a generalized inverse of V . 
 

If the measurements within the ith subject are independent like in GZLM, then  V  is a diagonal 
matrix which can be decomposed into 

 
V A I   A 

μ 
η 

η μ 

.. 



 
 

π 
B 

y T 

B T 
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where      diag  is an matrix and I is an identity 
matrix. However, if the measurements within the ith subject are correlated, we simply replace the 
identity matrix I with a more general correlation R(α) 

 
V 

 

where is an “working” correlation matrix which can be estimated through the 
parameter vector α. Since  usually doesn’t have a diagonal form, neither does V . If is 
indeed the true correlation matrix of the y ’s, then V  is the true covariance matrix of y . 

 
Ordinal Multinomial Model 

 
For ordinal multinomial GEE models, we need to transform original response variable and define 
some notation as follows: 
Table 46-24 
Notation 
Notation Description 
J Number of values for the ordinal response. It is an integer and J ≥ 2. 

n × 1 dependent variable vector. y yT yT with y T for 
each i. 

z K × ni × (J – 1)) × 1 transformed dependent variable vector. 

z zT zT  T 
z zT zT   T 

z T and 
if 
otherwise. 

π K × ni × (J – 1)) × 1 conditional response probability vector. 
π πT πT  T 

π πT πT    T 
and π T, 

where is the conditional response probability of measurement t on subject 
i for category j given the observed independent variable vector; that is, 

x  and for 
Conditional cumulative response probability of measurement t on subject i for category 
j given observed independent variable vector; that is, x 
Linear predictor value of measurement t on subject i for category j. It is related to 

through a cumulative link function. 
Ψ (J – 1) × 1 vector of threshold   parameters; ψ and 

                            p × 1 vector of regression parameters associated with model predictors; 
β 

(J – 1 + p) × 1 vector of all parameters; Β ψT βT 
 

The generalized estimating equation for estimating parameters B is given by 

T 
B V z π , 

 
 

where 
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.. .. .. .. . 

ρ 

V 
. . 

 

 
 
 
 

. . . . . . 
      

 

 

 

 
   

  
  

 
. . . . . . 

   
  

   
 

 

and for all 
 

  
 

  
 

 

 
 
 

 
 

 
for or and 

 

 

 
 

 
 

   
 

 

and 
 
 

and V    is a is a generalized inverse of V .  Here 
 

V , 
 

where 
 

 
 
 

 

and 

 
diag , , , 

 
diag , , , 

 

 

V ρ ρ 
ρ  

α . . 
. . 

ρ 
. . . 

ρ V 

. . . 
π 
B 

. 



 
 

.    
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and note that there is a subscript i in (α) which means each subject has different working 
correlation matrix.  In fact, only the diagonal blocks are different for different  subjects, 
the off-diagonal blocks will be the same for all subjects.  The diagonal blocks of  (α), 

V , with 

             diag , , 
 

and 
 

V diag , , π  πT 

 
   

.. . . .. 

    
 

 
 

 

are specified entirely by π   In particular, the diagonal elements of V   are 1 and 
off-diagonal elements are 

 

 

which are not constant and depend on the categories j and l at measurement t. The unknown 
off-diagonal blocks of (α) are the                matrix ρ α which 
we need to parameterize and estimate them. 

 
Working correlation matrix 

The working correlation matrix is usually unknown and should be estimated. We use the 
estimated Pearson residuals 

 

 
from the current fit of the model to estimate α. 

 
For the ordinal multinomial model, we define estimated Pearson-like residuals as follows 

 

 
and the vector 

r T 

The following structures are available. 
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if 

 

 
 

Independent 
 

The independent correlation structure is defined as: 
 

if 
otherwise 

 
 

For the ordinal multinomial model: 
 

ρ 0 
 

No parameters need to be estimated for this structure. 

Exchangeable 

The exchangeable correlation structure is defined as: 
 

if 
otherwise 

 
 

1 parameter is estimated as follows: 
 

 

where                      and is the number of non-missing measurements on the ith subject. 

For the ordinal multinomial model: 

α 
 
 
 

and ρ α and    . 

AR(1) 

The first-order autoregressive correlation structure is defined as: 
 

otherwise 
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1 parameter is estimated as follows: 
 

 
where is the number of non-missing pairs used in the numerator part for the ith subject. If 
there is no non-missing measurement for the ith subject, . 

 
For the ordinal multinomial model: 

 

α 
 
 

and ρ α and    . 

M-dependent 

The m-dependent correlation structure is defined as: 

if 
                          if  

0 otherwise 
 

m parameters are estimated as follows: 
 

 
where is the number of non-missing pairs for the ith subject in calculating . If there is no 
non-missing measurement for the ith subject, . 

For the ordinal multinomial model: 
 

α 
 
 

and ρ α  if 
otherwise 



 
 

r rT 
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Unstructured 
 

The unstructured correlation structure is defined as: 
 

if 
otherwise 

 

parameters are estimated as follows: 

 
 
 

 
 

 

 

 

where         if the ith subject has non-missing measurements at times u and v; 0 otherwise 

For the ordinal multinomial model: 

 

α 
 
 
 
 

and ρ α and  
 

Fixed 
 

The fixed correlation structure is defined as: 
 

if 
otherwise 

 

where is user-specified 
 

Fixed correlation structures are not allowed for ordinal multinomial models. 

No parameters need to be estimated for this structure. 

Notes 
 When the scale parameter is updated by the current Pearson residuals, the denominator for the 

α parameter vector is an estimator of the scale parameter. 
 The denominators in the above equations and in the estimator of the scale parameter are all 

adjusted by the number of non-redundant parameters (not subtracted by px). The user can 
specify that these adjustments not be used so that the numerator and denominator parts are 
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invariant to subject-level replication changes of the data. If the denominators are non-positive; 
that is, if the summation part is smaller than or equal to px, then only the summation part is 
used. 

 
Estimation 

Having selected a particular model, it is required to estimate the parameters and to assess the 
precision of the estimates. 

 
Parameter Estimation 

 
The algorithm for estimating model parameters using GEEs is outlined below. Note the scale 
parameter or the ancillary parameter k is not a part of parameter estimation and see below on 
how to deal with them. 

 
Some definitions are needed for an iterative process: 
Table 46-25 
Notation 
Notation Description 
M The maximum number of iterations. It must be a non-negative integer. If the value is 

0, then initial parameter values become final estimates. 
The number of iterations between updates of the working correlation matrix. It must be 
a positive integer. 

CORRTYPE The specified working correlation structure. 
p, Tolerance levels for different types of convergence criteria. 

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria and 
Abs = 0 if relative change is used. 

 

1. Input initial values    ( ) and/or    ( ) or if no initial values are given, compute initial estimates 
with an independent generalized linear model. 

2. Compute the working correlation R(α) based on    ( ), Pearson residuals and a specified working 
correlation structure (CORRTYPE). Check if R(α) is positive definite for  exchangeable, 
m-dependent and unstructured structures. If it is not, revise it to be equal to  R(α) I , where 
I is an identity matrix and ς is a ridge value such that the adjusted matrix is positive definite. If a 
fixed correlation matrix is specified by the users and it is not positive definite, issue a warning 
and stop. Then compute the initial estimate of the covariance matrix of y  (V ), the generalized 
estimating equation s(0), and generalized Hessian matrix H(0) (see formulae below) based on 

( ) and V . 

3. Initialize v=0. 

4. Set v=v+1. 

5. Compute estimates of vth iteration 



 
 

μ 

μ 
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6. If  is a positive integer, update the working correlation, checking for positive definiteness 
as above. 

7. Compute an estimate of the covariance matrix of y  and its generalized inverse 
 

V A R(α)A and   V A R(α)  A . 

For the ordinal multinomial model, replace R(α) with R  (α) in the above equations. 

8. Revise and  based on   (  ) and V . 

T 
                                  V 

 
T 

                                     V 
 

For the ordinal multinomial model, 
 

 
9. Check the convergence criteria. If they are met or the maximum number of iterations is reached, 

stop. The final vector of estimates is denoted by  (and  for the ordinal multinomial). Otherwise, 
go back to step (4). 

 
Scale Parameter Handling 

 
If no initial values are given,, the initial values are computed with an independent GZLM. The 
ways to deal with the scale parameter in the GZLM step (1) and the GEE step (7) are as follows: 
 For normal, inverse Gaussian, gamma, and Tweedie response, if the scale parameter is 

estimated by the ML method in step (1), then in step (7)  would be updated as 

where is the Pearson residual, and is the number of non-missing measurements on 
the ith subject. 

 If the scale parameter is set to a fixed value in step (1), then  would be held fixed at that 
value in step (7) as well. 

 
Convergence Criteria 

 
We consider parameter convergence and Hessian convergence.  For parameter convergence, 
we consider both absolute and relative change, but for Hessian convergence, we only consider 
absolute change because the log-likelihood values used as the denominator for relative change 

μ 



 
 

μ μ 

π 
B 

μ 
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are not valid for GEE. Let  p and be given tolerance levels for each type, then the criteria 
can be written as follows: 

 

 

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change 
with   H = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If 
Hessian convergence is not met, a warning is displayed. 

 
Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors 

Parameter Estimate Covariance 
 

Two parameter estimate covariance matrices can be calculated. One is the model-based estimator 
and the other one is the robust estimator. As in the generalized linear model, the consistency of the 
model-based parameter estimate covariance depends on the correct specification of the mean and 
variance of the response (including correct choice of the working correlation matrix). However, 
the robust parameter estimate covariance is still consistent even when the specification of the 
working correlation matrix is incorrect as we often expect. 

 

The model-based parameter estimate covariance is 
 

Σm  

T 
where   is the generalized inverse of                             V . 

 
 

For the ordinal multinomial model, H V 
 

The robust parameter estimate covariance is 
 

Σr 
 

 

where  

y μ y μ  T. 

T 
V   cov  y   V 

 

and y can be estimated by 

 
For the ordinal multinomial model, H 

be estimated by  z π z π 

V z   V and z can 

π 
B 

μ 

π 
B 

π 
B 
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Note that model-based parameter estimate covariance will be affected by how the scale parameter 
is handled, but the robust parameter estimate covariance will not be affected by the estimate of 
the scale parameter because  is cancelled in different terms. 

 
Parameter Estimate Correlation 

 
Parameter estimate correlation is calculated as described in GZLM. For more information, see the 
topic “Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors”. 

 
Parameter Estimate Standard Error 

 
Parameter estimate standard errors are calculated as described in GZLM. There is no standard 
error for the scale parameter in GEE. For more information, see the topic “Parameter Estimate 
Covariance Matrix, Correlation Matrix and Standard Errors”. 

 
Wald Confidence Intervals 

Wald confidence intervals are calculated as described in GZLM. For more information, see the 
topic “Confidence Intervals”. 

 
Chi-Square Statistics 

The chi-square statistics and corresponding p-values are calculated as described in GZLM. For 
more information, see the topic “Chi-Square Statistics”. 

 
Model Testing 

Since GEE is not a likelihood-based method of estimation, the inferences based on likelihoods 
are not possible for GEEs. Most notably, the Lagrange multiplier test, goodness-of-fit tests, and 
omnibus tests are invalid and will not be offered. 

 
Default tests of model effects are as in GZLM. For more information, see the topic “Default 
Tests of Model Effects”. 

 
Estimated marginal means are as in GZLM. For more information, see the topic “Estimated 
Marginal Means”. 

 
Goodness of Fit 

None of the goodness-of-fit statistics which are available for GZLM are valid for GEE. However, 
Pan (2001b) introduced two useful extensions of AIC as goodness-of-fit statistics for model 
selection based on the quasi-likelihood function. One is for working correlation structure selection 
and the other is for variable selection. Both of them are based on the quasi-likelihood function 
under the independence model and the known scale parameter assumptions. 

 
For the ordinal multinomial model, these goodness of fit statistics are not available because the 
log quasi-likelihood function cannot be derived. 
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Based on the model specification Ε( ) and Var(  ) , the (log) quasi-likelihood 
function for each case is 

 

 
or 

 

 
which we shall call the kernel quasi-likelihood and full quasi-likelihood, respectively. 

 
Since the components of Y are independent by assumption, the kernel and full quasi-likelihood 
for the complete data is the sum of the individual contributions 

 

   μ  ω y 
 
 

and 
 

   μ  ω y 
 
 

Since μ would depend on β, we change notation from          μ  ω  y  to  β  Ι  and 
       μ  ω y  to     β  Ι  where I implies independence assumption. The quasi-likelihood 
functions for the probability distributions are listed in the following table: 
Table 46-26 
Quasi-likelihood functions for probability distributions 

 
 
 

 



 
 

 
 

Then the quasi-likelihood under the independence model criterion (QIC) for choosing the best 
correlation structure is defined as 

 
QIC(R) = I trace I    
There are three terms in the above formula: 

1.             I  is the value of the quasi-likelihood computed using the parameter estimates from the 
model with hypothesized correlation structure R; that is, the estimates of . In evaluating the 
quasi-likelihood, we use  in place of . The scale parameter is unknown in practice, so we have 
to assign a value. If it is set to a fixed value by the user, then that value is used; otherwise 1 is 
used. Note that I   could be replaced by   I . 

2.    I is the generalized Hessian matrix obtained by fitting an independent working correlation 
model. 

 
3.    is the robust estimator for parameter estimate covariance from the model with hypothesized 

correlation structure R. 
 

Under the assumption that all modeling specifications in GEE are correct, 
trace I            , then the above QIC reduces to 

QICu(R) = I 
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So QICu(R) can be useful for choosing the best subset of covariates for a particular model. For 
the use of QIC and QICu(R), the model with the smallest value is preferred. Note again that 

I   could be replaced by   I . 
 

Default Tests of Model Effects 

For type I and III analyses, Wald statistics are still valid. 

Generalized Score Statistics 

For type I and III analyses, the method of constructing a generalized score statistic is the same, 
the only difference is the method of constructing L matrices. A generalized score statistic can be 
computed as follows (when the process is applied to the ordinal multinomial model, all formulae 
should be modified accordingly): 

 
Calculate  under the constraint  L      0 for each effect i, 

arg s.t. L 
 

where L  is a type III test matrix for the ith  effect. 
 

The iterative process to calculate the above optimal  is a combination of sequential quadratic 
programming and GEE parameter estimation. This kind of iterative process will be used here and 
for custom tests, so we will describe the iterative process in a more general form: 

arg s.t. L K. 
 

The iterative process is outlined briefly as follows: 

1. Find initial values    ( )  with L K as described in Section 2.3.4.2-(a). 

2. Compute the working correlation R(α) based on the last iteration’s estimate   ( ), Pearson 
residuals and a specified working correlation structure if                     is an integer, 
otherwise working correlation is not updated. 

3. Compute an estimate of the covariance matrix of y  and its generalized inverse 
 

V A R(α)A and   V A R(α)  A . 

Also compute and based on   ( ) and V as follows: 

T  
V

 

T  
V

 

μ 

μ μ 



 
 

T 

 

 
 

4. Find a solution of δ and λ for the following KKT equations 

T δ .
 

λ                                . 
5. Compute estimates of the vth iteration: 

( ) ( ) δ( ) 

6. Check if convergence criteria are met. If they are or the maximum number of iterations is reached, 
stop. The final vector of estimates is denoted by . Otherwise, go back to step (2). 

Note: the convergence criteria here are similar to those for parameter estimation, except that the 
Hessian convergence criterion is modified as follows: 

s( ) LTλ( )  T  
H( ) s( ) LTλ( ) 

Compute the generalized estimating equation based on the optimal . 

Calculate the generalized score statistic for each effect i, 

ΣmLT  L ΣrLT L Σm 
     

GS 
 

where Σm is the model-based parameter estimate covariance and Σr is the robust parameter 
estimate covariance, each evaluated at . Then the asymptotic distribution of  GS   is , where 
r is the rank of L  and the p-values can be calculated accordingly. 

 
Wald Statistics 

 
For more information, see the topic “Default Tests of Model Effects”. Note Σr (or Σrm) should be 
used as the estimated covariance matrix. 

 

Scoring  
 
Predicted values of the linear predictor, estimated standard errors of predicted values of linear 
predictor, predicted values of the means and confidence intervals for the means are calculated. 
For more information, see the topic “Predicted Values”. 

 

Only two types of residuals are offered as model diagnostics in GEE: raw residuals and Pearson 
residuals. For more information, see the topic “Diagnostics”. 
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GENLOG Multinomial Loglinear 
and Logit Models Algorithms 

This chapter describes the algorithms used to calculate maximum-likelihood estimates for the 
multinomial loglinear model and the multinomial logit model. This algorithm is applicable only to 
aggregated data. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

A Generic categorical independent (explanatory) variable. Its categories are 
indexed by an array of integers. 

B Generic categorical dependent (response) variable. Its categories are 
indexed by an array of integers. 

r Number of categories of B. r≥1 
c Number of categories of A. c≥1 
p Number of nonredundant (nonaliased) parameters. 
i Generic index for the categories of B. i=1,...,r 
j Generic index for the categories of A. j=1,...,c 
k Generic index for the parameters. k=1,...,p 

Observed count in the ith response of B and the jth setting of A.  

                                            Marginal total count at the jth setting of A.         

N Total observed count. 
Expected count.  

Probability of having an observation in the ith response of B and the jth 
setting of A. and =1 
Cell structure value. 

jth normalizing constant. 

                                          kth nonredundant parameter. 
 

A vector of . 

An element in the ith row and the kth column of the design matrix for the j 
setting. 

 
 

The same notation is used for both loglinear and logit models so that the methods are presented in 
a unified way. Conceptually, one can consider a loglinear model as a special case of a logit model 
where the explanatory variable has only one level (that is, c=1). 

 

Model 

There are two components in a loglinear model: the random component and the systematic 
component. 
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Random Component 

The random component describes the joint distribution of the counts. 
 The counts  at the jth setting of A have the multinomial 

distribution. 
 The counts and are independent if . 
 The joint probability distribution of is the product of these c independent multinomial 

distributions. The probability density function is 

 The expected count is E  . 
 The covariance is 

cov 
if

 
if 

where        if and         if    . 
 
Systematic Component 

The systematic component describes the linkage function between the expected counts and the 
parameters. The expected counts are themselves functions of other parameters. Explicitly, for 
i=1...,r and j=1,...,c, 

if 
if 

where 
 

 

Normalizing Constants 

are not considered as parameters, but as normalizing constants. 
 

 
Cell Structure Values 

The cell structure values play two roles in loglinear procedures, depending on their signs.  If 
, it is a usual weight for the corresponding cell and log (𝑧𝑧𝑖𝑖𝑖𝑖) is sometimes called the 

offset. If , a structural zero is imposed on the cell (𝐵𝐵 = 𝑖𝑖,𝐴𝐴 = 𝑗𝑗). Contingency tables 
containing at least one structural zero are called incomplete tables. If              but             , the cell
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                      contains a sampling zero. Although a structural zero is still considered part of 
the contingency table, it is not used in fitting the model. Cellwise statistics are not computed 
for structural zeros. 

 
Maximum-Likelihood  Estimation 

The multinomial log-likelihood is 
 

                                  constant 
 
 
Likelihood Equations 

It can be shown that: 
 

for 
 
 

Let                                 be the (p+1) gradient vector with 
 

 
The maximum-likelihood estimates                             are regarded as a solution to the vector of 
likelihood equations: 

 

 
Hessian Matrix 

The likelihood equations are nonlinear functions of β. Solving them for  requires an iterative 
method. The Newton-Raphson method is used. It can be shown  that 

 

where 
 

and 
 

Let  be the p×p information matrix, where  is the Hessian matrix of the log-likelihood. 
The elements of   are 

 
and 

 
Note:   is a symmetric positive-definite matrix.  The asymptotic covariance matrix of  
β is estimated by            . 
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Newton-Raphson Method 
Let   denote the sth approximation for the solution. By the Newton-Raphson method, 

 

 
Define .  The kth element of is 

 

 

where 
 

𝜂𝜂𝑖𝑖𝑖𝑖  

 
 

if and 
otherwise 

 

Then 
 

 

Thus, given  , the (s+1)th approximation   is found by solving this system of equations. 
 

Initial Values 
 

 , which corresponds to a saturated mode, is used as the initial value for . Then the initial 
estimates for the expected cell counts are 

 
if 
if 

 

where is a constant. 
 

Note: For saturated models, Δ is added to if . This is done to avoid numerical problems 
in case some observed counts are 0. We advise users to set Δ to 0 whenever all observed counts 
(other than structural zeros) are positive. 

 
The initial values for other quantities are 

 

 

and 
 

 

   

 
 

if and  
otherwise 



 
 

 

Stopping Criteria 
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The following conditions are checked for convergence: 

1. max provided that 

2. max 

3. 

 

The iteration is said to be converged if either conditions 1 and 3 or conditions 2 and 3 are satisfied. 
If p=0, then condition 3 will be automatically satisfied. The iteration is said to be not converged if 
neither pair of conditions is satisfied within the maximum number of iterations. 

 
Algorithm 

The iteration process uses the following steps: 

1. Calculate   ,   , and    . 

2. Set s=0. 

3. Calculate evaluated at  ; calculate evaluated at  . 

4. Solve for   . 

5. Calculate                           and 

if 
if 

6. Check whether the stopping criteria are satisfied. If yes, stop iteration and declare convergence. 
Otherwise continue. 

7. Increase s by 1 and check whether the maximum iteration has been reached. If yes, stop iteration 
and declare the process not converged. Otherwise repeat steps 3-7. 

 
Estimated Normalizing Constants 

The maximum-likelihood estimate for      is 
 

where 
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Estimated Cell Counts 
The estimated expected count is 

 

if 
if 

 
Goodness-of-Fit  Statistics 

The Pearson chi-square statistic is 
 

 

where 
 
 

 
 

                            if 
SYSMIS if 

if 
 

If any   is system missing, then  is also system missing. 

The likelihood-ratio chi-square statistic is

 
where 

 
If any   is system missing, then   is also system missing. 

 
Degrees of Freedom 

The degrees of freedom for each statistic is defined as                   , where E is the 
number of cells with 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 0 or 𝑚𝑚�𝑖𝑖𝑖𝑖 = 0. 

 
Significance Level 

The significance level (or the p value) for the Pearson chi-square statistic is Prob(𝑥𝑥𝑎𝑎2 > 𝑋𝑋2) and 
that for the likelihood-ratio chi-square statistic is Prob(𝑥𝑥𝑎𝑎2 > 𝐺𝐺2). In both cases, 𝑥𝑥𝑎𝑎2 is the central 
chi-square distribution with a degrees of freedom.             

 

 
 

 

or 

and 
and 
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Analysis of Dispersion (Logit Models Only) 
The analysis of dispersion is based on two types of dispersion: entropy and concentration. The 
following definitions are used: 

S(A) Dispersion due to the model 
S(B|A) Dispersion due to residuals 
S(B) Total dispersion 
R=S(A)/S(B) Measure of association 

 

where                   .  Also define 
 

 

The bounds are and 0        . 

 
Entropy 

 

 

where 

if  
if  

 

and 
 

 

where 

if 
if 

 

Concentration 
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Degrees of Freedom 
Source Measure Degrees of Freedom 
Model S(A)  

Residual S(B|A) 

Total S(B)  
 
 

where f equals p minus the number of nonredundant columns (in the design matrix) associated 
with the main effects of the dependent factors. 

 
Residuals 

Goodness-of-fit statistics provide only broad summaries of how models fit data. The pattern of 
lack of fit is revealed in cell-by-cell comparisons of observed and fitted cell counts. 

 
Simple Residuals 

The simple residual of the (i,j)th cell is 
 

if 
SYSMIS if 

 
Standardized Residuals 

The standardized residual for the (i,j)th cell is 
 

if and  
                                                                     if and 

SYSMIS otherwise 
 

The standardized residuals are also known as Pearson residuals even though  . 
Although the standardized residuals are asymptotically normal, their asymptotic variances are  
less than 1. 

 
Adjusted Residuals 

The adjusted residual is the simple residual divided by its estimated standard error. Its definition 
and applications first appeared in Haberman (1973) and re-appeared on page 454 of Haberman 
(1979).  This statistic for the (i,j)th cell is 

if and   
                                            if and  

SYSMIS otherwise 
 

where 
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. 

 

 
 

 

  is the (k,l)th element of . The adjusted residuals are asymptotically standard normal. 
 

Deviance Residuals 

Pierce and Schafer (1986) and McCullagh and Nelder (1989) define the signed square root of the 
individual contribution to the  statistic as the deviance residual. This statistic for the (i,j)th cell is 

 

sign 
 

where  
 

 
For multinomial sampling, the individual contribution to the  statistic is only , 
but this is negative when .  Thus, an extra term is added to it so that 

         for all i and j. However, we still have 
 
Generalized Residual 

Consider a linear combination of the cell counts , where  are real numbers. 

The estimated expected value is 

 

The simple residual for this linear combination is 
 

 

The standardized residual for this linear combination is 
 

The adjusted residual for this linear combination is, as given on page 420 of Haberman (1979), 
 

where 
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1 

 

 
 

 

 

Generalized Log-Odds Ratio 
Consider a linear combination of the natural logarithm of cell counts 

 

where   are real numbers with the restriction 
 

The linear combination is estimated by 
 

The variance of the estimate is 

var 

where 
 

 

Wald Statistic 
The null hypothesis is 

 

The Wald statistic is 
 

Under , W asymptotically distributes as a chi-square distribution with 1 degree of freedom. 
The significance level is Prob 2  .  Note: W will be system missing if the variance of 
the estimate is 0. 
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Asymptotic Confidence Interval 

The asymptotic                 confidence interval is 
 

where is the upper  point of the standard normal distribution. The default value of α is 
0.05. 

 
Aggregated Data 

This section shows how data are aggregated for a multinomial distribution. The following 
notation is used in this section: 

Number of cases for                     and  

sth caseweight for and 

Covariate 

Cell weight 

GRESID coefficient 

GLOR coefficient 

Number of positive (cell weights) for       
 
 

The cell count is 
 
 

 
where 

 
 

if  
if or 

if and 
if and 

 
and means summation over the range of s with the terms . 

 

The cell weight value is 
 

 

 

  

 
 

if and 
if and 
if 
if 

If no variable is specified as the cell weight variable, then all cases have unit cell weights by 
default. 

 
The cell covariate value is 
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The cell GRESID coefficient is 

 

 

 

  

if and 
if and 
if or 
 
 
if and 
if and 
if or 

 

There are no defaults for the GRESID coefficients. 
 

The cell GLOR coefficient is 
 

 

 

  

 
 

if and 
if and 
if or 

 

There are no defaults for the GLOR coefficients. 
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GENLOG Poisson Loglinear Model 
Algorithms 

This chapter describes the algorithm to calculate maximum-likelihood estimates for the Poisson 
loglinear model. This algorithm is applicable only to aggregated data. See “Aggregated Data”  
for producing aggregated data. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

B Generic categorical dependent (response) variable.  Its categories are 
indexed by an array of integers. 

r Number of categories of B. r≥1 
p Number of nonredundant (nonaliased) parameters. 
i Generic index for the category of B. i=1,...,r 
k Generic index for the parameters. k=0,...,p 

Observed count in the ith response of B.  

N 
Total observed count, equal to . N>0 

 
Expected count. 

Cell structure value. 

                                          The kth nonredundant parameter. 

β Vector of 
An element in the ith row and the kth column of the design matrix. 

 
 
 
 
Model 

 Because of the Poisson distribution assumptions, the logit model is not applicable for a 
Poisson distribution. 

 The Poisson distribution is available in GENLOG only. 
 
 
 

There are two components in a loglinear model: the random component and the systematic 
component. 

 

Random Component 

The random component describes the joint distribution of the counts. 
 The count has a Poisson distribution with parameter . 
 The counts and are independent if       . 
 The joint probability distribution of is the product of these r independent Poisson 

distributions.  The probability density function is 
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 The expected count is E . 
 The covariance is 

cov if 
if  

 

Systematic Component 

The systematic component describes the linkage function between the expected counts and the 
parameters. The expected counts are themselves functions of parameters. For , 

 
if 
if 

 

where 
 

 

Since there are no constraints on the observed counts,  is a free parameter in a Poisson loglinear 
model. 

 
Cell Structure Values 

Cell structure values play two roles in loglinear procedures, depending on their signs. If , it 
is a usual weight for the corresponding cell and  is sometimes called the offset. If  , a 
structural zero is imposed on the cell (B=i). Contingency tables containing at least one structural 
zero are called incomplete tables. If but , the cell (B=i) contains a sampling zero. 
Although a structural zero is still considered part of the contingency table, it is not used in fitting 
the model. Cellwise statistics are not computed for structural zeros. 

 
Maximum-Likelihood  Estimation 

The multinomial log-likelihood is 

 
                                  constant 

 
 
Likelihood Equations 

It can be shown that 
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Let                                 be the         gradient vector with 
 

 
The maximum-likelihood estimates                             are regarded as a solution to the vector of 
likelihood equations: 

 

 
Hessian Matrix 

The likelihood equations are nonlinear functions of β. Solving them for  requires an iterative 
method. The Newton-Raphson method is used. It can be shown  that 

 

 

 

 
 

 

 

 
 

 

 

 
 

Let   be the               information matrix, where   is the Hessian matrix of 
the log-likelihood.  The elements of   are 

 
and 

 
Note:   is a symmetric positive definite matrix.  The asymptotic covariance matrix of  is 
estimated by . 

 
Newton-Raphson  Method 

Let   denote the sth approximation for the solution to the vector of likelihood equations. By the 
Newton-Raphson method, 

 

Define .  The kth element of is 
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where 
 

Then 

 
 

if and 
otherwise 

 
 

  
 

Thus, given  , the (s+1)th approximation   is found by solving this system of equations. 
 
Initial Values 

 , which corresponds to a saturated model, is used as the initial value for β. Then the initial 
estimates for the expected cell counts are 

if 
if 

where is a constant. 
 

Note: For saturated models, Δ is added to if . This is done to avoid numerical problems 
in case some observed counts are 0. We advise users to set Δ to 0 whenever all observed counts 
(other than structural zeros) are positive. 

 
The initial values for are 

 
 

  

 
Stopping 
Criteria 

                    if and  
otherwise 

 

The following conditions are checked for convergence: 

1. max provided that 

2. max 

3. 

 

The iteration is said to be converged if either conditions 1 and 3 or conditions 2 and 3 are satisfied. 
If p=0, then condition 3 will be automatically satisfied. The iteration is said to be not converged if 
neither pair of conditions is satisfied within the maximum number of iterations. 

 
Algorithm 

The iteration process uses the following steps: 

1. Calculate and        . 
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or 

 

 
 

2. Set s=0. 

3. Calculate evaluated at  ; calculate evaluated at  . 

4. Solve for   . 

5. Calculate     and 

6. if 
if 

7. Check whether the stopping criteria are satisfied. If yes, stop iteration and declare convergence. 
Otherwise continue. 

8. Increase s by 1 and check whether the maximum iteration has been reached. If yes, stop iteration 
and declare the process not converged. Otherwise repeat steps 3-7. 

 
Estimated Cell Counts 

The estimated expected count is 
 

if 
if 

where 
 

 
Goodness-of-Fit Statistics 

The Pearson chi-square statistic is 
 

 

where 
 

 

 
 

 
 

                         if and  
SYSMIS if and  

if  
 

If any  is system missing, then  is also system missing. 
 

The likelihood-ratio chi-square statistic is 
 

where 
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If any   is system missing, then   is also system missing. 
 
Degrees of Freedom 

The degrees of freedom for each statistic is defined as , where E is the number 
of cells with        . 

 
Significance Level 

The significance level (or the p value) for the Pearson chi-square statistic is Prob(𝑥𝑥𝑎𝑎2 > 𝑋𝑋2) and 
that for the likelihood-ratio chi-square statistic is Prob(𝑥𝑥𝑎𝑎2 > 𝐺𝐺2). In both cases, 𝑥𝑥𝑎𝑎2 is the central 
chi-square distribution with 𝑎𝑎 degrees of freedom. 

 
Residuals 

Goodness-of-fit statistics provide only broad summaries of how models fit data. The pattern of 
lack of fit is revealed in cell-by-cell comparisons of observed and fitted cell counts. 

 
Simple Residuals 

The simple residual of the ith cell is 

if 
SYSMIS if 

 
Standardized Residuals 

The standardized residual for the ith cell is 

if and  
                                         if and 

SYSMIS otherwise 
 

The standardized residuals are also known as Pearson residuals because  when 
all .  Although the standardized residuals are asymptotically normal, their asymptotic 
variances are less than 1. 

 
Adjusted Residuals 

The adjusted residual is the simple residual divided by its estimated standard error. This statistic 
for the ith cell is 



 
 

and 
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where 

if                  
if and 

SYSMIS otherwise 

 

 
 

   
 

  is the (k,l)th element of . The adjusted residuals are asymptotically standard normal. 
 

Deviance Residuals 

Pierce and Schafer (1986) and McCullagh and Nelder (1989) define the signed square root of the 
individual contribution to the  statistic as the deviance residual. This statistic for the ith cell is 

 

sign 
 

where 
 

 
When all ,  

 
Generalized Residual 

Consider a linear combination of the cell counts , where  are real numbers. 

The estimated expected value is 

 

The simple residual for this linear combination is 
 

The standardized residual for this linear combination is 
 

Using the results in Christensen (1990, p. 227), the adjusted residual for this linear combination is 
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where 
 

 

 
  

where 
 

 

Generalized Log-Odds Ratio 
Consider a linear combination of the natural logarithm of cell counts 

 

where   are real numbers with the restriction 
 

The linear combination is estimated by 
 

The variance is 

var 

where 
 

 

Wald Statistic 
The null hypothesis is 

 

The Wald statistic is 
 



 
 

1 
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Under the null hypothesis, the statistic has asymptotic chi-square distribution with 1 degree 
of freedom.  The significance level is Prob 2  .  Note:W will be system missing if the 
variance is 0. 

 

Asymptotic Confidence Interval 

The asymptotic                  confidence interval is 
 

where is the upper  point of the standard normal distribution. The default value of α is 
0.05. 

 
Aggregated Data (Poisson) 

This section shows how data are aggregated for a Poisson distribution. The following notation is 
used in this section: 

 
 

 

 

 

 

 

 

 

The cell count is 
 
 

 
where 

Number of cases for 

sth caseweight for 

Covariate 

Cell weight 

GRESID coefficient 

GLOR coefficient 

Number of positive (cell weights) for       
 
 
 
 

if  
if or 

if and 
if and 

 
and means summation over the range of s with the terms . 

 

The cell weight value is 
 

 
 

  

 
 

if and 
if and 
if 
if 
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If no variable is specified as the cell weight variable, then all cases have unit cell weights by 
default. 

 

The cell covariate value is 
 

 

 

  

 
 

if and 
if and 
if or 

 

The cell GRESID coefficient is 

if and 
if and 
if or 

 
There are no defaults for the GRESID coefficients. 

 
The cell GLOR coefficient is 

if and 
if and 
if or 

 
There are no defaults for the GLOR coefficients. 
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GLM Algorithms 
GLM (general linear model) is a general procedure for analysis of variance and covariance, as 
well as regression. It can be used for both univariate, multivariate, and repeated measures designs. 
Algorithms that apply only to repeated measures are in “Repeated Measures ”. 

For information on post hoc tests, see Post Hoc Tests. For sums of squares, see Sums of 
Squares. For distribution functions, see Distribution and Special Functions.For Box’s M test, 
see Box’s M Test. 

 
Notation 

The following notation is used throughout this chapter. Unless otherwise stated, all vectors are 
column vectors and all quantities are known. 

n Number of cases. 
N Effective sample size. 
p Number of parameters (including the constant, if it exists) in the model. 
r Number of dependent variables in the model. 
Y n×r matrix of dependent variables. The rows are the cases and the columns 

are the dependent variables. The ith row is , i=1,...,n. 
X n×p design matrix.  The rows are the cases and the columns  are the 

parameters.  The ith row is , i=1,...,n. 
Number of nonredundant columns in the design matrix. Also the rank of 
the design matrix. 
Regression weight of the ith case. 

                                             Frequency weight of the ith case. 

B unknown parameter matrix. The columns are the dependent variables. The 
jth column is bj, j=1,...,r. 

Σ r×r unknown common multiplier of the covariance matrix of any row of Y. 
The (i, j)th element is , i=1,...,r, j=1,...,r. 

 
 

Model 
The model is  and is independently distributed as a p-dimensional normal distribution 
with mean and covariance matrix . The ith case is ignored if . 

 
Frequency Weight and Total Sample Size 

The frequency weight  is the number of replications represented by a case in IBM® SPSS® 
Statistics; therefore, the weight must be a non-negative integer. It is computed by rounding the 
value in the weight variable to the nearest integer. The total sample size is , 
where                 if and is equal to 0 otherwise. 
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The Cross-Product and Sums-of-Squares Matrices 
To prepare for the SWEEP operation, an augmented row vector of length is formed: 

 

 

Then the matrix is computed: 
 

 

This matrix is partitioned as 
 

 

The upper left p×p submatrix is X’WX and the lower right r×r submatrix is Y’WY. 
 
Sweep Operation 

Three important matrices, G, , and S, are obtained by sweeping the Z’WZ matrix as follows: 
 

1. Sweep sequentially the first p rows and the first p columns of Z’WZ, starting from the first 
row and the first column. 

2. After the pth row and the pth column are swept, the resulting matrix is 
 

where G is a p×p symmetric g2 generalized inverse of X’WX, is the p×r matrix of parameter 
estimates and S is the r×r symmetric matrix of sums of squares and cross products of residuals. 

 
The SWEEP routine is adapted from Algorithm AS 178 by Clarke (1982) and Remarks R78 by 
Ridout and Cobby (1989). 

 
Residual Covariance Matrix 

The estimated r×r covariance matrix is                      provided . If , then 
        . If , then all elements of  are system missing. The residual degrees of freedom is 

. If , then the degrees of freedom is system missing. 
 

Lack of Fit 
 

Source of Variation 
Lack of fit 

Sum of Squares df 

Pure error 
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Where is the number of unique combinations of observed predictor values and is the number 
of cases with the ith combination. 

 
Mean squares are calculated by dividing each sum of squares by its degrees of freedom. 

 
The F ratio for testing lack of fit is the ratio of the Lack of fit mean squares to the Pure error 
mean squares. 

 
The significance level is obtained from the F distribution with and degrees of 
freedom. 

 
Parameter  Estimates 

Let the elements of be , the elements of G, gij, and the elements of , . Then is 

estimated by  for i=1,...,p, j=1,...,r and is estimated by  for i, r=1,...,p, j, 
s=1,...,r . 

 
Standard Error of the Estimate 

 

When the ith parameter is redundant, the standard error is system missing. 
 

The t Statistic 

For testing H0 versus H1 , the t statistic is 
 

se if the standard error is positive 
SYSMIS otherwise 

The significance value for this statistic is CDF.T  t where CDF.T is the IBM® 
SPSS® Statistics function for the cumulative t distribution. 

 
Partial Eta Squared Statistic 

 

if and the denominator is positive 
                                                                    if but 

SYSMIS otherwise 
 

The value should be within        . 
 

Noncentrality Parameter 
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Observed Power 

 

where 𝑡𝑡𝑐𝑐 = IDF. T(1− α
2

,𝑁𝑁 − 𝑟𝑟𝑥𝑥) and α is the user-specified chance of Type I error 

              . NCDF.T and IDF.T are the IBM® SPSS® Statistics functions for the cumulative 
noncentral t distribution and for the inverse cumulative t distribution, respectively. 

 
The default value is . The observed power should be within . 

 

Confidence Interval 

For the p% level, the individual univariate confidence interval for the parameter is 
 

where 𝑡𝑡𝛼𝛼 = IDF. T(0.5(1 + 𝑝𝑝/100),𝑁𝑁 − 𝑟𝑟𝑥𝑥) for i=1,…,n,j=1,…,r. The default value of p is 
95 (0<p<100). 

 

Correlation 

corr if the standard errors are positive 
SYSMIS otherwise 

 
for i, r=1,...,n, j, s=1,...,r. 

 
Estimated Marginal Means 

Estimated marginal means (EMMEANS) are computed as the generic  expression with 
appropriate l and m vectors. l is a column vector of length p and m is a column vector of length r. 
Since the l vector is chosen to be always estimable, the quantity is in fact the estimated 
modified marginal means (Searle, Speed, and Milliken, 1980). When covariates (or products of 
covariates) are present in the effects, the overall means of the covariates (or products of covariates) 
are used in the l matrix. Suppose X and Y are covariates and they appear as X*Y in an effect; then 
the mean of X*Y is used instead of the product of the mean of X and the mean of Y. 

 
L Matrix 

For each level combination of the between subjects factors in TABLES, identify the nonmissing 
cases with positive caseweights and positive regression weights which are associated with the 
current level combination.  Suppose the cases are classified by three between-subjects factors: 
A, B and C. Now A and B are specified in TABLES and the current level combination is A=1 
and B=2. A case in the cell A=1, B=2, and C=3 is associated with the current level combination, 
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whereas a case in the cell A=1, B=3 and C=3 is not. Compute the average of the design matrix 
rows corresponding to these cases. 

If an effect contains a covariate, then its parameters which belong to the current level 
combination are equal to the mean of the covariate, and are equal to 0 otherwise. Using the above 
example, for effect A*X where X is a covariate, the parameter [A=1]*X belongs to the current 
level combination where the parameter [A=2]*X does not. If the effect contains a product of 
covariates, then the mean of the product is applied. 

The result is the l vector for the current between-subjects factor level combination. When none 
of the between-subjects effects contain covariates, the vector always forms an estimable function. 
Otherwise, a non-estimable function may occur, depending on the data. 

 
M Matrix 

The M matrix is formed as a series of Kronecker products 
 

 

where 
 

  

 
 

if the   th within subjects factor is specified in TABLES 
otherwise 

 

with   a column vector of length and all of its elements equal to 1. 
 

If OVERALL or only between-subjects factors are specified in TABLES, then                       for 
k=1,...,t. 

 
The column for a particular within-subjects factor level combination, denoted by m, is extracted 
accordingly from this M matrix. 

 
Standard Error 

if 
 

SYSMIS otherwise 

Since l are coefficients of an estimable function, the standard error is the same for any generalized 
inverse G. 

 
Significance 

 

The t statistic is 
 

if 
 

SYSMIS otherwise 
 

If the t statistic is not system missing, then the significance is computed based on a t distribution 
with degrees of freedom. 
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Pairwise Comparison 

The levels of a between-subjects or within-subjects factor can be compared pair-by-pair. For 
example, a factor with 3 levels produces 3 pairwise comparisons: 1 vs. 2, 1 vs. 3, and 2 vs. 3. 

 
Between-Subjects Factor 

 
Suppose the l vectors are indexed by the level of the between-subjects  factor as , 

                       and where  is the number of levels of between-subjects factor s and 
b is the number of between-subjects factors specified inside TABLES. The difference in estimated 
marginal means of level   and level of between-subjects factor s at fixed levels of other 
between-subjects factors is 

 
for  

 

The standard error of the difference is computed by substituting for l in (1): 
. 

 

Within-Subjects Factor 
 

Suppose the m vectors are indexed by level of the within-subjects   factor as , 
                       and , where is the number of levels of within-subjects factor s 

and w is the number of within-subjects factors specified inside TABLES. The difference in 
estimated marginal means of level   and level of within-subjects factor s at fixed levels 
of other within-subjects factors is 

 

for 
 

The standard error of the difference is computed by substituting for m in (1) 

 

Confidence Interval 

The                  confidence interval is: 
 

and   is the                     percentile of a t distribution with degrees of 
freedom.  No confidence interval is computed if . 

 
Saved Values 

Temporary variables can be added to the working data file. These include predicted values, 
residuals, and diagnostics. 



 
 

 
SYSMIS 

ij 

 

Predicted 
Values 
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The n×r matrix of predicted values is      . The ith row of  is              , i=1,...,n. Let the 
elements of  be   and the elements of XGX’ be . 

The standard error of   is 
 

for i=1,...,n, j=1,...,r 
 

The weighted predicted value of the ith case is . 
 
Residuals 

The n×r matrix of residuals is                  

.The ith row of  is , i=1,...,n. 

Let the elements of  be ;  then 
 

                    , for i=1,...,n, j=1,...,r 
 

The weighted residual is . 
 

Deleted Residuals (PRESS Residuals) 

The deleted residual is the predicted residual for the ith case that results from omitting the ith 
case from estimation.  It is: 

DRESID if and 
otherwise 

for i=1,...,n, j=1,...,r. 
 

Standardized Residuals 

The standardized residual is the residual divided by the standard deviation of data: 
 

ZRESID if 
SYSMIS otherwise 

 

Studentized Residuals 

The standard error for   is 

if and 
SYSMIS otherwise 

for i=1,...,n, j=1,...,r. The Studentized residual is the residual divided by the standard error 
of the residual. 



 
 

 
SYSMIS ij 
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SRESID if and 

otherwise 
 

Diagnostics 

The following diagnostic statistics are available. 
 

Cook’s Distance 
 

Cook’s Distance D measures the change to the solution that results from omitting each observation. 
The formula is 

 

 

for i=1,...,n, j=1,...,r.  This formula is equivalent to 
 

provided and 
 

When or ,   is system missing 

 
Leverage 

 
The leverage for the ith case (i=1,...,n) for all dependent variables is 

 
LEVER if 

SYSMIS otherwise 
 
Hypothesis Testing 

Let L be an l×p known matrix, M be an r×m known matrix and K be an l×m known matrix. 
The test hypotheses H0 versus H1 are testable if and only if LB is 
estimable. 

 
The following results apply to testable hypotheses only. Nontestable hypotheses are excluded. 

 
The hypothesis SSCP matrix is                                                 and the error 
SSCP matrix is              . 

 
Four test statistics, based on the  eigenvalues of , are available:  Wilks’ lambda, 
Hotelling-Lawley trace, Pillai’s trace, and Roy’s largest root. 

 

Let the eigenvalues of 𝐒𝐒𝐸𝐸−1𝐒𝐒𝐻𝐻 be 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑟𝑟𝐸𝐸 ≥ 0 and 𝜆𝜆𝑟𝑟𝐸𝐸+1 , … , 𝜆𝜆𝑚𝑚 = 0, and let 𝑟𝑟𝐸𝐸 =
𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟(𝐒𝐒𝐸𝐸); 𝑠𝑠 = min(𝑙𝑙, 𝑟𝑟𝐸𝐸) ;𝑟𝑟𝑒𝑒 = 𝑟𝑟 − 𝑟𝑟𝐗𝐗;𝑚𝑚∗ = 1

2
(|𝑟𝑟𝐸𝐸 − 𝑙𝑙| − 1);𝑟𝑟∗ = 1

2
(𝑟𝑟𝑒𝑒 − 𝑟𝑟𝐸𝐸 − 1). 
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Wilks’ Lambda 

 
 

When Ho is true, the F statistic 
 

follows asymptotically an F distribution, where 
 

 

if  
1 otherwise 

 
The degrees of freedom are . The F statistic is exact if s=1,2. See Rao (1951) and 
Section 8c.5 of Rao (1973) for details. 

 
The eta-squared statistic is                 . 

 
The noncentrality parameter is . 

 
The power is NCDF.F F where Fα is the upper 100α percentage point 
of the central F distribution, and α is user-specified on the ALPHA keyword on the CRITERIA 
subcommand. 

 

Hotelling-Lawley Trace 

In IBM® SPSS® Statistics, the name Hotelling-Lawley trace is shortened to Hotelling’s trace 
 

 

When Ho is true, the F statistic 
 

follows asymptotically an F distribution with degrees of freedom                                    
.The F statistic is exact if s=1. 

 
The eta-squared statistic is                           . 

 
The noncentrality parameter is                             . 

 
The power is 1 − NCDF. F(F𝛼𝛼, 𝑠𝑠(2𝑚𝑚∗ + 𝑠𝑠 + 1), 2(𝑠𝑠𝑟𝑟∗ + 1),𝜆𝜆) where Fα is the upper 100α 
percentage point of the central F distribution, and α is user-specified on the ALPHA keyword on 
the CRITERIA subcommand.
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Pillai’s Trace 

 

When Ho is true, the F statistic 
 

follows asymptotically an F distribution with degrees of freedom                                   
The F statistic is exact if s=1. 

 
The eta-squared statistic is       . 

 
The noncentrality parameter is                                   . 

 
The power is NCDF.F F where Fα is the upper 100α 
percentage point of the central F distribution, and α is user-specified on the ALPHA keyword on 
the CRITERIA subcommand. 

 
Roy’s Largest Root 

 

which is the largest eigenvalue of . When Ho is true, the F statistic is 
 

where is an upper bound of F that yields a lower bound on the significance level. 
The degrees of freedom are . The F statistic is exact if s=1. 

 
The eta-squared statistic is                    . 

 
The noncentrality parameter is                                       . 

 
The power is NCDF.F F where Fα is the upper 100α percentage point of 
the central F distribution, and α is user-specified on the ALPHA keyword on the CRITERIA 
subcommand. 

 

Individual Univariate Test 

i=1,...,m 
 

where  and  are the ith diagonal elements of the matrices  and  respectively. Under 
the null hypothesis, the F statistic has an F distribution with degrees of freedom . 

 
The eta-squared statistic is                                      

.The noncentrality parameter is . 
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The power is       NCDF.F F where Fα is the upper 100α percentage point of 
the central F distribution, and α is user-specified on the ALPHA keyword on the CRITERIA 
subcommand. 

 
Bartlett’s Test of Sphericity 

Bartlett’s test of sphericity is printed when the Residual SSCP matrix is requested. 
 
Hypotheses 

In Bartlett’s test of sphericity the null hypothesis is              versus the alternative 
hypothesis           where         is unspecified and  is an r×r identity matrix. 

 
Likelihood Ratio Test Statistic 

if  
 

SYSMIS if  
 

where                                         is the r×r matrix of residual sums of squares and cross 
products. 

 
Chi-Square Approximation 

Define           . When n is large and under the null hypothesis that for and         , 
 

where 
 
 
 
 
 

Chi-Square Statistic 
if 

SYSMIS otherwise 
 
Degrees of Freedom 

 

 

Significance 

CDF.CHISQ CDF.CHISQ CDF.CHISQ 
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where CDF.CHISQ is the IBM® SPSS® Statistics function for the cumulative chi-square 
distribution. The significance is reset to zero whenever the computed value is less than zero 
due to floating point imprecision. 

 
Custom Hypothesis Tests 

The TEST subcommand offers custom hypothesis tests. The hypothesis term is any effect 
specified (either explicitly or implicitly) in the DESIGN subcommand. The error term can be a 
linear combination of effects that are specified in the DESIGN subcommand or a sum of squares 
with specified degrees of freedom. The TEST subcommand is available only for univariate 
analysis; therefore, an F statistic is computed.  When the error term is a linear combination 
of effects and no value for degrees of freedom is specified, the error degrees of freedom is 
approximated by the Satterthwaite (1946) method. 

 

Notation   
The following notation is used in this section: 

 

 
Error Mean Square 

If the error term is a linear combination of effects, the error mean square is 

MS MS 

If the user supplied the mean squares, MS  is equal to the number specified after the keyword VS. 
If MS , the custom error term is invalid, and MS   is equal to the system-missing value and 
an error message is issued. 

 
Degrees of Freedom 

If MS and the user did not supply the error degrees of freedom, then the error degrees of 
freedom is approximated using the Satterthwaite (1946) method. Define 

MS if  
otherwise 
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MS 

 

 
 
 

Then .  The approximate error degrees of freedom is 
 

MS if 
SYSMIS otherwise 

If MS and the user supplied the error degrees of freedom,   is equal to  the number 
following the keyword DF. If        , the custom degrees of freedom is invalid. In this case,  is 
equal to the system-missing value and an error message is issued. 

 

F Statistic 

The null hypothesis is that all parameters of the hypothesis effect are zero. The F statistic is used 
for testing this null hypothesis. Suppose the mean square and the degrees of freedom of the 
hypothesis effect are MS and ; then the F statistic is 

MS if MS and MS 
  

SYSMIS otherwise 
 
Significance 

significance  CDF.F if and SYSMIS 
SYSMIS otherwise 

 
where CDF.F is the IBM® SPSS® Statistics function for the F cumulative distribution function. 

 
Univariate Mixed Model 

This section describes the algorithms pertaining to a random effects model. GLM offers mixed 
model analysis only for univariate models—that is, for r=1. 

 
Notation 

The following notation is used throughout this section. Unless otherwise stated, all vectors are 
column vectors and all quantities are known. 

k Number of random effects. 
Number of parameters in the fixed effects. 

Number of parameters in the ith random effect, i=1,...,k. 

                                          Unknown variance of the ith random effect,      , i=1,...,k. 

                                            Unknown variance of the residual term,         . 

The design matrix, i=0,1,...,k. 

                                          The length vector of parameters of the fixed effects. 
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                                          The length vector of parameters of the ith random effect, i=1,...,k. 

L The s×p full row rank matrix. The rows are estimable functions. s≥1 
 

Relationships between these symbols and those defined at the beginning of the chapter are: 
 

 
 
 

 
 
 

Model 
 
 
 

The mixed model is represented, following Rao (1973), as 
 

   
  

The random vectors and e are assumed to be jointly independent.  Moreover, the 
random vector is distributed as for i=1,...,k and the residual vector e is distributed 
as  . Thus, 

 
 
 
 
 
Expected Mean Squares 

For the estimable function L, the expected hypothesis sum of squares is 
 

  
  

where 
 

 
Since  , and . The matrix 

can therefore be computed in the following way: 

1. Compute an s×s upper triangular matrix U such that by the Cholesky decomposition. 

2. Invert the matrix U to give . 

3. Compute . 

. 



 

GLM Algorithms 

 
 

 
 

Now we have  .  If the rows of C are partitioned into the same-size 
submatrices as those contained in X—that is, 

 

 

where  is a submatrix—then , i=0,1,...,k. 
Since is equal to the sum of squares of the elements in , denoted by , 

the matrices need not be formed. The preferred computational formula for the expected 
sum of squares is 

 

 

Finally the expected mean square is 
 

For the residual term, the expected residual mean square is:            . 
 

Note:  GLM does not compute the term but reports the fixed effects whose 
corresponding row block in  contains nonzero elements. 

 
Hypothesis Test in Mixed Models 

Suppose   is the mean square for the effect whose estimable function is  L, and is the 
associated degrees of freedom. The F statistic for testing this effect is 

 

where   is the mean square of the error term with degrees of freedom. 
 

Null Hypothesis Expected Mean Squares 

If the effect being tested is a fixed effect, its expected mean square is 
 

where are coefficients and is a quadratic term involving the fixed effects. Under 
the null hypothesis, it is assumed that  . Although the quadratic term may involve effects 
that are unrelated to the effect being tested, such effects are assumed to be zero in order to draw a 
correct inference for the effect being tested. Therefore, under the null hypothesis, the expected 
mean square is 

 

If the effect being tested is a random effect, say the jth            random effect, its  expected  
mean square is 

. 
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Under the null hypothesis        ; hence, the expected mean square is 
 

 
Error Mean Squares 

 
Let  be the mean square of the ith                random effect. Let be the corresponding 
degrees of freedom. The error term is then found as a linear combination of the expected mean 
squares of the random effects: 

 

 
such that 

 

 
If               then . 

 
The error degrees of freedom is computed using the Satterthwaite (1946) method: 

 

 

If the design is balanced, the above F statistic is approximately distributed as an F distribution 
with degrees of freedom under the null hypothesis. The statistic is exact when only 
one random effect is used as the error term—that is, and for     . If the design is 
not balanced, the above approximation may not be valid (even when only one random effect is 
used as the error term) because the hypothesis term and the error term may not be independent. 

 
Repeated Measures 

The GLM (general linear model) procedure provides analysis of variance when the same 
measurement or measurements are made several times on each subject or case (repeated 
measures). The algorithms in this section apply solely to repeated measures designs. 

 

Notation 

The notation used in “GLM Algorithms” is used here. Additional conventions are defined below: 

t The number of within-subjects factors. 
c The number of measures. 
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The number of levels of the kth within-subjects factor.  

                                        The contrast matrix of the kth within-subjects factor, . It is 
a square matrix with dimension .  Each element in the first column is 
usually equal to  . For a polynomial contrast each element is , or, 
for a user-specified contrast, a non-zero constant The other columns have 
zero column sums. 

 
 

Number of Variables 
 

It is required that , the number of dependent variables in the model. 
 
 
Covariance Structure 

 
As usual in GLM, the data matrix is related to the parameter matrix B as . The rows 
of E are uncorrelated and the ith row has the distribution                   . Repeated measures 
analysis has two additional assumptions: 
                                     where  is the covariance matrix of the measures and   is the 

Kronecker product operator. 

 The Huynh and Feldt (1970) condition:  Suppose   is the (r,s)-th element of 
; then                          constant for    .  Matrices satisfying this 

condition result in orthonormally transformed variables with spherical covariance matrices; 
for this reason, the assumption is sometimes referred to as the sphericity assumption. A 
matrix that has the property of compound symmetry (that is, identical diagonal elements and 
identical off-diagonal elements) automatically satisfies this assumption. 

 
 
Tests on the Between-Subjects Effects 

 
The procedure for testing the hypothesis of no between-subjects effects uses the following steps: 

 
1. Compute where Mk;1 is the first column of the contrast matrix Mk 

of the kth within-subjects factors.  Note that M is an r×c matrix. 
 

2. For each of the between-subjects effects including the intercept, get the L matrix, according to 
the specified type of sum of squares. 

 
3. 

Compute   and . Both are c×c matrices. 

4. Compute the four multivariate test statistics: Wilks’ lambda, Pillai’s trace, Hotelling-Lawley 
trace, Roy’s largest root, and the corresponding significance levels. Also compute the individual 
univariate F statistics. 

 
5. Repeat steps 2 to 4 until all between-subjects effects have been tested. 
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Multivariate Tests on the Within-Subjects Effects 

The procedure for testing the hypothesis of no within-subjects effects uses the following steps: 

1. For the kth within-subjects factor, compute where         which 
is the second-to-last column of Mk when the kth within-subjects factor is involved in the effect. 
Otherwise,               . Note that M is an r×cd matrix, where d is the number of columns in the 
Kronecker product .  In general, d> 1. 

2. For each of the between-subjects effects, get the L matrix, according to the specified type of 
sum of squares. 

3. 
Compute   and . Both are cd×cd matrices. 

4. Compute the four multivariate test statistics: Wilks’ lambda, Pillai’s trace, Hotelling-Lawley 
trace, Roy’s largest root, and the corresponding significance levels. Also compute the individual 
univariate F statistics. 

5. Repeat steps 2 to 4 for the next between-subjects effect. When all the between-subjects effects 
are used, go to step 6. 

6. Repeat steps 1 to 5 until all within-subjects effects have been tested. 
 
Averaged Tests on the Within-Subjects Effects 

The procedure for the averaged test of the hypothesis of no within-subjects effects uses the 
following steps: 

1. Take Mk ( ) the equally spaced polynomial contrast matrix. 

2. Compute where   which is the 2nd to last column of Mk 
when the kth within-subjects factor is involved in the effect. Otherwise,                     . Note that 
M is an r×cd matrix, where d is the number of columns in the Kronecker product . 
In general, d> 1. 

3. For each of the between-subjects effects, get the L matrix, according to the specified type of 
sum of squares. 

4. Compute 𝐒𝐒𝐻𝐻 = (𝐋𝐋𝐁𝐁�𝐌𝐌)′(𝐋𝐋𝐋𝐋𝐋𝐋′)(𝐋𝐋𝐁𝐁�𝐌𝐌) and 𝐒𝐒𝐸𝐸 = 𝐌𝐌′𝐒𝐒𝐌𝐌. Both are 𝑐𝑐𝑐𝑐×𝑐𝑐𝑐𝑐 matrices. 

5. Partition into block matrices each of dimension d×d. The (k,l)th block, denoted as , 
(k=1,...,c and l=1,...,c), is a sub-matrix of  from row               to row kd, and from column

                  to column ld. Form the c×c matrix, denoted by , whose (k, l)th element is the trace 
of .  The matrix   is obtained similarly. 

6. Use  and  for computing the four multivariate test statistics: Wilks’ lambda, Pillai’s trace, 
Hotelling-Lawley trace, Roy’s largest root, and the corresponding significance levels. Note: Set 
the degrees of freedom for  (same as the row dimension of L in the test procedure) equal to drL 
and that for  equal to in the computations. Also compute the individual univariate F 
statistics and their significance levels. 
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7. Repeat steps 3 to 6 for each between-subjects effect. When all the between-subjects effects 
are used, go to step 8. 

8. Repeat steps 2 to 7 until all within-subjects effects have been tested. 
 

Adjustments to Degrees of Freedom of the F Statistics 

The adjustments to degrees of freedom of the univariate F test statistics are the Greenhouse-Geisser 
epsilon, the Huynh-Feldt epsilon, and the lower-bound epsilon. 

 
For any of the three epsilons, the adjusted significance level is 

 

 

where ε is one of the three epsilons. 

 
Greenhouse-Geisser epsilon 

 

 
Huynh-Feldt epsilon 

 

 
Lower bound epsilon 

 

 
Mauchly’s Test of Sphericity 

Mauchly’s test of sphericity is displayed for every repeated measures model. 

 
Hypotheses 

 
In Mauchly’s test of sphericity the null hypothesis is                      , versus the alternative 
hypothesis                   , where         is unspecified, I is an m×m identity matrix, and 
M is the r×m orthonormal matrix associated with a within-subjects effect. M is generated using 
equally spaced polynomial contrasts applied to the within-subjects factors (see the descriptions in 
“Averaged Tests on the Within-Subjects Effects”). 

 
Mauchly’s W Statistic 

if 
 

SYSMIS if 
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where and                                         is the r×r matrix of residual sums of 
squares and cross products. 

 

Chi-Square Approximation 
 

When n is large and under the null hypothesis that for and , 
 

where 
 

 

Chi-Square Statistic 

if 
SYSMIS otherwise 

 
Degrees of Freedom 

 

 

Significance 
 

 

where CDF.CHISQ is the IBM® SPSS® Statistics function for cumulative chi-square distribution. 
The significance will be reset to zero in case the computed value is less than zero due to floating 
point imprecision. 
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GLM: Testing for Heteroscedasticity

Introduction

When fitting a linear regression model, researchers are always supposed to be aware of the assumption of
homoscedasticity. When variance of the error is not constant across the observations, there would be loss in
efficiency of the parameters estimated by ordinary least squares (OLS). While model parameters might still
be estimated consistently by OLS, the inference

Although researchers may do graphic analysis to check the pattern of residuals by plotting them ver-
sus fitted values or predictors, the conclusion drawn from the plots may be subjective and implausible.
To statistically test the homoscedasticity assumption, we may apply different statistical tests: White’s
test [White, 1980], the Breusch-Pagan test [T. S. Breusch, 1979], and the modified Breusch-Pagan test
[Koenker, 1981, Koenker and Bassett Jr, 1982], all of which are based on the residuals of fitted linear re-
gression models. However, SPSS Statistics 24 and its previous versions do not offer any procedures or
options to conduct these tests.

To solve this problem and target SPSS Statistics 25, we provide in this document with the details on how
to derive the statistics for both White’s test and the (modified) Breusch-Pagan test. We derive the formulas
of the test statistics from classic linear regression models and make illustrative examples on how to obtain
the reference distributions. Through the following designed algorithms, we desire to offer White’s test and
two versions of the Breusch-Pagan test in SPSS Statistics 25.

Notations

The following notations defined in this section will be used for the subsequent sections.

Variables

n: Number of complete cases in the data set, which is an integer and n ≥ 1.

k: Number of parameters, including the constant term (if exists), in the model. It is an integer and k ≥ 1.

Y : A vector (n ∗ 1) of a continuous dependent variable.

X: A design matrix (n ∗ k), whose rows and columns represent the observations and the parameters,
respectively.

w: A vector (n ∗ 1) of regression weights.

f : A vector (n ∗ 1) of frequency weights.

N : Number of the effective sample size. N =
∑n
i=1 fi. If there is no f , then N = n.

β: A vector (k ∗ 1) of regression parameters to be estimated.

ε: A vector (n ∗ 1) of unobserved errors.

Models

We further define

• y = (y1, y2, . . . , yn)T denoting the observed values of Y ;

• β = (β1, β2, . . . , βn)T , whose values are unknown;

• ε = (ε1, ε2, . . . , εn)T , and assume ε ∼ (0,W−1/2ΩW−1/2), whereW−1/2 = diag
(
1/
√
w1, 1/

√
w2, · · · , 1/

√
wn
)
.

Note that in ordinary linear models, εi’s are assumed to be independent and homoscedastic with vari-
ance σ2, and Ω = σ2In, and
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• X =


1 x21 x31 · · · xk1
1 x22 x32 · · · xk2
...

...
...

...
1 x2n x3n · · · xkn

. Particularly, the ith row ofX is denoted by xTi , where i = 1, 2, · · · , n.

Given the ordinary linear regression model yi = β1 + β2x2i + β3x3i + · · · + βkxki + εi, or in the matrix
form y = Xβ + ε, we are interested in testing the homoscedasticity of ε, and will be presenting the test
statistics in the following sections.

White’s Test

Testing Hypothesis

The null hypothesis for White’s test is

H0 : σ2
i = σ2

0 for all i . (1)

Since White’s test does not make any assumptions about the form of the heteroscedasticity, the alternative
hypothesis for testing is simply the complement of H0, or H1 : Not H0. It has been argued that the generality
of White’s test may lead to a significant observed test statistic due to model misspecification other than
heteroscedasticity [Thursby, 1989]. Thus, the null hypothesis would be rejected if any one of the following
facts is violated:

• The regression errors are not of homoscedasticity;

• The regression errors are not independent of the predictors;

• The regression model is not correctly specified.

Test Statistic

Auxiliary regression

Let ε̂ be the estimated ε. Consider the following regression model

ε̂2 = θ1 + θ2x2 + θ3x3 + · · ·+ θkxk

+ θ22x
2
2 + θ23x2x3 + · · ·+ θ2kx2xk

+ θ33x
2
3 + θ34x3x4 + · · ·+ θ3kx3xk

+ · · ·
+ θ(k−1)(k−1)x

2
k−1 + θ(k−1)kxk−1xk

+ θkkx
2
k + e , (2)

which regresses the squared estimated residuals on all levels, squares, and second order cross products of the
design matrix X as well as a constant term. Note that the square of factors are not allowed. Actually, there
should be no redundant terms in the regression model (2). As pointed as an example in [White, 1980], if
xi1 = 1 and xi3 = x2

i2, it turns out that xi1xi3 = x2
i2 and thus only one term is allowed.

The observed test statistic

White’s test is based on the estimated (constant-adjusted) correlation coefficient R2
ε̂2

obtained from the
regression model (2). We let u = (w1ε̂

2, w2ε̂
2, · · · , wnε̂2)T denoting a vector (n ∗ 1) of squared weighted

residuals, and set

ū =
1

n

n∑
i=1

wiε̂
2
i and ū = (ū, ū, · · · , ū︸ ︷︷ ︸

n

)T . (3)
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Thus, the observed test statistic for White’s test is derived by

tWhite = n ∗R2
ε̂2

= n ∗ (u− ū)TZ(ZTZ)−1ZT (u− ū)

(u− ū)T (u− ū)

= n ∗ u
TZ(ZTZ)−1ZTu− nū2

uTu− nū2
, (4)

where Z is a design matrix including the constant term and unique levels, squares, and cross products of
X. For instance, if

X =


1 1 x31 x41
1 0 x32 x42
1 0 x33 x43
1 1 x34 x44

 , (5)

where x2 is a dummy variable, and x3 is an independent continuous predictor, then

Z =


1 1 x31 x41 x231 x241 x31 x41 x31x41
1 0 x32 x42 x232 x242 0 0 x32x42
1 0 x33 x43 x233 x243 0 0 x33x43
1 1 x34 x44 x234 x244 x34 x44 x34x44

 . (6)

Set Kz = number of columns in Z. Under the null hypothesis (1), tWhite ∼ χ2
ν , where ν = Kz − 1. For

Z in Equation (6), ν = 9− 1 = 8.
Note that ν can also be verified by

ν =
k ∗ (k + 1)

2
− number of redundant or constant terms in X . (7)

So for X in Equation (5), ν = 4 ∗ (4 + 1)/2− 2 = 8, since there are two constant terms including a dummy
predictor in X.

The Modified Breusch-Pagan Test

As an alternative approach to White’ test, the Bresuch-Pagan test is based on the Lagrangian multiplier
test [T. S. Breusch, 1979, Aitchison and Silvey, 1960].

Testing Hypothesis

The null hypothesis for the Breusch-Pagan test is

H0 : σ2
i = σ2h(α0 +αzi) and α = 0 , (8)

where h(·) is a function not indexed by i; σ2
i is the error variance for the ith observation; and α0 and α

are regression coefficients. Note that the Breusch-Pagan test assumes that the error terms are normally
distributed. It tests the null hypothesis of homoscedasticity versus the alternative hypothesis that the error
terms have a variance varying with the predictors.

Test Statistic

The observed test statistic for the Breusch-Pagan test is

tBP =
1

2

[
gTZ(ZTZ)−1ZTg

]
, (9)

where
g = ε̂2 ◦ n

ε̂T ε̂
− 1 , (10)
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where “◦” denotes the Hadamard product, or element-wise multiplication, in matrix manipulation.
For an implementation purpose and in presence of weights, Equation (9) is equivalent to

tBP =
uTZ(ZTZ)−1ZTu− nū2

2ū2
, (11)

where all the variables are defined in the same way as in Equation (4). Under the null hypothesis (8),
tBP ∼ χ2

ν , where ν = Kz − 1.
As aforementioned, the Breusch-Pagan test assumes that the residuals are normally distributed. A

modified test was suggested by [Koenker, 1981] and [Koenker and Bassett Jr, 1982] based on a more robust
estimator of the variance of ε2. The observed test statistic for the modified Breusch-Pagan test is

tMBP = n ∗ u
TZ(ZTZ)−1ZTu− nū2

uTu− nū2
, (12)

which shares the same form with White’s test. Similarly, under the null hypothesis (8), tMBP ∼ χ2
ν , where

ν = Kz − 1.

A Few Remarks

• The reference distribution is χ2
ν , which is the same for White’s test (Equation (4)), Breusch-Pagan

test (Equation (11)), and the modified Breusch-Pagan test (Equation (12)). The degree of freedom
ν = Kz − 1 is determined by the number of columns in Z.

• The difference between White’s test and the modified Breusch-Pagan test lies in the regressors contained
in Z. In White’s test, Z contains the regressors of all levels, squares, and cross products of those
regressors in X, or in the original regression model. For the modified Breusch-Pagan test, Z contains
a set of user-specified regressors. If Z is the same for the two tests, then tW = tMBP. From this
perspective, White’s test is a special case of the modified Breusch-Pagan test.

• The modified Breusch-Pagan test releases the assumption of normality.

• White’s test is general, since it makes no assumptions about the form of the heteroscedasticity. For
the (modified) Breusch-Pagan test, the alternative hypothesis is that the variance of ε varies with a
set of regressors, not necessarily the design matrix X in the original model.

F -Test

Testing Hypothesis

Wooldridge once proposed an F -statistic that did not require the normality assumption [Wooldridge, 2015].
Reconsider the regression model (2), and let Z = X, or

ε̂2 = θ1 + θ2x2 + θ3x3 + · · ·+ θkxk + e . (13)

If the homoscedasticity assumption holds, we would expect θ2 = θ3 = · · · = θk = 0. Actually, it is equivalent
to test whether there is an overall significance of the regression model.

Test Statistic

The observed F -test statistic for the regression model (13) is

tF =

(
R2
ε̂2

k − 1

)
/

(
1−R2

ε̂2

n− k

)
, (14)

where R2
ε̂2

is defined by Equation (4), and n and k are defined in Section . Under the null hypothesis that
the homoscedasticity holds, tF ∼ Fk−1,n−k.
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Testing by Using Predicted Values

To look at these proposed tests from a different perspective, a new idea occurs that we can regress square
errors on (high-order) fitted values. Consider a second-order auxiliary regression model using the fitted ŷ as
the regressors

ε̂2 = θ0 + θ1ŷ + θ2ŷ
2 + e , (15)

where we are interested in testing H0 : θ1 = θ2 = 0.
Similar to the Breusch-Pagan test, the modified Breusch-Pagan test, and F -test, we can construct tBP,

tMBP, and f as we have done in Equations (11), (12), and (14), respectively. The equations remain the same,
but instead use the fitted values to construct the design matrix Z.

Two Special Scenarios

When Z Contains Only Constant Term & Predicted Values

In this section, we talk about one special scenario in which the auxiliary regression model only contains ŷ
and a constant term. Consider Equation 16

ε̂2 = θ0 + θ1ŷ + e (16)

the auxiliary regression model by default, if uses specifies no regressors when testing for heteroscedasticity.
In this scenario, the design matrix becomes

Z =


1 ŷ21
1 ŷ22
1 ŷ23
1 ŷ24

 , which has only two columns. (17)

We can use this Z matrix to construct the Breusch-Pagan, the Modified Breusch-Pagan, and the F test
statistics aforementioned. Under the null hypothesis, we have

tBP =
uTZ(ZTZ)−1ZTu− nū2

2ū2
∼ χ2

1 , (18)

tMBP = n ∗ u
TZ(ZTZ)−1ZTu− nū2

uTu− nū2
∼ χ2

1 , (19)

and

tF =
(n− 2)R2

ε̂2

1−R2
ε̂2
∼ F1,n−2 , (20)

since Kz = 2 for all of the statistics.

When Z = X

In this section, we talk about the other special scenario in which the auxiliary and the original regression
model share the same regressors, or Z = X. Then we can just replace Z with X in the previously derived
test statistics. Under the null hypothesis, we have

tBP =
uTX(XTX)−1XTu− nū2

2ū2
∼ χ2

ν , (21)

tMBP = n ∗ u
TX(XTX)−1XTu− nū2

uTu− nū2
∼ χ2

ν , (22)

and

tF =

(
R2
ε̂2

k − 1

)
/

(
1−R2

ε̂2

n− k

)
∼ F1,n−2 . (23)
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GLM/UNIANOVA: Robust Standard Errors  

Introduction 
The GLM and UNIANOVA procedures for fitting the general linear model offer ordinary least squares 

(OLS) estimation and weighted least squares (WLS) estimation using a user-supplied known 

weighting variable. The standard assumption of homoscedastic or homogeneous errors is commonly 

violated in unknown ways, rendering these methods inefficient. So-called robust or heteroscedasticity-

consistent (HC) estimators of the covariance matrix (and therefore of the standard errors) of the 

parameter estimates are a popular approach to dealing with this problem, and users of SPSS Statistics 

have been requesting inclusion of such methods for some time. These enhancements offer a set of HC 

covariance matrix estimation options. 

Notation 
The following notation is used throughout the document unless otherwise stated: 

n Number of distinct records in the dataset. It is an integer and 1≥n . 

p Number of parameters (including parameters for dummy variables but excluding the 
intercept). It is an integer and 0≥p .  

p∗  Number of non-redundant parameters (excluding intercept if it exists). It is an integer and 
0 .p p∗≤ ≤  

y  1×n  vector of single dependent variable consists of iy . 

f  1×n vector of frequency count variable. If an element is not an integer, it is computed by 
rounding the value to the nearest integer. If it is less than 0.5 or if it is missing, the 
corresponding case is not used. 

g  1×n vector of regression weight. If there is no regression weight specified, 1=g . If 
regression weight ig for case i is zero, negative or missing, the corresponding case is not 
used. 

N Effective sample size.  it is a integer number, ∑
=

=
n

i
ifN

1
.If frequency count variable f is 

not used, N=n. 

X )1( +× pn  design matrix. The rows represent the cases and the columns represent the 
parameters. The ith row is 0( ,..., )xi i ipx x= , ni ,...,2,1= , with 10 =ix , The jth column is 
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T
1( ,..., ) ,X j j njx x= , pj ,...,1,0= , with T

0 (1,...,1) .X = . If there is no intercept, 

1{ }X X p
j j==   is a pn× matrix.  

G Symmetric generalized inverse of WXX T , ( )−WXX T  

ε  1×n  vector of unobserved errors . 

β  1)1( ×+p  vector of unknown parameters. ),,( 10 pββββ = . 0β  is the intercept, if it 

exists. If there is no intercept, T
p ),( 1 βββ =  is a 1×p  vector. 

β̂  1)1( ×+p  vector of estimated β . )ˆ,ˆ,ˆ(ˆ
10 pββββ = . If there is an intercept, 0β̂ is its 

estimate, else T
p )ˆ,ˆ(ˆ

1 βββ =  is a 1×p  vector. 

ŷ  Predicted value of y , consists of iŷ  

e  1×n  vector of residuals , y - ŷ . 

h  1×n  vector of leverages 

Model 

The standard general linear model of variable y on the design matrix X has the form 

= +y Xβ ε                                                                                                         (1) 

where ε  follows a normal distribution with mean 0 and variance 2 1σ −D , i.e., ( )2 1~ ,nN σ −Dε 0  

with ( )1
1diag 1 , ,1 ng g− =D  . Then the dependent variable y also follows a normal distribution with 

mean Xβ  and variance 2 1σ −D , ( )2 1~ ,nN σ −y X Dβ .  

Notes: 

1. The elements of ε  are independent with each other, so are those of y. 

2. X can be any combination of continuous and categorical effects and interaction effects, though 

in many cases only continuous covariates will be involved. See Lam (1995a) for further details 

on the parameterization of the design matrix X.  
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Least Squares Coefficient Estimation 

The coefficients are be estimated by the least squares (LS) method with the following closed form 

solution 

( )T Tˆ ,X WX X Wy
−

=β
      

(2) 

where ( ) ( )1 1 1diag , , diag , .W n n nw w g f , g f= =   

The actual computation of β̂  is done by applying sweep operations instead of applying equation (2). 

See Lam (1995b) for details.  

Robust Covariance Matrix and Standard Errors 

Homoscedasticity assumption 

The homoscedasticity assumption is that variance of the error ( 2σ ) is constant across all cases. When 

the assumption is violated, the OLS coefficient estimates are still consistent, but not efficient. So for 

valid inference, according to Huber (1967) or White (1980), a heteroscedastic consistent (HC) or 

robust estimator of covariance matrix of the estimated coefficient should be used.  

Robust Estimation of the Covariance Matrix of the Estimated Parameters 

A robust estimator of the covariance matrix of the estimated model parameters is: 

1 2 1 2ˆ ˆ' ,GX W W XG=Ψ Ω       (3) 

where Ω̂  is a diagonal matrix of  variance estimates of weighted residuals, 1
ˆ ( , , ),ndiag ω ω= …Ω  

and there are 5 estimators differ in their choice of the iω : 

HC0: 2
i i i iu g eω = =        (4) 
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HC1: ( ) ii u
XrankN

N
)(−

=ω      (5) 

HC2: 
1

1i i
i

u
h

ω =
−

       (6) 

HC3: 
( )2

1
1

i i
i

u
h

ω =
−

      (7) 

HC4: 
( ) i

i
i u

h iδ
ω

−
=

1
1

      (8) 

  where 







=

)(
,4min

Xrank
Nhi

iδ  

and hi is the ith diagonal element of T
ii

T GxxXGX = . 

Notes: 

• The estimator HC0 is introduced by White (1980), is justified by asymptotic arguments. 

• The estimator HC1 – HC3 are suggested by MacKinnon and White (1985) to improve the 

performance in small samples and Long and Ervin (2000) concluded that HC3 provided the 

best performance in sample samples based on Monte Carlo simulation. 

• The estimator HC4 was introduced by Cribari-Neto (2004) and was compared with earlier 

estimators via simulations and bootstrap tests and performed better than the other estimators. 

Affected statistics 

Many statistics computed previously would be affected by replacing the original or model-based 

covariance matrix 2 Gˆ s=Ψ  with the robust estimator 1 2 1 2ˆ ˆ'G GX W W X=Ψ Ω  (assume the (i, j) 

element in Ψ̂  is ,i jψ ) and they are listed according to areas: 

•  Statistics related to coefficient estimates:   

ˆ 1, 1ˆ ,
j

j jβσ ψ + += 0, ,j p=   (note that Ψ̂  includes intercept term if there is one); then t-

statistics, p-values and confidence intervals should be updated as well. 

• Statistics related to tests of individual effects: 
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When the robust estimator is used, F-statistics cannot be computed based on sums of squares 

any more. For each effect j, the F-statistic should be computed as  

( ) 1T T Tˆ ˆˆβ L L L L βj j j j
j

j

F
r

−

=
Ψ

     (9) 

where rj is the rank of Lj. 
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[6]. White, H. (1980). A Heteroskedastic-Consistent Covariance Matrix Estimator and a Direct Test 

of Heteroskedasticity. Econometrica, 48, 817-838. 

 



 

HILOGLINEAR Algorithms 
HILOGLINEAR fits hierarchical loglinear models to multidimensional contingency tables using an 
iterative proportional-fitting algorithm. 

 

The Model Minimum Configuration 

Consider an table. Let        be the observed frequency and         the expected frequency 
for cell (i, j, k). A simple way to construct a saturated linear model in the natural logarithms of the 
expected cell frequencies is by analogy with analysis of variance (ANOVA) models: 

 

 
where , and .  In general, each of the seven subscripted u-terms 
sums to zero over each lettered subscript. 

 
It can be shown (Bishop, Feinberg, and Holland, 1975), p. 65, that, under the commonly 
encountered sampling plans, the log-likelihood is 

 

 

where is independent of any parameters and N is total number of observations. Also, the n-terms 
adjacent to the unknown parameters are the sufficient statistics. The formulation of the above log 
likelihood is based on the saturated model.  When we consider unsaturated models, terms drop 
out and those that remain give the sufficient statistics. For instance, if we assume that there is no 
three-factor effect, that is,         for all i, j, and k, or more briefly , then 

 

 
and  and are the sufficient statistics for this reduced model. 
These statistics can be considered as tables of sums configurations and denoted by C with proper 
subscripts. For example, is the configuration   and is the configuration . 
Note that , and can be obtained from and . We then 
call the last three configurations  and minimal configurations or minimal statistics. 

 

Notation for Unlimited Number of Dimensions 

To generalize results, we denote the complete set of subscripts by a single symbol   . Thus, is 
the observed frequency in an elementary cell and is the cell weight.  We add a subscript to 

to denote a reduced dimensionality so that is the observed sum in a cell of . We  use the 
second subscript, i, solely to distinguish between different configurations. 
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Iterative Proportional Fitting Procedure (IPFP) 

We can obtain MLEs for the elementary cells under any hierarchical model by iterative fitting of 
the minimal sufficient configurations. To illustrate the algorithm, we consider the unsaturated 
model.  The MLEs must fit the configurations and .  The basic IPFP chooses an 
initial table  and then sequentially adjusts the preliminary estimates to fit and . 
Fitting to gives 

 

Subsequent fitting to   gives 
 

and similarly, after fitting   we have 
 

We repeat this three-step cycle until convergence to the desired accuracy is attained. The extension 
of the above procedure to the general procedure for fitting s configurations is straightforward. Let 
the minimal configurations be  for i=1,...,s, with cell entries    , respectively. The procedure is 
as follows: 

 
Initial Cell Estimates 

To start the iterations, if CWEIGHT is not specified, set 

if 
otherwise 

If CWEIGHT is specified, set 

if 
                                   if 

if  < < 
 
Intermediate Computations 

After obtaining the initial cell estimates, the algorithm proceeds to fit each of these configurations 
in turn.  After r cycles, the relations are 

                                           for 

 
Convergence Criteria 

The computations stop either when a complete cycle, which consists of s steps, does not cause any 
cell to change by more than a preset amount   ; that is, 
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for all 
 

or the number of cycles is larger than a preset integer max. Both    and max can be specified. The 
default for is 

 

and the default for max is 20. 
 
Goodness of Fit Tests 

The Pearson chi-square statistic is 
 

and the likelihood-ratio chi-square statistic is 
 

where the first summation is done over the cells with nonzero estimated cell frequencies while the 
second summation is done over cells with positive observed and estimated cell frequencies. The 
degrees of freedom for the above two statistics are computed as follows: 

 
Adjusted Degrees of Freedom 

Let  be the total number of the cells and P the number of parameters in the model. Also, let 
be the number of cells such that        . The adjusted degrees of freedom is 

 
adjusted df  

 
Unadjusted Degrees of Freedom 

unadjusted df  
 
Parameter Estimates and Standard Errors 

If a saturated model is fitted and neither nor is equal to zero for all cells, then the 
parameter estimates and their standard errors will be computed. Each estimate of the parameters 
in the saturated model can be expressed as a linear combination of the logarithms of the observed 
cell frequencies plus user-specified   , where the coefficients used in the linear combination 
add to zero. We discuss the rule of obtaining the coefficients. Consider, in general case, a 

frequency table with defining variables . Let   denote 
an L-term interaction involving. 𝑋𝑋𝑠𝑠1,                at level                     respectively. Denote A as a 
vector that is constructed in the way that its nonzero components correspond to the variables in the 
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parameter to be estimated and are set to the level of the variable. Let be a M-dim vector 
with components equal to cell IDs. That is, 

 

The coefficient is determined through the comparison of the components of A and 
. Let s be the number of nonzero components of A that do not match (equal) the 

corresponding components of  . Also, let matching occur at component . Then 
the coefficient for cell is 

 

The estimate of is then 
 

The large-sample variance of the estimate is 
 

For a large sample, the estimate approximately follows a normal distribution with the above mean 
and variance if the sampling model follows a Poisson, multinomial, or product-multinomial 
distribution. The confidence interval for the parameter can be computed based on the asymptotic 
normality. 

 
Residuals 

The following residuals are computed. 
 
Raw Residuals 

raw residual 
 

Standardized Residuals 

standardized residual 
 

where   must be greater than 0. 
 
Partial Associations and Partial Chi-squares 

Partial associations of effects can be requested when a saturated model is specified. Let be 
the chi-square for the model that contains the effects up to and including the k-interaction terms. 
The test of the significance of the kth-order interaction can be based on 
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Degrees of freedom are obtained by subtracting the degrees of freedom for the corresponding 
models. 

 
Model Selection Via Backward Elimination 

The selection process starts with the model specified (either via DESIGN or MAXORDER 
subcommand). The partial chi-square is calculated for every term in the generating class. Any 
term with zero partial chi-square is deleted, then the effect with the largest observed significance 
level for the change in chi-square is deleted, provided the significance level is larger than 0.05, 
the default. With the removal of a highest-order term, a new model with new generating class is 
generated. The above process of removing a term is repeated for the new model and is continued 
until no remaining terms in the model can be deleted. 
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HOMALS Algorithms 
The iterative HOMALS algorithm is a modernized version of Guttman (1941). The treatment of 
missing values, described below, is based on setting weights in the loss function equal to zero, and 
was first described in De Leeuw and Van Rijckevorsel (1980). Other possibilities do exist and can 
be accomplished by recoding the data (Gifi, 1981; Meulman, 1982). 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of cases (objects) 
m Number of variables 
p Number of dimensions 

 
For variable j; 

 
 

 

 

 

 
 

n-vector with categorical observations 

Number of valid categories (distinct values) of variable j 

Indicator matrix for variable j, of order 
 

when the   th object is in the  th category of variable 
when the  th object is not in the   th category of variable 

 

                                         Diagonal matrix, containing the univariate marginals; that is, the column 
sums of   

                                        Binary diagonal n×n matrix, with diagonal elements defined as 
 

when the  th observation is within the range 
when the  th observation outside the range 

 

The quantification matrices and parameter vectors are: 

X Object scores, of order n×p 
                                         Category quantifications, of order        . 

Y Concatenated category quantification matrices, of order 
 

Note: The matrices , , and  are exclusively notational devices; they are stored in reduced 
form, and the program fully profits from their sparseness by replacing matrix multiplications  
with selective accumulation. 

 
Objective Function Optimization 

The HOMALS objective is to find object scores X and a set of   (for ) so that 
the function 
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tr 
 

is minimal, under the normalization restriction , where the matrix , 
and I is the p×p identity matrix. The inclusion of  in  ensures that there is no influence 
of data values outside the range , which may be really missing or merely regarded as such; 

contains the number of “active” data values for each object. The object scores are also 
centered; that is, they satisfy , with u denoting an n-vector with ones. 

 
Optimization is achieved through the following iteration scheme: 

1. Initialization 

2. Update object scores 

3. Orthonormalization 

4. Update category quantifications 

5. Convergence test: repeat steps 2-4 or continue 

6. Rotation 
 

These steps are explained below. 
 

Initialization 

The object scores X are initialized with random numbers, which are normalized so   that 
and , yielding . Then the first category quantifications are obtained 

. 
 

Update object scores 

First the auxiliary score matrix Z is computed as 
 

 
and centered with respect to : 

 
                                                                . 

 
These two steps yield locally the best updates when there are no orthogonality constraints. 

 

Orthonormalization 

The orthonormalization problem is to find an -orthonormal that is closest to  in the least 
squares sense.  In HOMALS, this is done by setting 

 

 
as 
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which is equal to the genuine least squares estimate up to a rotation. The notation GRAM( ) is 
used to denote the Gram-Schmidt transformation (Björk and Golub, 1973). 

 
 
Update category quantifications 

 
For j=1,...,m, the new category quantifications are computed as: 

 

 

Convergence test 
 

The difference between consecutive loss function values is compared with 
the user-specified convergence criterion ε —a small positive number. Steps 2 to 4 are repeated as 
long as the loss difference exceeds ε. 

 
 

Rotation 
 

As indicated in step 3, during iteration the orientation of X and Y with respect to the coordinate 
system is not necessarily correct; this also reflects that is invariant under simultaneous 
rotations of X and Y. From theory it is known that solutions in different dimensionality should 
be nested; that is, the p-dimensional solution should be equal to the first p columns of the (p+1)-
dimensional solution. Nestedness is achieved by computing the eigenvectors of the matrix 

.  The corresponding eigenvalues are printed after the convergence message 
of the program. The calculation involves tridiagonalization with Householder transformations 
followed by the implicit QL algorithm (Wilkinson, 1965). 

 

Diagnostics 

The following diagnostics are available. 
 
 
Maximum Rank (may be issued as a warning when exceeded) 

 
The maximum rank pmax indicates the maximum number of dimensions that can be computed 
for any dataset.  In general: 

 

 

where m1 is the number of variables with no missing values. Although the number of nontrivial 
dimensions may be less than pmax when m=2, HOMALS does allow dimensionalities all the 
way up to pmax. 
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Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing values (that is, 
values that are regarded as out of range for the current analysis) for each variable. These are 
computed as the column sums of   and the total sum of . 

 
Discrimination Measure 

These are the dimensionwise variances of the quantified variables. For variable j and dimension s: 
 

 
where is the sth column of , corresponding to the sth quantified variable . 

 
Eigenvalues 

The computation of the eigenvalues that are reported after convergence is discussed in step 6. With 
the HISTORY option, the sum of the eigenvalues is reported during iteration under the heading 
“total fit.” Due to the fact that the sum of the eigenvalues is equal to the trace of the original matrix, 
the sum can be computed as . The value of is equal to . 
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KM Algorithms 
This procedure estimates the survival function for time to occurrence of an event. Some of the 
times may be “censored” in that the event does not occur during the observation period, or contact 
is lost with participants (loss to follow-up). 

If the subjects are divided into treatment groups, KM produces a survival function for each 
treatment group (factor level) and a test of equality of the survival functions across treatment 
groups. The survival functions across treatment groups can also be compared while controlling for 
categories of a stratification variable. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

p Number of levels (strata) for the stratification variable 
g Number of levels (treatment groups) for the factor variable 

 

Estimation and SE for Survival Distribution 

Suppose that for a given combination of the stratification and factor variables, a random sample 
of n individuals yields a sample with k distinct observed failure times (uncensored).   Let 

represent the observed life times and  be the largest observation in the sample. 
(Note that           if the largest observation is uncensored.) Define 

Number of subjects who are at risk at time 
     Number of failures (deaths) at 
      Number of censorings in interval [ ) 

Note that 
 

 

     
   

 

 
 
 
 

The Kaplan-Meier estimate  for the survival function is computed as 
 

Note that 
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if                 and           otherwise 

are the survival functions shown in the table. 
 

The asymptotic standard error for is computed as the square root of 
 

 

Note: When and       , and . 

 
Estimation of Mean Survival Time and Standard Error 

 

 
The variance of the mean survival time is 

 

 

 

 

unless there are both censored and uncensored occurrences of the largest survival time. In that case, 
 

 

 

The standard error is the square root of the variance. 
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Plots 
 
 
 

The following plots are available. 
 

Survival Functions versus Time 

The survival function   is plotted against t. 
 
Log Survival Functions versus Time 

  is plotted against t. 

Cumulative Hazard Functions versus Time 

  is plotted against t. 

Estimation of Percentiles and Standard Error 
100p percentile of the survival time, where p is between 0 and 1, is computed as 

 

The asymptotic variance of  is estimated by 
 

where   is computed as 
 

where . 
 
Testing the Equality of the Survival Functions 

Three statistics are computed to test the equality of survival distributions in the presence of 
arbitrary right censorship. These statistics are the logrank (Mantel-Cox), the modified Wilcoxon 
test statistic (Breslow), and an alternative test statistic proposed by Tarone and Ware  (1977). 
Using the regression model proposed by Cox (1972), all three test statistics have been modified 
for testing monotonic trend in hazard functions. 

 
Test Statistics 

Let   be the number of subjects in stratum s.  Let 
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be the observed failure times (responses) and 
 

      in stratum s the number of individuals in group l at risk just prior to  

      number of deaths at   in group l 

and 
 

 

Hence, the expected number of events in group l at time   is given by 
 

Define 
 

with 
 

                                               for 
 

Also, let   be a            covariance matrix with 
 

for 
 

where 
 

 
 

 
 

for log-rank test 

for Breslow test 

 
 

and 

for Tarone Ware test 
 
 

if 
 

 
Define 

 
 

and 

otherwise 
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The test statistic for the equality of the g survival functions is defined by 
 

 
  has an asymptotic chi-square distribution with g−1 degrees of freedom. 

 
Test Statistic for Trend 

Let 
 

 

be a vector with       trend weighting coefficient for group  . Form the vector 
 

  differs from   only in the last component. 
Let be a matrix with element   for . The test statistic is defined by 

 

where 
 
 
 

 
The logrank, Breslow, and Tarone Ware tests may involve trend. Each of the test statistics has a 
chi-square distribution with one degree of freedom. 

 

The default trend is defined as follows: 
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KNN Algorithms 
Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other 
cases. In machine learning, it was developed as a way to recognize patterns of data without 
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and 
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure 
of their dissimilarity. 

 
Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented, 
its distance from each of the cases in the model is computed. The classifications of the most 
similar cases – the nearest neighbors – are tallied and the new case is placed into the category that 
contains the greatest number of nearest neighbors. 

 
You can specify the number of nearest neighbors to examine; this value is called k. The pictures 
show how a new case would be classified using two different values of k. When k = 5, the new 
case is placed in category 1 because a majority of the nearest neighbors belong to category 1. 
However, when k = 9, the new case is placed in category 0 because a majority of the nearest 
neighbors belong to category 0. 

 
Nearest neighbor analysis can also be used to compute values for a continuous target. In this 
situation, the average or median target value of the nearest neighbors is used to obtain the 
predicted value for the new case. 

 
 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Y Optional 1×N vector of responses with element , where n=1,...,N 
indexes the cases. 

X0 P0×N matrix of features with element , where p=1,...,P0 indexes the 
features and n=1,...,N indexes the cases. 

X P×N matrix of encoded features with element , where p=1,...,P 
indexes the features and n=1,...,N indexes the cases. 

P Dimensionality of the feature space; the number of continuous features 
plus the number of categories across all categorical features. 

N Total number of cases. 
The number of cases with Y = j, where Y is a response variable  with 
J categories 

                                    The number of cases which belong to class j and are correctly classified 
as j. 

                                   The total number of cases which are classified as j. 

 
 
Preprocessing 

Features are coded to account for differences in measurement scale. 
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Continuous 

 
Continuous features are optionally coded using adjusted normalization: 

 

 

where is the normalized value of input feature p for case n,  is the original value of the 
feature for case n, is the minimum value of the feature for all training cases,  and 

is the maximum value for all training cases. 
 

Categorical 
 

Categorical features are always temporarily recoded using one-of-c coding.  If a feature has 
c categories, then it is is stored as c vectors, with the first category denoted (1,0,...,0), the next 
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1). 

 
Training 

Training a nearest neighbor model involves computing the distances between cases based upon 
their values in the feature set. The nearest neighbors to a given case have the smallest distances 
from that case. The distance metric, choice of number of nearest neighbors, and choice of the 
feature set have the following options. 

 

Distance Metric 

We use one of the following metrics to measure the similarity of query cases and their nearest 
neighbors. 

 
Euclidean Distance. The distance between two cases is the square root of the sum, over all 
dimensions, of the weighted squared differences between the values for the cases. 

 

 
City Block Distance. The distance between two cases is the sum, over all dimensions, of the 
weighted absolute differences between the values for the cases. 
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The feature weight is equal to 1 when feature importance is not used to weight distances; 
otherwise, it is equal to the normalized feature importance: 

 
 

 

 

 
 

See “Output Statistics ” for the computation of feature importance  . 
 
Crossvalidation for Selection of k 

Cross validation is used for automatic selection of the number of nearest neighbors, between a 
minimum  and maximum . Suppose that the training set has a cross validation variable 
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows: 

► For each ,                    compute the average error rate or sum-of square error of k: 
                          , where is the error rate or sum-of square error when we apply the Nearest 

Neighbor model to make predictions on the cases with ; that is, when we use the other 
cases as the training dataset. 

► Select the optimal k as:              . 
 

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among 
those that are tied. 

 
Feature Selection 

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses 
forward selection which starts from  features which are entered into the model. Further 
features are chosen sequentially; the chosen feature at each step is the one that causes the largest 
decrease in the error rate or sum-of squares error. 

 
Let  represent the set of J features that are currently chosen to be included,  represents the 
set of remaining features and represents the error rate or sum-of-squares error associated 
with the model based on   . 

 
The algorithm is as follows: 

► Start with features. 

► For each feature in  , fit the k nearest neighbor model with this feature plus the existing features 
in  and calculate the error rate or sum-of square error for each model. The feature in whose 
model has the smallest error rate or sum-of square error is the one to be added to create  . 

► Check the selected stopping criterion.  If satisfied, stop and report the chosen feature subset. 
Otherwise, J=J+1 and go back to the previous step. 

 
Note: the set of encoded features associated with a categorical predictor are considered and added 
together as a set for the purpose of feature selection. 
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Stopping Criteria 

 
One of two stopping criteria can be applied to the feature selection algorithm. 

 
Fixed number of features.  The algorithm adds a fixed number of features, 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎, in addition to those 
forced into the model. The final feature subset will have 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐽𝐽𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑎𝑎 features. 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎 may be 
user-specified or computed automatically; if computed automatically the value is 

 

 
When this is the stopping criterion, the feature selection algorithm stops when  features 
have been added to the model; that is, when               , stop and report   as the chosen 
feature subset. 

 
Note:  if       , no features are added and  with   is reported as the chosen 
feature subset. 

 
Change in error rate or sum of squares error. The algorithm stops when the change in the absolute 
error ratio indicates that the model cannot be further improved by adding more  features. 
Specifically, if or and 

 

 
 

where  is the specified minimum change, stop and report   as the chosen feature subset. 
 

If and 
 

 
 

stop and report  as the chosen feature subset. 
 

Note: if for , no features are added and  with  is reported as 
the chosen feature subset. 

 
Combined k and Feature Selection 

The following method is used for combined neighbors and features selection. 

1. For each k, use the forward selection method for feature selection. 

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares 
error. 

 
Output Statistics 

The following statistics are available. 
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Percent correct for class j 
 

 

Overall percent for class j 
 

 

Intersection of Overall percent and percent correct 
 

 

Error rate of classification 
 

 
Sum-of-Square Error for continuous response 

 
 

 
 

 

 
 

where   is the estimated value of . 
 

Feature Importance 
 

Suppose there are                 in the model from the forward selection 
process with the error rate or sum-of-squares error e.  The importance of feature   in the 
model is computed by the following method. 

► Delete the feature   from the model, make predictions and evaluate the error rate or 
sum-of-squares error based on features . 

► Compute the error ratio . 
 

The feature importance of   is  
 
Scoring 

After we find the k nearest neighbors of a case, we can classify it or predict its response value. 
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Categorical response 

 
Classify each case by majority vote of its k nearest neighbors among the training cases. 

► If multiple categories are tied on the highest predicted probability, then the tie should be broken by 
choosing the category with largest number of cases in training set. 

► If multiple categories are tied on the largest number of cases in the training set, then choose the 
category with the smallest data value among the tied categories. In this case, categories are 
assumed to be in the ascending sort or lexical order of the data values. 

 
We can also compute the predicted probability of each category.  Suppose   is the number of 
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted 
probability for the jth category by , we apply a Laplace correction as follows: 

 

 
where J is the number of categories in the training data set. 

 
The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the 
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the 
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0. 

 
Continuous response 

 
Predict each case using the mean or median function. 

 
Mean function.  

 
Median function. Suppose that   are the values of the continuous response 
variable, and we arrange  from the lowest value to the highest value and 
denote them as , then the median is 

is odd 

is even 
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Linear modeling algorithms 
Linear models predict a continuous target based on linear relationships between the target and 
one or more predictors. 

 
For algorithms on enhancing model accuracy, enhancing model stability, or working with very 
large datasets, see “Ensembles Algorithms”. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of distinct records in the dataset. It is an integer and . 
p Number of parameters (including parameters for dummy variables but 

excluding the intercept) in the model. It is an integer and    . 
                                          Number of non-redundant parameters (excluding the intercept) currently in 

the model.  It is an integer and . 
                                          Number of non-redundant parameters currently in the model.   

                                          Number of effects excluding the intercept. It is an integer and 

y target vector with elements . 
f frequency weight vector. 
g regression weight vector. 
N 

Effective sample size.  It is an integer and .  If there is no 

frequency weight vector, N=n. 
X  design matrix with element . The rows represent the records 

and the columns represent the parameters. 
vector of unobserved errors. 

                                                              vector of unknown parameters; .   is the 
intercept. 

vector of parameter estimates. 
 

b  vector of standardized parameter estimates. It is the result of a 
sweep operation on matrix R.  is the standardized estimate of the intercept 
and is equal to 0. 

                                                     vector of predicted target values. 

                                           Weighted sample mean for , 

Weighted sample mean for y. 

                                         Weighted sample covariance between and  , . 

                                           Weighted sample covariance between and y. 

                                        Weighted sample variance for y. 

R  weighted sample correlation matrix for X (excluding the 
intercept, if it exists) and y. 

                                          The resulting matrix after a sweep operation whose elements are  . 
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Model 

Linear regression has the form 
 

y Xβ ε 
 

where ε follows a normal distribution with mean 0 and    variance D , where 
D . The elements of ε are independent with respect to each other. 

 
Notes: 
 X can be any combination of continuous and categorical effects. 
 Constant columns in the design matrix are not used in model building. 
 If n=1 or the target is constant, no model is built. 

 
Missing values 

 
Records with missing values are deleted listwise. 

 
Least squares estimation 

The coefficients are estimated by the least squares (LS) method. First, we transform the model 
by pre-multiplying D as follows: 

 
D y D Xβ D ε 

 
so that the new unobserved error D ε follows a normal distribution 0 , where I is an 
identity matrix and D  .  Then the least squares estimates of β can be 
obtained from the following formula 

 
where F diag .  Note that 

 

 
 

where diag diag , so the closed form solution of  is 

T T 



 
 

. . . . 
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 is computed by applying sweep operations instead of the equation above. In addition, sweep 

operations are applied to the transformed scale of X and y to achieve numerical  stability. 
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations 
to it.  The R matrix is constructed as follows. 

 
First, compute weighted sample means, variances and covariances among Xi, Xj, 

and y : 
 

Weighted sample means of Xi and y are                                                   and ; 
 

Weighted sample covariance for Xi and Xj is                                                         ; 

Weighted sample covariance for Xi and y is                                                             ; 

Weighted sample variance for y is                                     . 

Second, compute weighted sample correlations , and . 

Then the matrix R is 

    

 

 
   

R .. . . . . .. R 
R 

   

 

 

If the sweep operations are repeatedly applied to each row of  , where   contains the 
predictors in the model at the current step, the result is 

 

   
 
 

The last column R R contains the standardized coefficient estimates; that is, . 
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model, 
are: 

 

 

Model selection 

The following model selection methods are supported: 
 None, in which no selection method is used and effects are force entered into the model. For 

this method, the singularity tolerance is set to 1e−12 during the sweep operation. 

R 

 
T 

 
   T 

T 
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 Forward stepwise, which starts with no effects in the model and adds and removes effects one 

step at a time until no more can be added or removed according to the stepwise criteria. 
 Best subsets, which checks “all possible” models, or at least a larger subset of the possible 

models than forward stepwise, to choose the best according to the best subsets criterion. 
 

Forward stepwise 

The basic idea of the forward stepwise method is to add effects one at a time as long as these 
additions are worthy. After an effect has been added, all effects in the current model are checked 
to see if any of them should be removed.  Then the process continues until a stopping criterion  
is met.  The traditional criterion for effect entry and removal is based on their F-statistics and 
corresponding p-values, which are compared with some specified entry and removal significance 
levels; however, these statistics may not actually follow an F distribution so the results might be 
questionable. Hence the following additional criteria for effect entry and removal are offered: 
 Maximum adjusted R2; 
 Minimum corrected Akaike information criterion (AICC); and 
 Minimum average squared error (ASE) over the overfit prevention data 

 
Candidate statistics 

 
Some additional notations are needed describe the addition or removal of a continuous effect Xj or 
categorical effect , where ℓ is the number of categories. 

The number of non-redundant parameters of the eligible effect Xj  or 
. 

                                          The number of non-redundant parameters in the current model (including 
the intercept). 

                                          The number of non-redundant parameters in the resulting model (including 
the intercept). Note that for entering an effect 

for removing an effect 
                                     The weighted residual sum of squares for the current model. 

                                  The weighted residual sum of squares for the resulting model after entering 
the effect. 

                                  The weighted residual sum of squares for the resulting model after removing 
the effect. 
The last diagonal element in the current R matrix. 

                                           The last diagonal element in the resulting  matrix. 

 
F statistics.  The F statistics for entering or removing an effect from the current model are: 
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and their corresponding p-values are: 
 

 

 
Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current 
model is: 

 
adj.  

 
Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect 
from the current model is: 

 

 
Average Squared Error (ASE). The ASE value for entering or removing an effect from the current 
model is: 

 

 
 

where  are the predicted values of yt and T is the number of distinct testing  cases in 
the overfit prevention set. 

 
The Selection Process 

 
There are slight variations in the selection process, depending upon the model selection criterion: 
 The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum) 

p-value and continue doing it until the p-values of all candidates for entry (removal) are equal 
to or greater than (less than) a specified significance level. 

 The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the 
resulting model after entering (removing) an effect with that of the current model. Selection 
stops at a local optimal value (a maximum for the adjusted R2 criterion and a  minimum 
for the AICC and ASE). 

 
The following additional definitions are needed for the selection process: 

 
FLAG A index vector which records the status of each effect.  FLAGi = 

1 means the effect i is in the current model, FLAGi = 0 means it is  not. 
denotes the number of effects with FLAGi = 1. 

MAXSTEP The maximum number of iteration steps. The default value is . 
MAXEFFECT The maximum number of effects (excluding intercept if exists). The default 

value is . 
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Pin The significance level for effect entry when the F-statistic criterion is used. 

The default is 0.05. 
Pout The significance level for effect removal when the F statistic criterion is 

used.  The default is 0.1. 
The F statistic change. It is   or   for entering or removing 
an effect Xj (here Xj could represent continuous or categorical for simpler 
notation). 
The corresponding p-value for . 

MSCcurrent The adjusted R2, AICC, or ASE value for the current model. 
 

1. Set and iter = 0. The initial model is . If the adjusted R2, AICC, or ASE 
criterion is used, compute the statistic for the initial model and denote it as MSCcurrent. 

2. If      , iter ≤ MAXSTEP and , go to the 
next step; otherwise stop and output the current model . 

3. Based on the current model, for every effect j eligible for entry (see Condition below), 

If FC (the F statistic criterion) is used, compute   and ; 

If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSCj. 
4. If FC is used, choose the effect and if < Pin, enter to the 

current model. 

If MSC is used, choose the effect and if   < , 
enter to the current model. (For the adjusted R2 criterion, replace min with max and reverse 
the inequality) 

If the inequality is not satisfied, stop and output the current model. 

5. If the model with the new effect is the same as any previously obtained model, stop and output the 
current model; otherwise update the current model by doing the sweep operation on corresponding 
row(s) and column(s) associated with   in the current R matrix.  Set 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗∗ = 1  and iter = 
iter + 1. 

If FC is used, let   and ; 

If MSC is used, let   . 

6. For every effect k in the current model; that is,             , 

If FC is used, compute   and ; 

If MSC is used, compute MSCk. 
7. If FC is used, choose the effect and if > Pout, remove 

  from the current model. 

If MSC is used, choose the effect and if   <  , 
remove      from the current model. (For the adjusted R2 criterion, replace min with max and 
reverse the inequality) 

 
If the inequality is met, go to the next step; otherwise go back to step 2. 
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8. If the model with the effect removed is the same as any previously obtained model, stop and 

output the current model; otherwise update the current model by doing the sweep operation 
on corresponding row(s) and column(s) associated with   in the current R matrix. Set 

         and iter = iter + 1. 

If FC is used, let   and ; 

If AC is used, let 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝑐𝑐 = 𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘∗. Then go back to step 6. 
 

Condition. In order for effect j to be eligible for entry into the model, the following conditions 
must be met: 

 
For continuous a effect Xj ,  ; (t is the singularity tolerance with a value of 1e−4) 

For categorical effect ,  ; 

where t is the singularity tolerance, and and are diagonal elements in the 
current R matrix (before entering). 

 
For each continuous effect Xk that is currently in the model, . 

 

with levels that is currently in the model, 
 
 

where   and are diagonal elements in the resulting R matrix; that is, the 
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xk 
or in the current R matrix. The above condition is imposed so that entry of the effect 
does not reduce the tolerance of other effects already in the model to unacceptable levels. 

 

Best subsets 

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so 
another option is to check all possible models and select the “best” based upon some criterion. 
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over 
the overfit prevention set. 

 
Since there are   free effects, we do an exhaustive search over   models, which include 
intercept-only model ( ). Because the number of calculations increases exponentially with 

, it is important to have an efficient algorithm for carrying out the necessary computations. 
However, if  is too large, it may not be practical to check all of the possible models. 

 
We divide the problem into 2 tiers in terms of the number of effects: 
 when           , we search all possible subsets 
 when  > 20, we apply a hybrid method which combines the forward stepwise method and 

the all possible subsets method. 

For each categorical effect 
. 
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Searching All Possible Subsets 

 
An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff 
1968), is applied to traverse all the models and outlined as follows: 

 
Each sweep step(s) on an effect results in a model.  So  models can be obtained 
through a sequence of exactly  sweeps on effects. Assuming that the all possible 
models on effects can be obtained in a sequence        of exactly sweeps 
on the first pivotal effects, and sweeping on the last effect will produce   a new 
model which adds the last effect to the model produced by the sequence      , then 
repeating the sequence       will produce another distinct models (including 
the last effect).  It is a recursive algorithm for constructing the sequence;    that is, 

                                                                                                                                  and so on. 

The sequence of models produced is demonstrated in the following table: 

 
 
 
 
 
 
 
 

 
 

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the 
third column represents a regression model. The numbers in the parentheses indicate the effects 
which are included in that model. 

 
Hybrid Method 

 
If >20, we apply a hybrid method by combining the forward stepwise method with the all 
possible subsets method as follows: 

 
Select the effects using the forward stepwise method with the same criterion chosen for best 
subsets. Say that ps is the number of effects chosen by the forward stepwise method. 

 
Apply one of the following approaches, depending on the value of ps, as follows: 
 If ps ≤ 20, do an exhaustive search of all possible subsets on these selected effects, as 

described above. 
 If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from 

all ps effects (see ANOVA in “Model evaluation”) and enter them into the model, then do an 
exhaustive search of the remaining 20 effects via the method described above. 

 If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a 
warning message that the selected model is based on the forward stepwise method). 

k 
0 

Sk 
0 

Sequence of models produced 
Only intercept 

1 1 (1) 
2 121 (1),(12),(2) 
3 1213121 (1),(12),(2),(23),(123),(13),(3) 
4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4) 
... ... ... 
     , ,    All models including the intercept model. 
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Model evaluation 

The following output statistics are available. 
 

ANOVA 
 

Weighted total sum of squares 
 

                                                                      with d.f.  
 
 

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total”. 
 

Weighted residual sum of squares 
 
 

 
 

 

 
 

   

  
 

 

with d.f.  = dfe = N – pc.  It is also called “SS for Error”. 

Weighted regression sum of squares 
 
 

 
 

 
 

 
 

   

   

 
 

 

 
 

with d.f. =          . It is called “SS for Corrected Model” if there is an  intercept. 
 

Regression mean square error 
 

 

Residual mean square error 
 

 

F statistic for corrected model 

 
which follows an F distribution with degrees of freedom dfr and dfe, and the corresponding 
p-value can be calculated accordingly. 

 
Type III sum of squares for each effect 
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To  compute type III SS for the  effect j, the type III test matrix  Li 
needs to be constructed first.  Construction of Li is based on the generating matrix 
H XTDX XTDX  where D , such that Liβ is estimable.  It involves 
parameters only for the given effect and the effects containing the given effect. For type III 
analysis, Li doesn’t depend on the order of effects specified in the model. If such a matrix cannot 
be constructed, the effect is not testable. For each effect j, the type III SS is calculated as follows 

 
T  T T 

 

where . 
 

F statistic for each effect 
 

The SS for the effect j is also used to compute the F statistic for the hypothesis test H0:  Liβ 
= 0 as follows: 

 

 

where is the full row rank of . It follows an F distribution with degrees of freedom and 
 , then the p-values can be calculated accordingly. 

 
Model summary 

 
Adjusted R square 

 
adj.                               

 
where 

 

 
Model information criteria 

 
Corrected Akaike information criterion (AICC) 

 

 
Coefficients and statistical inference 

After the model selection process, we can get the coefficients and related statistics from the swept 
correlation matrix. The following statistics are computed based on the R matrix. 
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Unstandardized coefficient estimates 
 

 

for . 
 

Standard errors of regression coefficients 
 

The standard error of   is 
 

 
Intercept estimation 

 
The intercept is estimated by all other parameters in the model as 

 

 

The standard error of   is estimated by 
 

where 
 
 
 
 
 
 

                                                                                                                       and is the 
kth row and jth column element in the parameter estimates covariance matrix. 

 
t statistics for regression coefficients 

 

 

for , with degrees of freedom  and the p-value can be calculated accordingly. 
 

100(1−α)% confidence intervals 
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Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t 
statistics, and confidence intervals are set to missing values. 

 
Scoring 

Predicted values 
 

 

Diagnostics 

The following values are computed to produce various diagnostic charts and tables. 
 

Residuals 
 

 
Studentized residuals 

 
This is the ratio of the residual to its standard error. 

 

 
where s is the square root of the mean square error; that is, , and  is the leverage 
value for the kth case (see below). 

 
Cook’s distance 

 

 

where the “leverage” 

G  T 
 

is the kth diagonal element of the hat matrix 
 

H W X  XTWX XTW W X XTW 
 
 

A record with Cook’s distance larger than is considered influential (Fox, 1997). 



 
 

 
Predictor importance 
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We use the leave-one-out method to compute the predictor importance, based on the residual sum 
of squares (SSe) by removing one predictor at a time from the final full model. 

 
If the final full model contains p predictors, , then the predictor importance can be 
calculated as follows: 

1.   i=1 
 

2. If i>p, go to step 5. 
 

3. Do a sweep operation on the corresponding row(s) and column(s) associated with   in the 
 matrix of the full final model. 

4. Get the last diagonal element in the current and denote it  . Then the predictor importance of 
is                                    .  Let i = i + 1, and go to step 2. 

5. Compute the normalized predictor importance of : 
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LOGISTIC REGRESSION Algorithms 
Logistic regression regresses a dichotomous dependent (target) variable on a set of independent 
(predictor) variables. Several methods are implemented for selecting the independent variables. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n The number of observed cases 
p The number of parameters 
y  vector with element , the observed value of the ith case of the 

dichotomous dependent variable 
X matrix with element , the observed value of the ith case of the 

jth parameter 
                                                     vector with element  , the coefficient for the jth parameter 

w vector with element , the weight for the ith case 
l Likelihood function 
L Log-likelihood function 
I Information matrix 

 

Model   
The linear logistic model assumes a dichotomous dependent variable Y with probability π, where 
for the ith case, 

 

or 
 

Hence, the likelihood function l for n observations , with probabilities and 
case weights , can be written as 

 

  
  

 

It follows that the logarithm of l is 
 

 

and the derivative of L with respect to   is 

 557 
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Maximum Likelihood Estimates (MLE) 

The maximum likelihood estimates for  satisfy the following equations 
 

, for the jth parameter 

where for . 

Note the following: 

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on 
 Absolute difference for the parameter estimates between the iterations 
 Percent difference in the log-likelihood function between successive iterations 
 Maximum number of iterations specified 

2. During the iterations, if is smaller than 10−8 for all cases, the log-likelihood function 
is very close to zero.  In this situation, iteration stops and the message “All predicted values   
are either 1 or 0” is issued. 

 
After the maximum likelihood estimates  are obtained, the asymptotic covariance matrix is 
estimated by  , the inverse of the information matrix I, where 

 

 

 

 

and 
 

 
Stepwise Variable Selection 

Several methods are available for selecting independent variables. With the forced entry method, 
any variable in the variable list is entered into the model. There are two stepwise methods: 
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood 
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score 
statistic is used to select variables for entry into the model. 

 
Forward Stepwise (FSTEP) 

1. If FSTEP is the first method requested, estimate the parameter and likelihood function for the 
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP. 
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Obtain the necessary information: MLEs of the parameters for the current model, predicted 
probability, likelihood function for the current model, and so on. 

2. Based on the MLEs of the current model, calculate the score statistic for every variable eligible for 
inclusion and find its significance. 

3. Choose the variable with the smallest significance. If that significance is less than the probability 
for a variable to enter, then go to step 4; otherwise, stop FSTEP. 

4. Update the current model by adding a new variable. If this results in a model which has already 
been evaluated, stop FSTEP. 

5. Calculate LR or Wald statistic or conditional statistic for each variable in the current model. 
Then calculate its corresponding significance. 

6. Choose the variable with the largest significance. If that significance is less than the probability 
for variable removal, then go back to step 2; otherwise, if the current model with the variable 
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step. 

7. Modify the current model by removing the variable with the largest significance from the previous 
model. Estimate the parameters for the modified model and go back to step 5. 

 

Backward Stepwise (BSTEP) 

1. Estimate the parameters for the full model which includes the final model from previous method 
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry 
and removal.  Let the current model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic 
for every variable in the model and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the probability for 
a variable removal, then go to step 5; otherwise, if the current model without the variable with the 
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step. 

4. Modify the current model by removing the variable with the largest significance from the model. 
Estimate the parameters for the modified model and go back to step 2. 

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise, 
go to the next step. 

6. Based on the MLEs of the current model, calculate the score statistic for every variable not in 
the model and find its significance. 

7. Choose the variable with the smallest significance. If that significance is less than the probability 
for variable entry, then go to the next step; otherwise, stop BSTEP. 

8. Add the variable with the smallest significance to the current model. If the model is not the 
same as any previous models, estimate the parameters for the new model and go back to step 
2; otherwise, stop BSTEP. 
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Stepwise Statistics 

The statistics used in the stepwise variable selection methods are defined as follows. 
 

Score Statistic 

The score statistic is calculated for each variable not in the model to determine whether the 
variable should enter the model. Assume that there are variables, namely,  in the 
model and variables, , not in the model. The score statistic for is defined as 

 

if is not a categorical variable. If is a categorical variable with m categories, it is converted to 
a  -dimension dummy vector. Denote these new variables as . The 
score statistic for is then 

 

 
where and the                 matrix  is 

 

with 
 
 
 
 
 

in which is the design matrix for variables and is the design matrix for dummy 
variables  . Note that contains a column of ones unless the constant term 
is excluded from   .  Based on the MLEs for the parameters in the model, V is estimated  by 

                                                                 . The asymptotic distribution of the score statistic is a 
chi-square with degrees of freedom equal to the number of variables involved. 

 
Note the following: 

1. If the model is through the origin and there are no variables in the model,   is defined by 
  and  is equal to  . 

2. If  is not positive definite, the score statistic and residual chi-square statistic are set to be zero. 
 

Wald Statistic 

The Wald statistic is calculated for the variables in the model to determine whether a variable 
should be removed. If the ith variable is not categorical, the Wald statistic is defined by 

 



 
 

 
. 
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If it is a categorical variable, the Wald statistic is computed as follows: 

 
Let  be the vector of maximum likelihood estimates associated with the dummy variables, 
and the asymptotic covariance matrix for .  The Wald statistic is 

 

The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to 
the number of parameters estimated. 

 
Likelihood Ratio (LR) Statistic 

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two 
models evaluated at their MLEs.  The LR statistic is used to determine if a variable should   
be removed from the model.  Assume that there are variables in the current model which is 
referred to as a full model. Based on the MLEs of the full model, l(full) is calculated. For each of 
the variables removed from the full model one at a time, MLEs are computed and the likelihood 
function l(reduced) is calculated. The LR statistic is then defined as 

 

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference 
between the numbers of parameters estimated in the two models. 

 
Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The formula for the 
conditional statistic is the same as the LR statistic except that the parameter estimates for each 
reduced model are conditional estimates, not MLEs.  The conditional estimates are defined as 
follows.  Let                            be the MLE for the variables in the model and C be the 
asymptotic covariance matrix for . If variable is removed from the model, the conditional 
estimate for the parameters left in the model given  is 

 

where  is the MLE for the parameter(s) associated with and is  with  removed, is 
the covariance between   and , and   is the covariance of 
is computed by 

Then the conditional statistic 

 

  
 

where is the log-likelihood function evaluated at  . 
 
Statistics 

The following output statistics are available. 
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Initial Model Information 

If  is not included in the model, the predicted probability is estimated to be 0.5 for all cases and 
the log-likelihood function   is 

 

 
with . If  is included in the model, the predicted probability is estimated as 

 
 

 

and   is estimated by 
 

with asymptotic standard error estimated by 
 

The log-likelihood function is 
 

 
Model Information 

The following statistics are computed if a stepwise method is specified. 
 

–2 Log-Likelihood 
 

 

Model Chi-Square 
 

2(log-likelihood function for current model − log-likelihood function for initial model) 
 

The initial model contains a constant if it is in the model; otherwise, the model has no terms.   
The degrees of freedom for the model chi-square statistic is equal to the difference between the 
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the 
model chi-square is not computed. 

 
Block Chi-Square 

 
2(log-likelihood function for current model − log-likelihood function for the final model from 
the previous method) 
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The degrees of freedom for the block chi-square statistic is equal to the difference between the 
numbers of parameters estimated in each of the two models. 

 
Improvement Chi-Square 

 
2(log-likelihood function for current model − log-likelihood function for the model from the 
last step) 

 
The degrees of freedom for the improvement chi-square statistic is equal to the difference between 
the numbers of parameters estimated in each of the two models. 

 
Goodness of Fit 

 

 

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991) 
 

 

where is the likelihood of the current model and l(0) is the likelihood of the 
initial model; that is, if the constant is not included in the model; 

if the constant is included in the model, where 
                         . 

 
Nagelkerke’s R-Square (Nagelkerke, 1981) 

 

 
where . 

 

Hosmer-Lemeshow Goodness-of-Fit Statistic 

The test statistic is obtained by applying a chi-square test on a contingency table. The 
contingency table is constructed by cross-classifying the dichotomous dependent variable with  
a grouping variable (with g groups) in which groups are formed by partitioning the predicted 
probabilities using the percentiles of the predicted event probability. In the calculation, 
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the 
“deciles of risk” (Hosmer and Lemeshow, 2000). 

If the values of independent variables for observation i and i’ are the same, observations i and 
i’ are said to be in the same block. When one or more blocks occur within the same decile, the 
blocks are assigned to this same group. Moreover, observations in the same block are not divided 
when they are placed into groups.  This strategy may result in fewer than 10 groups (that is, 

) and consequently, fewer degrees of freedom. 
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Suppose that there are Q blocks, and the qth block has mq number of observations, . 
Moreover, suppose that the kth group ( ) is composed of the q1th, …, qkth blocks of 
observations. Then the total number of observations in the kth group is . The total 
observed frequency of events (that is, Y=1) in the kth group, call it O1k, is the total number of 
observations in the kth group with Y=1. Let E1k be the total expected frequency of the event in the 
kth group; then E1k is given by , where is the average predicted event probability 
for the kth group. 

 

 
The Hosmer-Lemeshow goodness-of-fit statistic is computed as 

 

 

The p value is given by Pr             where   is the chi-square statistic distributed with 
degrees of freedom (g−2). 

 

Information for the Variables Not in the Equation 

For each of the variables not in the equation, the score statistic is calculated along with the 
associated degrees of freedom, significance and partial R. Let  be a variable not currently in 
the model and  the score statistic.  The partial R is defined by 

 
if             

 otherwise 

where df is the degrees of freedom associated with , and   is the log-likelihood 
function for the initial model. 

The residual Chi-Square printed for the variables not in the equation is defined as 
 

 

where   g 
 

Information for the Variables in the Equation 

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with 
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If  is not a 
categorical variable currently in the equation, the partial R is computed as 

 
if  
otherwise 

If  is a categorical variable with m categories, the partial R is then 

g g 



 
 

 
 
 
 
Casewise Statistics 

 
 
 
if                  

 otherwise 
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The following statistics are computed for each case. 
 

Individual Deviance 
 

The deviance of the ith case, , is defined as 
 

 
 

  

 
 

if  
otherwise 

 

Leverage 
 

The leverage of the ith case, , is the ith diagonal element of the matrix 
 

where 
 

 
Studentized Residual 

 

 
Logit Residual 

 

where 
 

Standardized Residual 
 

 
Cook’s Distance 

 

 
DFBETA 

 
Let  be the change of the coefficient estimates from the deletion of case i. It is computed as 
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Predicted Group 
 

If           , the predicted group is the group in which  

y=1. Note the following: 

For the unselected cases with nonmissing values for the independent variables in the analysis, 
the leverage    is computed as 

 

where 
 

 
For the unselected cases, the Cook’s distance and DFBETA are calculated based on . 



 

 

LOGLINEAR Algorithms 
The LOGLINEAR procedure models cell frequencies using the multinomial response model and 
produces maximum likelihood estimates of parameters by the Newton-Raphson method. The 
contingency tables are converted to two-way I×J tables, with I and J being the dimensions of the 
independent and dependent categorical variables respectively. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Observed frequency of cell (i, j) 

I Dimension of the row variable, associated with independent variables 
J Dimension of the column variable, associated with dependent variables 

Weight of cell (i, j) 

                                          Coefficients in the loglinear model;  

                                          Estimate of at the lth iteration 

                                          Final estimate of 

Expected values of 

                                       Estimate of at the lth iteration 

                                          Estimate of at the final iteration 
 

M 
 
 
 

Model 
 

In the general LOGLINEAR model, the logarithms of the cell frequencies are formulated as a 
linear function of the parameters. The actual form of the model is determined by the contrast and 
the effects specified.  The model has the form 

 

 

where   are chosen so that , and are the independent variables in the 

linear model. 

 567 
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Contrasts 

The values of are determined by the types of contrasts specified in the procedure. The default 
contrast is DEVIATION. 

 
Computational  Algorithm 

To estimate the coefficients, a series of weighted regressions is used for iterative calculations. The 
iterative process is outlined (also see Haberman, 1978) as follows: 

 
(1) Obtain initial approximations   and use them to obtain  . 

(2) Obtain the next approximations   and  . 

(3) Use the updated   in (2) to obtain the next approximations  . 

(4) Repeat steps 2 and 3, replacing   with  . Continue repeating this until convergence is 
achieved. 

 
The computations begin with selection of initial approximations                   for . The 
default for  is 0.5. If the model is saturated, is added to permanently. If the model is not 
saturated, is added to only at the initial step and is then subtracted at the second step. 

 
The maximum likelihood estimates   of   are found by the Newton-Raphson method. Let 

  be the column vector containing the ML estimates at the lth iteration; then 
 

for  
 

 
where the (k, l)-element of   is 

 

with 
 
 

for 
 
 

and the kth element of   is 
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and the kth element of   is 

for 
 

The estimated cell means are updated by 
 

for 
 
 

where 

 
 

and 
 

The iterative process stops when either the maximum number of iterations (default=20) is reached 
or 

 
 

  

Computed Statistics 

with default 

 

The following output statistics are available. 
 
Correlation Matrix of Parameter Estimates 

Let C be the final   and . The correlation between  and   is computed as 
 

 
Goodness of Fit 

The Pearson chi-square is computed as 
 

and the likelihood-ratio chi-square is 
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The degrees of freedom are                , where E is the number of cells with 

and p is the number of coefficients in the model. 
 

Residuals 
The following residuals are available. 

 
Unadjusted Residuals 

 

 
Standardized Residuals 

 

 

Adjusted Residuals 
 

where 
 

 

 

Generalized Residuals 
Consider a linear combination of the cell counts 

 

The estimated expected value is computed as 
 

Two generalized residuals are computed. 
 
Unadjusted Residuals 

 



 
 

 

Adjusted Residuals 
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where 
 

 

 

Analysis of Dispersion 

Following Haberman (1982), define 

     Total dispersion 

Conditional dispersion 

     Dispersion due to fit 

=       Measure of association 

For entropy 
 

 

 

For concentration 
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where 

 

 

Haberman (1977) shows that, under the hypothesis that Y and X are independent, 
 

in the case of entropy, and 
 

in the case of concentration. 
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MANOVA Algorithms 
The program performs univariate and multivariate analysis of variance and covariance for any 
crossed and/or nested design. 

 
Analysis of Variance 

The following topics detail computational formulas for MANOVA’s use in the analysis of variance. 
 

Notation 

The experimental design model (the model with covariates will be discussed later) can be 
expressed as 

 
 

         
 

where 

Y is the observed matrix 
W is the design matrix 

                                           is the matrix of parameters 

E is the matrix of random errors 
N is the total number of observations 
p is the number of dependent variables 
m is the number of parameters 

 
Since the rows of W will be identical for all observations in the same cell, the model is rewritten 
in terms of cell means as 

 

 

         
 

where g is the number of cells and       and       denote matrices of means. 
 

Reparameterization 

The reparameterization of the model (Bock, 1975; Finn, 1977) is done by factoring A into 
 
 

K forms a column basis for the model and has rank r. The contrast matrix L contains the 
coefficients of linear combinations of parameters and has rank r. L can be specified by the user. 
Given L, K can be obtained from 𝐀𝐀𝐋𝐋′(𝐋𝐋𝐋𝐋′)−1. For designs with more than one factor, L, and 
hence K, can be constructed from Kronecker products of contrast matrices of each factor. After 
reparameterization, the model can be expressed as 
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q 
 

 

       
 

Parameter Estimation 

An orthogonal decomposition (Golub, 1969) is performed on K. That is, K is represented as 
 

 
where Q is an orthonormal matrix such that ; D is the diagonal matrix of cell 
frequencies; and R is an upper-triangular matrix. 

 
The normal equation of the model is 

 

or 
 

 
This triangular system can therefore be solved forming the cross-product matrix. 

 

Significance Tests 

The sum of squares and cross-products (SSCP) matrix due to the model is 
 

 

and since                              S the SSCP matrix of each individual effect can be 
obtained from the components of 

 
 

Therefore the hypothesis SSCP matrix for testing                  is 
 

 

       

The default error SSCP matrix is the pooled within-groups SSCP: 
 

 
if the pooled within-groups SSCP matrix does not exist, the residual SSCP matrix is used: 

 



 
 
 

 

MANOVA Algorithms 

 
Four test criteria are available. Each of these statistics is a function of the nonzero eigenvalues 

 of the matrix . The number of nonzero eigenvalues, s, is equal to . 
 

Pillai’s Criterion (Pillai, 1967) 
 

Approximate                                      with  and               degrees of freedom, where 

degrees of freedom   

 
Hotelling’s Trace 

 

 

Approximate   with  and  degrees of 
freedom where 

 

 
 

Wilks’ Lambda (Rao, 1973) 
 

 

Approximate                                                                with and 
degrees of freedom, where 

 

 
Roy’s Largest Root 

 

 

Stepdown F Tests 

The stepdown F statistics are 
 

with and degrees of freedom, where and t are the ith diagonal element of  and 
T respectively, and where 
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Design Matrix 

K 
 
Estimated Cell Means 

 

 
Analysis of Covariance 

 

 

              

where g, p, and r are as before and q is the number of covariates, and is the mean of X, the 
matrix of covariates. 

 
Parameter Estimation and Significance Tests 

For purposes of parameter estimation, no initial distinction is made between dependent variables 
and covariates. 

 
Let 

 

The normal equation of the model 
 

is 
 

or 
 

 
or 

 

        

If   and   are partitioned as 
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then the adjusted error SSCP matrix is 
 

and the adjusted total SSCP matrix is 
 

The adjusted hypothesis SSCP matrix is then 
 

 
The estimate of B is 

 

The adjusted parameter estimates are 
 

 
The adjusted cell means are 

 

 
Repeated Measures 

The following topics detail computational formulas for MANOVA’s use in the analysis of repeated 
measures data. 

 

Notation  
 
The following notation is used within this section unless otherwise stated: 

k Degrees of freedom for the within-subject 
factor Orthonormal transformed error matrix 

N Total number of observations 
ndfb Degrees of freedom for all between-subject factors (including the constant) 

 

Statistics 

The following statistics are available. 
 

Greenhouse-Geisser Epsilon 
 

ggeps tr 
tr 
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sum of squares for effect 
total corrected  sum of squares 

SS for effect  df effect MSE 
corrected total SS  MSE 

 

 
 

Huynh-Feldt Epsilon 
 

hfeps 
 

if hfeps>1, set hfeps=1 

 
Lower Bound Epsilon 

 
lbeps= 

 
Effect Size 

The effect size gives a partial eta-squared value for each effect and parameter estimate 
 

Notation 

The following notation is used within this section unless otherwise stated: 

dfh Hypothesis degrees of freedom 
dfe Error degrees of freedom 
F F test 
W Wilks’ lambda 
s Number of non-zero eigenvalues of 
T Hotelling’s trace 
V Pillai’s trace 

 

Statistic 
 
 

Partial eta-squared 

Eta squared Wilks' 

 
 
 

SS hyp 
SS hyp+SS error 

 

Eta squared Hotelling's 

Total eta-squared 

Hay's omega-squared 
 

 
 
Power 

Pillai 

 

The following statistics pertain to the observed power of F and t tests performed by the procedure. 

ggeps 
ndfb ggeps 
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Univariate Non-Centrality 

 SS hyp 
SS error 

 
Multivariate Non-Centrality 

For a single degree of freedom hypothesis 
 

where T is Hotelling’s trace and dfe is the error degrees of freedom. Approximate power 
non-centrality based on Wilks’ lambda is 

  Wilks' eta square  
1  Wilks' eta square 

where  is the error df from Rao’s F-approximation to the distribution of Wilks’ lambda. 
 

Hotelling’s Trace 

  Hotelling's eta square  
1  Hotelling's eta square 

where  is the error df from the F-approximation to the distribution of Hotelling’s trace. 
 

Pillai’s Trace 
  Pillai's eta square  
1  Pillai's eta square 

where  is the error df from the F-approximation to the distribution of Pillai’s trace. 
 

Approximate Power 

Approximate power is computed using an Edgeworth Series Expansion (Mudholkar, Chaubey, 
and Lin, 1976). 
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Power  

 
Confidence Intervals 

 

The intervals are calculated as follows: 
 

Lower bound = parameter estimate −k * stderr 

Upper bound = parameter estimate + k * stderr 

where stderr is the standard error of the parameter estimate, and k is the critical constant whose 
value depends upon the type of confidence interval requested. 

 
Univariate Individual Confidence Intervals 

 

 

where 
 

ne is the error degrees of freedom 
 

a is the confidence level desired 
 

F is the percentage point of the F distribution 

 
Univariate Intervals Joint Confidence Intervals 

 
For Scheffé intervals: 

 

 

where 
 

ne is the error degrees of freedom 
 

nh is the hypothesis degrees of freedom 
 

a is the confidence level desired 
 

F is the percentage point of the F distribution 



 
 

if else 
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For Bonferroni intervals: 
 

 

where 
 

ne is the error degrees of freedom 
 

nh is the hypothesis degrees of freedom 
 

a is 100 minus the confidence level desired 
 

F is the percentage point of Student’s t distribution 
 

Multivariate Intervals 
 

The value of the multipliers for the multivariate case is computed as follows: 
 

Let 
 

 
 

 

 
 
the number of dependent variables 

the hypothesis degrees of freedom 
the error degrees of freedom 

the desired confidence level 
 
 
 
 

For Roy’s largest root, define 
 

 

where 
 

G GCR ; the percentage point of the largest root distribution 

For Wilks’ lambda, define 

   
 

 

     
 

 

 
 

   

 
 
 

For Hotelling’s trace, define 



 

MANOVA Algorithms 

 
 

 
 
 
 
 
 
 

For Pillai’s trace, define 
 
 
 
 
 
 

Now for each of the above criteria, the critical value is 
 

 
For Bonferroni intervals, 

 

 
where t is the percentage point of the Student’s t distribution. 

 

Regression Statistics 

Correlation between independent variables and predicted dependent variables 
 

 

where 
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MEANS Algorithms 
Cases are cross-classified on the basis of multiple independent variables, and for each cell of the 
resulting cross-classification, basic statistics are calculated for a dependent variable. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 58-1 
Notation 

Notation Description 
                  Value for the pth independent variable for case i 

Value for the dependent variable for case i 

Weight for case i 

P Number of independent variables 
N Number of cases 

 
 
Statistics 

For each value of the first independent variable , for each value of the pair , for the 
triple , and similarly for the P-tuple  , the following are computed: 

 

Sum of Case Weights for the Cell 
 
 

 
 

 
 

where if the ith case is in the cell, otherwise. 
 

The Sum and Corrected Sum of Squares 
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The Mean 

 

 

  
 

 
Harmonic mean 

 
 

 
 

 
 

 

Both summations are over cases with positive wi values. 
 
Geometric mean 

 

The product is taken over cases with positive wi values. 
 
Variance 

 

 
Standard Deviation 

 

 
Standard Error of the Mean 

 

 
Skewness (computed if W ≥ 3 and S > 0) , and its standard error 

 

variance 



 
 

 

Kurtosis (computed if W ≥ 4 and S > 0), and its standard error 

MEANS 
Algorithms 

 

 
 

  

 
 

 
Minimum 

 

 
Maximum 

 

 
Range 

 

Maximum – Minimum 
 

Percent of Total N 

For each category j of the independent variable, 
 

 
where if the ith case is in the jth category, otherwise. 

 

Percent of Total Sum 

For each category j of the independent variable, 
 

 
where if the ith case is in the jth category, otherwise. 
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Median 

Find the first score interval (x2) containing more than t cases. 
 

if  
median if 

 
where 

 

and are the values corresponding to and respectively 
is the cumulative frequency up to 
is the cumulative percent up to 

 
 

Grouped Median 

For more information, see the topic “Grouped Percentiles”. 
 

ANOVA and Test for Linearity 

If the analysis of variance table or test for linearity are requested, only the first independent 
variable is used. Assume it takes on J distinct values (groups). The previously described statistics 
are calculated and printed for each group separately, as well as for all cases pooled. Symbols 
subscripted from 1 to J will denote group statistics, unsubscripted the total. Thus for group j, 
   is the sum of the dependent variable. 

 
and 
   the value of the independent variable. Note that the standard deviation and sum of squares 

printed in the last row of the summary table are pooled within group values. 
 

Analysis of Variance 
 

Source Sum of Squares df 
Between Groups Total-Within Groups 

 

  

Regression 
 
 
 
 

Deviation from Regression 

 

 
Between-Regression 

1 
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The mean squares are calculated by dividing each sum of squares by its degrees of freedom. 
The F ratios are the mean squares for each source divided by the within groups mean square. 
The significance level for the F is from the F distribution with the degrees of freedom for the 
numerator and denominator mean squares. If there is only one group the ANOVA is not done; 
if there are fewer than three groups or the independent variable is a string variable, the test for 
linearity is not done. 

 

Correlation Coefficient 
 

 

Eta  
 
Sum of Squares Between Groups 

Total Sum of Squares 
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Sum of Squares df 
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Meta Analysis: Binary Outcomes Algorithms

Meta-analysis is the statistical analysis of a collection of the results from different studies for the purpose of
integrating the findings [?]. Combining the findings across the studies tend to strengthen the evidence about
the treatment efficacy in clinical trials. In this document, we discuss how to build fixed-effects or common-
effect models to combine the effect sizes estimated across the primary studies with binary outcomes.

Notations and Settings

The following notations will be used in Section unless otherwise stated.

θ̂: Variable denoting the estimate of the population effect size.

σ̂2: Variable denoting the estimate of the within-study variance of θ̂.

N : Number of valid cases (or primary studies) in the data set, with each denoting an independent study.

k: Study index, and k is an integer, where 1 ≤ k ≤ N .

θ̂k: Observed value of θ̂ for the k -th primary study.

σ̂2
k: Observed value of σ̂2 for the k -th primary study, and σ̂2

k > 0.

ak: The counts of successes of the treatment group for the k-th primary study, and ak ≥ 0.

bk: The counts of failures of the treatment group for the k-th primary study, and bk ≥ 0.

ck: The counts of successes of the control group for the k-th primary study, and ck ≥ 0.

dk: The counts of failures of the control group for the k-th primary study, and dk ≥ 0.

n1k: Group size of the treatment group for the k-th primary study, and n1k = ak + bk.

n2k: Group size of the control group for the k-th primary study, and n2k = ck + dk.

nk: Total sample size of the k-th primary study, and nk = n1k + n2k.

θ0: Test value formulated by the null hypothesis.

α: The significance level to reflect the type I error, and α ∈ (0, 1).

Note that tweaking the zero-count of ak, bk, ck, and dk is not discussed in the following sections. This
has been covered in “Effect size for meta-analysis.pdf” to estimate the effect sizes of the binary outcomes.

Let θ denote the unknown parameter of the population effect size, and θk the population effect size of the
k-th primary study. The corresponding estimated effect size θ̂ and θ̂k may be either provided in the active
data set or estimated by the algorithm discussed in “Effect size for meta-analysis.pdf.”

Let σ̂ denote the estimate of the standard error of θ̂, which may be either provided or estimated. If
provided in the active data set as a certain variable, we allow the form expressed in either the standard error
σ̂k or the variance σ̂2

k.

Fixed-effects or Common-effect Models

The approaches discussed in this section are based on the fixed-effects or common-effect model assumption.
They are applied to those meta-analysis comparing binary outcomes with the effect size estimated by risk
difference, (log) risk ratio, (log) odds ratio, and (log) Peto’s odds ratio.

Mantel-Haenszel Method

Depending on the type of effect size, the Mantel-Haenszel method combines the results across the primary
studies by formulating the weights and computing the overall effect size in different ways.
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Risk Difference

The overall effect size measured by risk difference is estimated by

θ̂MH =

∑N
k=1 wkθ̂k∑N
k=1 wk

, (0.0.1)

where θ̂k is the point estimation of the risk difference for the k-th primary study, and the weight wk is
estimated by

wk =
n1kn2k
nk

. (0.0.2)

The sampling variance of θ̂MH, suggested by [?], is

V(θ̂MH) =

∑N
k=1(akbkn

3
2k)/(n1kn2kn

2
k)

(
∑N

k=1 n1kn2k/nk)2
. (0.0.3)

The standard error of θ̂MH is the square root of Equation (0.0.3), or

se(θ̂MH) =

√
V(θ̂MH) . (0.0.4)

Risk Ratio

The overall effect size measured by risk ratio is estimated by

θ̂MH =

∑N
k=1 wkθ̂k∑N
k=1 wk

, (0.0.5)

where θ̂k is the point estimation of the risk ratio for the k-th primary study, and the weight wk is estimated
by

wk =
n1kck
nk

. (0.0.6)

We also calculate the log overall risk ratio log θ̂MH, where θ̂MH is estimated by Equation (0.0.5). The sampling

variance of log θ̂MH, suggested by [?], is

V(log θ̂MH) =

∑N
k=1[n1kn2k(ak + ck)− akcknk]/n2k

(
∑N

k=1 akn2k/nk)(
∑N

k=1 ckn1k/nk)
. (0.0.7)

The standard error of log θ̂MH is the square root of Equation (0.0.7), or

se(log θ̂MH) =

√
V(log θ̂MH) . (0.0.8)

Odds Ratio

The overall effect size measured by odds ratio is estimated by

θ̂MH =

∑N
k=1 wkθ̂k∑N
k=1 wk

, (0.0.9)

where θ̂k is the point estimation of the odds ratio for the k-th primary study, and the weight wk is estimated
by

wk =
bkck
nk

. (0.0.10)
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We also calculate the log overall odds ratio log θ̂MH, where θ̂MH is estimated by Equation (0.0.9). The

sampling variance of log θ̂MH, suggested by [?, ?], is

V(log θ̂MH) =

∑N
k=1 PkRk

2(
∑N

k=1Rk)2
+

∑N
k=1(PkSk +QkRk)

2
∑N

k=1Rk

∑N
k=1 Sk

+

∑N
k=1QkSk

2(
∑N

k=1 Sk)2
, (0.0.11)

where

Pk =
ak + dk
nk

, Qk =
bk + ck
nk

, Rk =
akdk
nk

, and Sk =
bkck
nk

. (0.0.12)

The standard error of log θ̂MH is the square root of Equation (0.0.11), or

se(log θ̂MH) =

√
V(log θ̂MH) . (0.0.13)

Peto’s Method

The Peto’s method is only applied to the estimation of odds ratio. It combines the log odds ratios across
the primary studies by computing the overall effect size

log θ̂Peto =

∑N
k=1 wk log θ̂k∑N

k=1 wk

, (0.0.14)

where θ̂k is the point estimation of the Peto’s odds ratio for the k-th primary study, and the weight wk is
estimated by

wk =
n1kn2k(ak + ck)(bk + dk)

n2k(nk − 1)
. (0.0.15)

The sampling variance of log θ̂Peto is

V(log θ̂Peto) =
1∑N

k=1 wk

, (0.0.16)

where wk is estimated by Equation (0.0.15). The standard error of log θ̂Peto is the square root of Equation
(0.0.16), or

se(log θ̂Peto) =

√
V(log θ̂Peto) . (0.0.17)

Statistical Inference

To draw the statistical inference about θ, we construct the Z-statistic and corresponding confidence interval.
Depending on the type of the effect size, the test statistic and confidence interval limits will be formulated
in different ways.

Risk Difference

The observed test statistic is estimated by

Z =
θ̂MH − θ0
se(θ̂MH)

, (0.0.18)

where θ̂MH and se(θ̂MH) are estimated by Equation (0.0.1) and (0.0.3), respectively. Under the null hypothesis
θ = θ0, where θ0 = 0 by default, the test statistic Z follows the standard normal distribution. Thus, the
two-sides significance is computed by

2× [1− CDFNORM(|Z|)] , (0.0.19)

where Z is estimated by Equation (0.0.18). The lower and upper confidence limit of θ are determined by

θ̂MH ± IDF.NORMAL(1− α/2, 0, 1) se(θ̂MH) , (0.0.20)

where θ̂MH and se(θ̂MH) are estimated by Equation (0.0.1) and (0.0.3), respectively.
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Risk Ratio

The observed test statistic is estimated by

Z =
log θ̂MH − log θ0

se(log θ̂MH)
, (0.0.21)

where θ̂MH and se(log θ̂MH) are estimated by Equation (0.0.5) and (0.0.7), respectively. Under the null
hypothesis θ = θ0, where θ0 = 1 by default, the test statistic Z follows the standard normal distribution.
Thus, the two-sides significance is computed by

2× [1− CDFNORM(|Z|)] , (0.0.22)

where Z is estimated by Equation (0.0.21). The lower and upper confidence limit of log θ are determined by

lRR = log θ̂MH − IDF.NORMAL(1− α/2, 0, 1) se(log θ̂MH) (0.0.23)

and

uRR = log θ̂MH + IDF.NORMAL(1− α/2, 0, 1) se(log θ̂MH) (0.0.24)

where θ̂MH and se(log θ̂MH) are estimated by Equation (0.0.5) and (0.0.7), respectively. Thus, the lower and
upper confidence limit of θ are determined by

l′RR = exp {l̂RR} and u′RR = exp {ûRR} , (0.0.25)

where lRR and uRR are estimated by Equation (0.0.23) and (0.0.24), respectively.

Odds Ratio

The observed test statistic is estimated by

Z =
log θ̂MH − log θ0

se(log θ̂MH)
, (0.0.26)

where θ̂MH and se(log θ̂MH) are estimated by Equation (0.0.9) and (0.0.11), respectively. Under the null
hypothesis θ = θ0, where θ0 = 1 by default, the test statistic Z follows the standard normal distribution.
Thus, the two-sides significance is computed by

2× [1− CDFNORM(|Z|)] , (0.0.27)

where Z is estimated by Equation (0.0.26). The lower and upper confidence limit of log θ are determined by

lOR = log θ̂MH − IDF.NORMAL(1− α/2, 0, 1) se(log θ̂MH) (0.0.28)

and

uOR = log θ̂MH + IDF.NORMAL(1− α/2, 0, 1) se(log θ̂MH) (0.0.29)

where θ̂MH and se(log θ̂MH) are estimated by Equation (0.0.9) and (0.0.11), respectively. Thus, the lower
and upper confidence limit of θ are determined by

l′OR = exp {l̂OR} and u′OR = exp {ûOR} , (0.0.30)

where lOR and uOR are estimated by Equation (0.0.28) and (0.0.29), respectively.
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Peto’s Odds Ratio

The observed test statistic is estimated by

Z =
log θ̂Peto − log θ0

se(log θ̂Peto)
, (0.0.31)

where log θ̂Peto and se(log θ̂Peto) are estimated by Equation (0.0.14) and (0.0.16), respectively. Under the
null hypothesis θ = θ0, where θ0 = 1 by default, the test statistic Z follows the standard normal distribution.
Thus, the two-sides significance is computed by

2× [1− CDFNORM(|Z|)] , (0.0.32)

where Z is estimated by Equation (0.0.31). The lower and upper confidence limit of log θ are determined by

lPeto = log θ̂Peto − IDF.NORMAL(1− α/2, 0, 1) se(log θ̂Peto) (0.0.33)

and

uPeto = log θ̂Peto + IDF.NORMAL(1− α/2, 0, 1) se(log θ̂Peto) (0.0.34)

where log θ̂Peto and se(log θ̂Peto) are estimated by Equation (0.0.14) and (0.0.16), respectively. Thus, the
lower and upper confidence limit of θ are determined by

l′Peto = exp {l̂Peto} and u′Peto = exp {ûPeto} , (0.0.35)

where lPeto and uPeto are estimated by Equation (0.0.33) and (0.0.34), respectively.

Homogeneity Test

The methods discussed in Section and estimate θ by pooling estimates from each study. This actually
assumes the homogeneity of the population effect sizes across the studies, which could be tested by using
the following procedure. For the common-effect model, we desire to test the null hypothesis H0 : θ1 = θ2 =
. . . = θN versus the alternative hypothesis that at least one pair of the effect sizes is not equal.

Risk Difference

To test the hypothesis, we construct the test statistic

Q =

N∑
k=1

wk(θ̂k − θ̂MH)2 , (0.0.36)

where θ̂k is the point estimation of the risk difference for the k-th primary study; θ̂MH is estimated by
Equation (0.0.1); and

wk =

(
akbk
n31k

+
ckdk
n32k

)−1
. (0.0.37)

Under the null hypothesis that all studies share the common population effect size, the test statistic Q follows
the chi-square distribution with

df = N − 1 (0.0.38)

degrees of freedom. Thus, the associated p-value is computed by

1− CDF.CHISQ(Q, df) , (0.0.39)

where Q and df are estimated by Equation (0.0.36) and (0.0.38), respectively.
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Risk Ratio

To test the hypothesis, we construct the test statistic

Q =

N∑
k=1

wk(log θ̂k − log θ̂MH)2 , (0.0.40)

where log θ̂k is the point estimation of the log risk ratio for the k-th primary study; θ̂MH is estimated by
Equation (0.0.5); and

wk =

(
1

ak
+

1

ck
− 1

n1k
− 1

n2k

)−1
. (0.0.41)

Under the null hypothesis that all studies share the common population effect size, the test statistic Q follows
the chi-square distribution. The associated p-value is computed by Equation (0.0.39), where Q and df are
estimated by Equation (0.0.40) and (0.0.38), respectively.

Odds Ratio

To test the hypothesis, we construct the test statistic

Q =

N∑
k=1

wk(log θ̂k − log θ̂MH)2 , (0.0.42)

where log θ̂k is the point estimation of the log odds ratio for the k-th primary study; θ̂MH is estimated by
Equation (0.0.9); and

wk =

(
1

ak
+

1

bk
+

1

ck
+

1

dk

)−1
. (0.0.43)

Under the null hypothesis that all studies share the common population effect size, the test statistic Q follows
the chi-square distribution. The associated p-value is computed by Equation (0.0.39), where Q and df are
estimated by Equation (0.0.40) and (0.0.38), respectively.

Peto’s Odds Ratio

To test the hypothesis, we construct the test statistic

Q =

N∑
k=1

wk(log θ̂k − log θ̂Peto)2 , (0.0.44)

where log θ̂k is the point estimation of the log Peto’s odds ratio for the k-th primary study; log θ̂Peto is
estimated by Equation (0.0.14); and wk is estimated by Equation (0.0.15). Under the null hypothesis that
all studies share the common population effect size, the test statistic Q follows the chi-square distribution.
The associated p-value is computed by Equation (0.0.39), where Q and df are estimated by Equation (0.0.44)
and (0.0.38), respectively.

Heterogeneity Measures

Given the Q-statistic estimated by Equation (0.0.36), (0.0.40), (0.0.42), or (0.0.44), the heterogeneity
measures are defined by the following two metrics as proposed by [?].

H2 =
Q

N − 1
(0.0.45)

and

I2 =

 100×
[
Q− (N − 1)

Q

]
% if Q > N − 1

0 otherwise
. (0.0.46)
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Note that I2 is expressed as a percentile if Q > N − 1.
To estimate the confidence interval of H2, we first take the square root of Equation (0.0.45) to get H,

and then estimate the lower limit

LH = {exp [logH − IDF.NORMAL(1− α/2, 0, 1) se(logH)]}2 (0.0.47)

and upper limit
UH = {exp [logH + IDF.NORMAL(1− α/2, 0, 1) se(logH)]}2 , (0.0.48)

respectively, where

se(logH) =


1

2

logQ− log (N − 1)
√

2Q−
√

2N − 3
if Q > N

√
1

2(N − 2)

[
1− 1

3(N − 2)2

]
otherwise

, (0.0.49)

where Q is estimated by Equation (0.0.36), (0.0.40), (0.0.42), or (0.0.44). Finally, by rewriting I2 = 1−1/H2,
we can estimate the confidence interval of I2 by calculating

LI = max

{
0, 1− 1

LH

}
and UI = max

{
0, 1− 1

UH

}
, (0.0.50)

where LI and UH are estimated by Equation (0.0.47) and (0.0.48), respectively.

Contrast Test

Let c = (y1, y2, . . . , yN ) denote the user-supplied coefficients to formulate a contrast in the procedure.

Theoretically, a valid contrast should satisfy that
∑N

k=1 yk = 0. However, in estimating the effect size for
the contrast, we simply ignore this restriction. The coefficients could be either inputted by users or stored as
variables in the active data set. If keyed in by users, to formulate a valid user-supplied contrast, we require
that the number of the coefficients match the number of the studies in meta-analysis after those studies
with missing values or invalid variance values removed. Only valid contrasts will be analyzed by the method
discussed later in this section. If specified by variables, multiple contrasts within the same procedure are
allowed.

Risk Difference

Considering a contrast formulated by a linear combination of group risk differences γ =
∑N

k=1 ykθk, we
estimate

γ̂ =

N∑
k=1

ykθ̂k , (0.0.51)

where θ̂k is the point estimation of the risk difference for the k-th primary study, and

V(γ̂) =

N∑
k=1

y2k

(
akbk
n31k

+
ckdk
n32k

)
. (0.0.52)

We construct the test statistic

Zy =
γ̂√
V(γ̂)

, (0.0.53)

where γ̂ and V(γ̂) are estimated by Equation (0.0.51) and (0.0.52), respectively. Under the null hypothesis
that γ = 0, the test statistic Zy follows the standard normal distribution. Thus, the two-sides significance is
computed by

2× [1− CDFNORM(|Zy|)] . (0.0.54)

The lower and upper confidence limit of γ are determined by

γ̂ ± IDF.NORMAL(1− α/2, 0, 1)
√
V(γ̂) , (0.0.55)

where γ̂ and V(γ̂) are estimated by Equation (0.0.51) and (0.0.52), respectively.
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Risk Ratio

Considering a contrast formulated by a linear combination of group log risk ratios γ =
∑N

k=1 yk log θk, we
estimate

γ̂ =

N∑
k=1

yk log θ̂k , (0.0.56)

where log θ̂k is the point estimation of the log risk ratio for the k-th primary study, and

V(γ̂) =

N∑
k=1

y2k

(
1

ak
+

1

ck
− 1

n1k
− 1

n2k

)
. (0.0.57)

We construct the test statistic

Zy =
γ̂√
V(γ̂)

, (0.0.58)

where γ̂ and V(γ̂) are estimated by Equation (0.0.56) and (0.0.57), respectively. Under the null hypothesis
that γ = 0, the test statistic Zy follows the standard normal distribution. Thus, the two-sides significance is
computed by

2× [1− CDFNORM(|Zy|)] . (0.0.59)

The lower and upper confidence limit of γ are determined by

γ̂ ± IDF.NORMAL(1− α/2, 0, 1)
√
V(γ̂) , (0.0.60)

where γ̂ and V(γ̂) are estimated by Equation (0.0.56) and (0.0.57), respectively.

Odds Ratio

Considering a contrast formulated by a linear combination of group log odds ratios γ =
∑N

k=1 yk log θk, we
estimate

γ̂ =

N∑
k=1

yk log θ̂k , (0.0.61)

where log θ̂k is the point estimation of the log odds ratio for the k-th primary study, and

V(γ̂) =

N∑
k=1

y2k

(
1

ak
+

1

bk
+

1

ck
+

1

dk

)
. (0.0.62)

We construct the test statistic

Zy =
γ̂√
V(γ̂)

, (0.0.63)

where γ̂ and V(γ̂) are estimated by Equation (0.0.61) and (0.0.62), respectively. Under the null hypothesis
that γ = 0, the test statistic Zy follows the standard normal distribution. Thus, the two-sides significance is
computed by

2× [1− CDFNORM(|Zy|)] . (0.0.64)

The lower and upper confidence limit of γ are determined by

γ̂ ± IDF.NORMAL(1− α/2, 0, 1)
√
V(γ̂) , (0.0.65)

where γ̂ and V(γ̂) are estimated by Equation (0.0.61) and (0.0.62), respectively.
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Peto’s Odds Ratio

Considering a contrast formulated by a linear combination of group log Peto’s odds ratios γ =
∑N

k=1 yk log θk,
we estimate

γ̂ =

N∑
k=1

yk log θ̂k , (0.0.66)

where log θ̂k is the point estimation of the log Peto’s odds ratio for the k-th primary study, and

V(γ̂) =

N∑
k=1

y2k
n2k(nk − 1)

n1kn2k(ak + ck)(bk + dk)
. (0.0.67)

We construct the test statistic

Zy =
γ̂√
V(γ̂)

, (0.0.68)

where γ̂ and V(γ̂) are estimated by Equation (0.0.66) and (0.0.67), respectively. Under the null hypothesis
that γ = 0, the test statistic Zy follows the standard normal distribution. Thus, the two-sides significance is
computed by

2× [1− CDFNORM(|Zy|)] . (0.0.69)

The lower and upper confidence limit of γ are determined by

γ̂ ± IDF.NORMAL(1− α/2, 0, 1)
√
V(γ̂) , (0.0.70)

where γ̂ and V(γ̂) are estimated by Equation (0.0.66) and (0.0.67), respectively.
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Meta Analysis: Continuous Outcomes Algorithms

Meta-analysis is the statistical analysis of a collection of the results from different studies for the purpose of
integrating the findings [DerSimonian and Laird, 1986]. Combining the findings across the studies tend to
strengthen the evidence about the treatment efficacy in clinical trials. In this document, we discuss how to
build fixed-effects or common-effect models to combine the effect sizes estimated across the primary studies
with continuous outcomes.

Notations and Settings

The following notations will be used in Section 2 unless otherwise stated.

θ̂: Variable denoting the estimate of the population effect size.

σ̂2: Variable denoting the estimate of the within-study variance of θ̂.

N : Number of valid cases (or primary studies) in the data set, with each denoting an independent study.

k: Study index, and k is an integer, where 1 ≤ k ≤ N .

θ̂k: Observed value of θ̂ for the k -th primary study.

σ̂2
k: Observed value of σ̂2 for the k -th primary study, and σ̂2

k > 0.

θ0: Test value formulated by the null hypothesis. Note that θ0 may take any real numbers, and we set
θ0 = 0 by default.

α: The significance level to reflect the type I error, and α ∈ (0, 1).

Note that θ̂ may also denote the estimated log odds ratio, log Peto’s odds ratio, log risk ratio, or risk
difference. Despite these statistics estimated based upon binary outcomes, the methods discussed in the
following sections could also be applied to them.

Let θ denote the unknown parameter of the population effect size, and θk the population effect size of the
k-th primary study. The corresponding estimated effect size θ̂ and θ̂k may be either provided in the active
data set or estimated by the algorithm discussed in “Effect size for meta-analysis.pdf.”

Let σ̂ denote the estimate of the standard error of θ̂, which may be either provided or estimated. If
provided in the active data set as a certain variable, we allow the form expressed in either the standard error
σ̂k or the variance σ̂2

k.

Fixed-effects or Common-effect Models

Considering

θ̂k = θ + εk , (0.0.1)

where θ is fixed while εk’s are the random sampling errors, we are interested in drawing statistical inference
about θ with the information collected from the N primary studies. If Model (2.1) represents the fixed-effects
model, it assumes that different primary studies have difference but fixed effect sizes, or θ1 6= θ2 6= . . . 6= θN ,
and θ̂ estimates the average of θk’s. If Model (2.1) represents the common-effect model, it assumes a common

effect size is true for all the primary studies, and θ̂ estimates the true parameter θ. Note that the fix-effects
model and common-effect model share the same computation method. The following method, proposed by
[Hedges and Vevea, 1998], is based on the assumption that

εk ∼ Normal(θ, σ2
k), (0.0.2)

for any 1 ≤ k ≤ N .



Meta Analysis: Continuous Outcomes Algorithms

Overall Mean Effect Size

The approach in this section is based on the inverse-variance methods for combining the results across the
primary studies. Note that the precision, or the weight of the k-th study is

wk =
1

σ̂2
k

. (0.0.3)

The weighted mean that minimizes the variance, also the maximum-likelihood estimator of θ, is

θ̂ =

N∑
k=1

wkθ̂k

N∑
k=1

wk

, (0.0.4)

where wk is defined by Equation (2.3). The sampling variance of θ̂ is

V(θ̂) =
1

N∑
k=1

wk

, (0.0.5)

where wk is defined by Equation (2.3). The standard error of θ̂ is the square root of Equation (2.5), or

se(θ̂w) =

√
V(θ̂) . (0.0.6)

To draw the statistical inference about θ, we construct the test statistic

Z =
θ̂ − θ0
se(θ̂)

, (0.0.7)

where θ̂ and se(θ̂) are estimated by Equation (2.4) and (2.6), respectively. Under the null hypothesis θ = θ0,
the test statistic Z follows the standard normal distribution. Thus, the two-sides significance is computed
by1

2× [1− CDFNORM(|Z|)] , (0.0.8)

where Z is estimated by Equation (2.8). The lower and upper confidence limit of θ are determined by2

θ̂ ± IDF.NORMAL(1− α/2, 0, 1) se(θ̂) , (0.0.9)

where θ̂ and se(θ̂) are estimated by Equation (2.4) and (2.6), respectively.

Homogeneity Test

The method discussed in Section 2.1 estimates θ by pooling estimates from each study. This actually assumes
the homogeneity of the population effect sizes across the studies, which could be tested by using the following
procedure.

For the common-effect model, we desire to test the null hypothesis H0 : θ1 = θ2 = . . . = θN versus
the alternative hypothesis that at least one pair of the effect sizes is not equal. To test the hypothesis, we
construct the test statistic

Q =

N∑
k=1

wk(θ̂k − θ̂)2 , (0.0.10)

1 CDFNORM(zvalue) returns the probability that a random variable with mean 0 and standard deviation 1 is less than
zvalue.

2 IDF.NORMAL(prob, mean, stddev) returns the value from the normal distribution, with specified mean and standard
deviation, for which the cumulative probability is prob.
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where wk and θ̂ are estimated by Equation (2.3) and (2.4), respectively. Under the null hypothesis that all
studies share the common population effect size, the test statistic Q follows the chi-square distribution with

df = N − 1 (0.0.11)

degrees of freedom. Thus, the associated p-value is computed by3

1− CDF.CHISQ(Q, df) , (0.0.12)

where Q and df are estimated by Equation (2.10) and (2.11), respectively.

Heterogeneity Measures

Given the Q-statistic estimated by Equation (2.12), the heterogeneity measures are defined by the following
two metrics as proposed by [Higgins and Thompson, 2002].

H2 =
Q

N − 1
(0.0.13)

and

I2 =

 100×
[
Q− (N − 1)

Q

]
% if Q > N − 1

0 otherwise
. (0.0.14)

Note that I2 is expressed as a percentile if Q > N − 1.
To estimate the confidence interval of H2, we first take the square root of Equation (2.13) to get H, and

then estimate the lower limit

LH = {exp [logH − IDF.NORMAL(1− α/2, 0, 1) se(logH)]}2 (0.0.15)

and upper limit
UH = {exp [logH + IDF.NORMAL(1− α/2, 0, 1) se(logH)]}2 , (0.0.16)

respectively, where

se(logH) =


1

2

logQ− log (N − 1)
√

2Q−
√

2N − 3
if Q > N

√
1

2(N − 2)

[
1− 1

3(N − 2)2

]
otherwise

, (0.0.17)

where Q is estimated by Equation (2.10). Finally, by rewriting I2 = 1−1/H2, we can estimate the confidence
interval of I2 by calculating

LI = max

{
0, 1− 1

LH

}
and UI = max

{
0, 1− 1

UH

}
, (0.0.18)

where LI and UH are estimated by Equation (2.15) and (2.16), respectively.

Contrast Test

Let c = (c1, c2, . . . , cN ) denote the user-supplied coefficients to formulate a contrast in the procedure.

Theoretically, a valid contrast should satisfy that
∑N

k=1 ck = 0. However, in estimating the effect size
for the contrast, we simply ignore this restriction. The coefficients could be either inputted by users or
stored as variables in the active data set. If keyed in by users, to formulate a valid user-supplied contrast,
we require that the number of the coefficients match the number of the studies in meta-analysis after those

3 CDF.CHISQ(quant, df ) returns the cumulative probability that a value from the chi-square distribution, with df degrees
of freedom, will be less than quant.
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studies with missing values or invalid variance values removed. Only valid contrasts will be analyzed by the
method discussed later in this section. If specified by variables, multiple contrasts within the same procedure
are allowed.

Considering a contrast formulated by a linear combination of group means γc =
∑N

k=1 ckθk, we desire to
test γc = 0. By noting that the contrast parameter specified by c is estimated by the sample contrast

γ̂c =

N∑
k=1

ckθ̂k , (0.0.19)

which has a normal sampling distribution with variance

V(γ̂c) =

N∑
k=1

c2kσ̂
2
k , (0.0.20)

we construct the test statistic

Zc =
γ̂c√
V(γ̂c)

, (0.0.21)

where γ̂c and V(γ̂c) are estimated by Equation (3.1) and (3.2), respectively. Under the null hypothesis that
γc = 0, the test statistic Zc follows the standard normal distribution. Thus, the two-sides significance is
computed by

2× [1− CDFNORM(|Zc|)] . (0.0.22)

The lower and upper confidence limit of γc are determined by

γ̂c ± IDF.NORMAL(1− α/2, 0, 1)
√
V(γ̂c) , (0.0.23)

where γ̂c and V(γ̂c) are estimated by Equation (3.1) and (3.2), respectively.
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Introduction 
Meta-regression is to build a linear regression model between the effect size and the covariate. The target 

or the dependent variable is the effect size, and the predictors are the covariates which are also called 

moderators and recorded as the study level, for example, the study location, study test environment and 

drug administration method. The goal of the meta-regression is to explore and explain the between-study 

heterogeneity (difference in the true effect size of the individual studies) as a function of moderators.  

 

In this document, two types of meta-regression models are discussed: fixed-effects (FE) meta-regression 

and random-effects (RE) meta-regression. A FE meta-regression assumes that all heterogeneity between 

study effect sizes can be accounted for by the included moderators. A RE meta-regression accounts for 

potential additional variability unexplained by the included moderators, also known as residual 

heterogeneity. 

 

General Notations 
 

The following notation is used throughout the document unless otherwise stated: 

N Number of distinct records in the dataset. It is an integer and 1n . 

𝜃𝑗 The effect size of the jth study. 

𝜎𝑗 The standard error of the effect size for the jth study. 

𝜽 𝑁 × 1vector of consists of effect sizes 𝜃𝑗, 𝑗 = 1,2 ⋯ , 𝑁 

𝑝 Number of parameters (including parameters for dummy variables) in the model.  

𝑝∗ Number of non-redundant parameters in the model.  

𝒙𝒋 
1 × 𝑝 vector of moderators for the ith study, 𝒙𝑗 = (𝑥𝑗1, ⋯ , 𝑥𝑗𝑝). If intercept is 

included in the model, then 𝑥𝑗1 = 1. 

X 𝑁 × 𝑝 matrix, the jth row is 𝒙𝑗. 

𝜷 𝑝 × 1 vector of regression coefficients,𝛽 = (𝛽1, ⋯ , 𝛽𝑝)
𝑇
.  

�̂�  𝑝 × 1  vector of estimated 𝛽, �̂� = (�̂�1, ⋯ , �̂�𝑝)
𝑇
.  

𝜀𝑗 The jth unobserved errors. 

𝜙 Multiplicative dispersion parameter. 

𝑢𝑗 The jth random-effects term. 

𝜏2 Between study variance. 

 

Please note that meta-regression support both continuous and categorical moderator. Therefore, each 

element of 𝑥𝑗1 𝑥𝑗2, ⋯ , 𝑥𝑗𝑝 in 𝒙𝒋 may be a value from continuous moderator or from a categorical 

moderator by one hot encoding. 
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Fixed-effects meta-regression 
A FE meta-regression is given by 

 

 𝜃𝑗 = 𝒙𝒋𝜷 + 𝜀𝑗                                                                     (3.1) 

weighted by 𝑤𝑗 =
1

𝜎𝑗
2, and 𝜀𝑗~𝑁(0, 𝜎𝑗

2). 

 

The regression coefficients can be estimated as 

 

                                         �̂� = (𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾𝜽                                                              (3.2) 

where 𝑾 = 𝑑𝑖𝑎𝑔(𝑤1, ⋯ , 𝑤𝑁).  

 

The FE regression does not account for the residual heterogeneity. This can lead to standard errors of 

coefficients too small. Thompson and Sharp (1999) incorporated residual heterogeneity into the model by 

including a multiplicative dispersion parameter. The model can be described as 

𝜃𝑗 = 𝒙𝒋𝜷 + 𝜀𝑗
𝜙

                                                                       (3.3) 

weighted by 𝑤𝑗
𝜙

=
1

𝜙𝜎𝑗
2 and 𝜀𝑗

𝜙
~𝑁(0, 𝜙𝜎𝑗

2). 

 

The regression coefficients estimates are the same as (3.2), but the standard errors of coefficients and 

related tests will be different, which will be discussed later. 

 

Coefficients and statistical inference 
 
If the FE meta regression model (3.1) is used, the following statistics should be computed and output 

 

• The number of observations: N 

• Coefficients: �̂�𝑗 , 𝑗 = 1, ⋯ , 𝑝 

• Standard error of �̂�𝑗:  𝜎�̂�𝑗
, the square root of the jth diagonal elements of the matrix (𝑿𝑇𝑾𝑿)−, 

𝑗 = 1, ⋯ , 𝑝. 

• Individual coefficient test 

The null hypothesis 𝐻0: �̂�𝑗 = 0, and the alternative hypothesis 𝐻0: �̂�𝑗 ≠ 0 

Z statistics:  

𝑧𝑗 =
�̂�𝑗

𝜎�̂�𝑗

, 𝑗 = 1, ⋯ , 𝑝 

p-value:  

𝑃𝑗 = 2 × (1 − 𝑝𝑟𝑜𝑏(𝑧 ≤ |𝑧𝑗|)), 𝑗 = 1, ⋯ , 𝑝, 

where 𝑧 is random variable following the standard normal distribution. 

• 100(1 − 𝛼)% confidence intervals  

(�̂�𝑗 − 𝜎�̂�𝑗
∗ 𝑧

1−
𝛼
2

, �̂�𝑗 + 𝜎�̂�𝑗
∗ 𝑧

1−
𝛼
2

 ) 

where 𝑧𝑝 is the (100p) th percentile of the standard normal distribution.  
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• Model coefficient test 

 

The test is used to test that all coefficients other than the intercept are equal to zero, i.e., the null 

hypothesis and alternative hypothesis are 

𝐻0: �̂�2 = �̂�3 = ⋯ �̂�𝑝 = 0, 𝐻1: at least there is one �̂�𝑗 ≠ 0 

The Wald Chi-Square test statistic is construct as 

𝜒𝑊𝑎𝑙𝑑
2 = �̂�𝑇𝑳𝑻(𝑳(𝑿𝑇𝑾𝑿)−𝑳𝑻)

−
𝑳�̂�  

where �̂� = (�̂�1, �̂�2 ⋯ , �̂�𝑝)
𝑇
,  𝑳 = [ 𝟎(𝑝−1)×1,  𝑰(𝑝−1)×(𝑝−1)] if the intercept is included in the 

model, otherwise 𝑳 =  𝑰𝑝×𝑝. The  𝟎(𝑝−1)×1 is (𝑝 − 1) × 1 vector with all elements being 0, and 

 𝑰(𝑝−1)×(𝑝−1) and  𝑰𝑝×𝑝 are (𝑝 − 1) × (𝑝 − 1) and 𝑝 × 𝑝 identity matrix, respectively. 

The p-value is computed as  

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑑𝑓
2 ≤ 𝜒𝑊𝑎𝑙𝑑

2 ) 

Where 𝜒𝑑𝑓
2  is a random variable following the chi-square distribution with degree of freedom 

being 𝑑𝑓. If the intercept is included in the model, then 𝑑𝑓 = 𝑝∗ − 1, otherwise, 𝑑𝑓 = 𝑝∗. 

If there is no coefficient other than intercept, the model coefficient test will not be performed. 

• Residual homogeneity test:  

The test of null hypothesis and alternative hypothesis are 

 

𝐻0: residuals are homogeneity vs 𝐻1: heterogeneity presents in residual 

 

The test statistic is 

𝑄𝑟𝑒𝑠 = ∑ (
𝜃𝑗 − 𝒙𝒋�̂�

𝜎𝑗
)

2𝑁

𝑗=1

 

And the p-value is 

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑁−𝑝∗
2 ≤ 𝑄𝑟𝑒𝑠) 

where 𝜒𝑁−𝑝∗
2  is a random variable following the chi-square distribution with degree of freedom 

being 𝑁 − 𝑝∗. If 𝑁 − 𝑝∗ = 0, the p-value will be set to system missing. 

• Residual heterogeneity measure 

Two residual heterogeneity measure are defined as follows: 

The 𝐻𝑟𝑒𝑠
2  statistic is defined as 

𝐻𝑟𝑒𝑠
2 =

𝑄𝑟𝑒𝑠

𝑁 − 𝑝∗ 

and 

𝐼𝑟𝑒𝑠
2 =

𝐻𝑟𝑒𝑠
2 − 1

𝐻𝑟𝑒𝑠
2 × 100% 
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If 𝑁 − 𝑝∗ = 0 or 𝑄𝑟𝑒𝑠 = 0, then 𝐻𝑟𝑒𝑠
2  is set to 1. And if 𝐼𝑟𝑒𝑠

2 < 0, then it is also set to 0. 

If the FE meta regression model with multiplicative dispersion parameter is used, i.e. model (3.3) is 

requested by user, then we first build a FE meta regression model (3.1), and then estimate the 

multiplicative dispersion parameter: 

                        �̂� =
1

𝑁−𝑝∗
∑ (

𝜃𝑗−𝒙𝒋�̂�

𝜎𝑗
)

2
𝑁
𝑗=1                                                                   (3.4) 

 

If 𝑁 − 𝑝∗ = 0, the �̂� is fixed to 1, and output a warning message: 
 

The multiplicate dispersion parameter cannot be computed because the degrees of freedom is zero. The 

multiplicate dispersion parameter is fixed at one instead. 
 

If �̂� = 0, the �̂� is fixed to 1, and output a warning message: 

The multiplicate dispersion parameter is estimated to be zero, and the standard error of parameters 

cannot be revised. The multiplicate dispersion parameter is fixed at one instead. 
 

 

After multiplicative dispersion parameter is estimated, the following statistics are computed and output: 

 

• The number of observations: N 

• The estimation of dispersion parameter: �̂� 

• Residual homogeneity test:  

The test of null hypothesis and alternative hypothesis are 

𝐻0: 𝜙 = 1 vs 𝐻1: 𝜙 ≠ 1 

The test statistic is 

𝑄𝑟𝑒𝑠 = ∑ (
𝜃𝑗 − 𝒙𝒋�̂�

𝜎𝑗
)

2𝑁

𝑗=1

 

And the p-value is 

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑁−𝑝∗
2 ≤ 𝑄𝑟𝑒𝑠) 

where 𝜒𝑁−𝑝∗
2  is a random variable following the chi-square distribution with degree of freedom 

being 𝑁 − 𝑝∗. If 𝑁 − 𝑝∗ = 0, the p-value will set to system missing. 

• Coefficients: �̂�𝑗 , 𝑗 = 1, ⋯ , 𝑝 

• Standard error of �̂�𝑗:  𝜎
�̂�𝑗

𝜙
= √�̂�𝜎�̂�𝑗

, 𝑗 = 1, ⋯ , 𝑝, where 𝜎�̂�𝑗
 is standard error of �̂�𝑗 without the 

multiplicative dispersion parameter 

• Individual coefficient test 

When the FE meta-regression model is built, then the Z statistic is used for the individual 

coefficient test. 

𝑧𝑗 =
�̂�𝑗

𝜎
�̂�𝑗

𝜙 , 𝑗 = 1, ⋯ , 𝑝 

The p-value:  

𝑃𝑗 = 2 × (1 − 𝑝𝑟𝑜𝑏(𝑧 ≤ |𝑧𝑗|)), 𝑗 = 1, ⋯ , 𝑝, 
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• 100(1 − 𝛼)% confidence internals  

(�̂�𝑗 − 𝜎
�̂�𝑗

𝜙
∗ 𝑧

1−
𝛼
2

, �̂�𝑗 + 𝜎
�̂�𝑗

𝜙
∗ 𝑧

1−
𝛼
2

 ) 

where 𝑧𝑝 is the (100p)th percentile of the standard normal distribution.  

• Model coefficient test 

The Wald Chi-Square test statistic is  

𝜒𝑊𝑎𝑙𝑑,𝜙
2 = 𝜒𝑊𝑎𝑙𝑑

2 /𝜙  

 

The p-value is  

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑑𝑓
2 ≤ 𝜒𝑊𝑎𝑙𝑑,𝜙

2 ) 

If the intercept is included in the model, then 𝑑𝑓 = 𝑝∗ − 1, otherwise, 𝑑𝑓 = 𝑝∗. 

If there is no coefficient other than intercept, the model coefficient test will not be performed. 

Note: if user specifies the t-distribution for the individual coefficients test and confidence intervals, then t 

statistics are computed like the Z statistics, but the p values and confidence intervals are based on t 

distribution with 𝑁 − 𝑝∗degree of freedom. 

 

 

Predict 
Based on the FE meta-regression model, the following predictions can be obtained for each study: 

 

• Fitted value: 𝜃𝑗 = 𝒙𝒋�̂� 

• Standard error of fitted value: 𝑆𝐸(𝒙𝒋�̂�) = √𝒙𝒋(𝑿𝑇𝑾𝑿)−𝒙𝑗
𝑇  

• 100(1 − 𝛼)% the confidence interval for fitted values:  

(𝜃𝑗 − 𝑆𝐸(𝒙𝒋�̂�) ∗ 𝑧
1−

𝛼
2

, 𝜃𝑗 + 𝑆𝐸(𝒙𝒋�̂�) ∗ 𝑧
1−

𝛼
2

 ) 

If the t distribution is specified, the confidence interval will be 

(𝜃𝑗 − 𝑆𝐸(𝒙𝒋�̂�) ∗ 𝑡
1−

𝛼
2,𝑁−𝑝∗ , 𝜃𝑗 + 𝑆𝐸(𝒙𝒋�̂�) ∗ 𝑡

1−
𝛼
2,𝑁−𝑝∗  ) 

 

• Residual: 𝑒𝑗 = 𝜃𝑗 − 𝜃𝑗  

• Standard error of residual: 𝑆𝐸(𝑒𝑗) = √𝜎𝑗
2 − 𝒙𝒋(𝑿𝑇𝑾𝑿)−𝒙𝑗

𝑇  

• Leverage: ℎ𝑗 =
1

𝜎𝑗
2 𝒙𝒋(𝑿𝑇𝑾𝑿)−𝒙𝑗

𝑇 

For the multiplicate fixed-effects meta-regression, 𝑾 will be replaced with 𝑾𝝓 =

𝑑𝑖𝑎𝑔 (𝑤1
𝜙

, 𝑤2
𝜙

, ⋯ , 𝑤𝑁
𝜙

) 

 

 

 

Random-effects meta-regression 
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Random-effects meta-regression model incorporates residual heterogeneity by including an additive 

between-study variance component 𝑢𝑗: 

𝜃𝑗 = 𝒙𝒋𝜷 + 𝑢𝑗 + 𝜀𝑗                                                                           (4.1) 

where 𝑢𝑗~𝑁(0, 𝜏2) and 𝜀𝑗~𝑁(0, 𝜎𝑗
2 ). 

The regression coefficients can be estimated using weighted least squares,   

�̂� = (𝑿𝑇𝑾�̂�2
𝑿)

−
𝑿𝑇𝑾�̂�2

𝜽                                                               (4.2) 

where 𝑾�̂�2
= 𝑑𝑖𝑎𝑔 (

1

𝜎1
2+�̂�2 ,

1

𝜎2
2+�̂�2 , ⋯ ,

1

𝜎𝑁
2 +�̂�2), and �̂�2 is an estimate of the unknown value 𝜏2. Seven 

methods are supported to estimate the 𝜏2 in the following sections based on the matrix 

𝑷 = 𝑾∗ − 𝑾∗𝑿(𝑿𝑇𝑾∗𝑿)−1𝑿𝑇𝑾∗                                                  (4.3) 

where 𝑾∗ is a 𝑁 × 𝑁 diagonal weight matrix whose elements can change from one estimator to another 

(Viechtbauer et al 2015). 

 

 

Estimate for 𝝉𝟐 

 

Noniterative methods for computing 𝝉𝟐 
 

Hedges (HE) Estimator 

 

Hedges (1983) proposed a method of moments estimator of 𝜏2 in the random-effects mate-analysis. When 

moderators are included in the model, the extension of the HE estimator (Raudenbush,2009) can be 

written as 

�̂�𝐻𝐸
2 =

𝜽𝑇𝑷𝜽 − 𝑡𝑟(𝑷𝑾−𝟏)

𝑁 − 𝑝∗ =
∑ (𝜃𝑗 − 𝒙𝒋�̂�𝑜𝑙𝑠)

2
− ∑ 𝜎𝑗

2(1 − ℎ𝑗)𝑁
𝑗=1

𝑁
𝑗=1

𝑁 − 𝑝∗  

 

Where 𝑷 is defined by (4.3) with 𝑾∗ = 𝑰, 𝑡𝑟(∙) is the trace of the matrix in the parenthesis, �̂�𝑜𝑙𝑠 =
(𝑿𝑇𝑿)−𝑿𝑇𝜽, and ℎ𝑗 is the 𝑗𝑡ℎ diagonal element of the hat matrix 𝑿(𝑿𝑇𝑿)−𝑿𝑇 . It is possible that the �̂�𝐻𝐸

2  

is negative, which is a value outside the parameter space of a variance component. In this case, the value 

is truncated to 0. Also, if 𝑁 − 𝑝∗ = 0, we set the �̂�𝐻𝐸
2  to 0 

  

Hunter and Schmidt (HS) Estimator 

 

Hunter and Schmidt(2004) proposed an estimator of 𝜏2 in the random-effect model, and the extension for 

this estimator when the moderators are included in the model is given by 
 

�̂�𝐻𝑆
2 =

𝜽𝑇𝑷𝜽 − 𝑵

𝑡𝑟(𝑾)
=

∑ 𝑤𝑗(𝜃𝑗 − 𝒙𝒋�̂�)
2𝑁

𝑗=1 − 𝑁

∑ 𝑤𝑗
𝑁
𝑗=1

 

where 𝑷 is defined by (4.3) with 𝑾∗ = 𝑾, 𝑤𝑗 =
1

𝜎𝑗
2, and �̂� = (𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾𝜽. When the �̂�𝐻𝑆

2  turns out 

negative, then it is truncated to 0. 
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DerSimonian and Laird(DL) Estimator 

 

The estimator proposed by DerSimonian and Laird(1986) for random-effects models. When including 

moderators in the model, the extension is given by  

 

�̂�𝐷𝐿
2 =

𝜽𝑇𝑷𝜽 − (𝑵 − 𝑝∗)

𝑡𝑟(𝑷)
=

∑ 𝑤𝑗(𝜃𝑗 − 𝒙𝒋�̂�)
2𝑁

𝑗=1 − (𝑵 − 𝑝∗)

∑ 𝑤𝑗(1 − ℎ𝑗)𝑁
𝑗=1

 

Where 𝑷 is defined by (4.3) with 𝑾∗ = 𝑾, 𝑤𝑗 =
1

𝜎𝑗
2, and ℎ𝑗 is the 𝑗𝑡ℎ diagonal element of the hat matrix 

𝑿(𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾 and  �̂� = (𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾𝜽. A negative value of �̂�𝐷𝐿
2  is truncated to 0. And if the 

denominator 𝑡𝑟(𝑷) = 0, then we also set the �̂�𝐷𝐿
2 to 0. 

 

Sidik and Jonkman(SJ) Estimator 

 

The estimator is proposed by Sidik and Jonkman(2005). It can be computed by starting with an initial 

estimator of �̂�2, denoted by �̂�0
2 and given by  

�̂�0
2 =

∑ (𝜃𝑗 − �̅�)
2𝑁

𝑗=1

𝑁
 

where �̅� =
1

𝑁
∑ 𝜃𝑗

𝑁
𝑗=1 . Then the SJ estimator is defined as 

�̂�𝐷𝐿
2 =

𝜽𝑇𝑷𝜽

𝑁 − 𝑝∗ =
∑ 𝑤𝑗

𝑆𝐽(𝜃𝑗 − 𝒙𝒋�̂�𝑆𝐽)
2𝑁

𝑗=1

𝑁 − 𝑝∗  

 

where P is defined by (4.3) with 𝑾∗ = 𝑑𝑖𝑎𝑔(𝑤1
𝑆𝐽, ⋯ , 𝑤𝑁

𝑆𝐽), 𝑤𝑗
𝑆𝐽 =

�̂�0
2

𝜎j
2+�̂�0

2, �̂�𝑆𝐽 = (𝑿𝑇𝑾∗𝑿)−𝑿𝑇𝑾∗𝜽. 

Please note if 𝑁 − 𝑝∗, we set the �̂�𝐷𝐿
2  to 0 

 

Iterative methods for computing 𝝉𝟐 
 

There are three iterative methods to give an estimate of 𝜏2.  These methods start with an initial estimate of 

𝜏2, then the estimate is updated based on a factor Δ in each iteration using the below formula 

�̂�𝑖+1
2 = �̂�𝑖

2 + Δ 

where the �̂�𝑖
2 is the estimate of 𝜏2 after the ith iteration. The factor Δ is a function of �̂�𝑖

2 and will be 

computed based on the estimation method. 
 

The process is described as below: 
 

Step 1. Input the maximum number of iterations 𝑀(default is 100), the maximum number of step halving 

𝐽 (default is 5), the threshold of convergency tolerance 𝜀Δ(default is 10−6). 

Step 2. Let 𝑖 = 0 

Step 3. Compute the initial value using Hedges estimator: �̂�0
2 = �̂�𝐻𝐸

2 . 

Step 4. Compute Δ(�̂�𝑖
2) using the formula in the estimation method described later.   If |Δ(�̂�𝑖

2)| < 𝜀Δ, 

then stop and output the �̂�𝑖
2. 

Step 5. Let 𝑘 = 0.   

Step 6. Compute the �̂�𝑖+1,𝑘
2 = �̂�𝑖

2 +
1

2𝑘 Δ(�̂�𝑖
2).  
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Step 7. If �̂�𝑖+1,𝑘
2 ≥ 0, then �̂�𝑖+1

2 = �̂�𝑖+1,𝑘
2 , and go to step 8.  If �̂�𝑖+1,𝑘

2 < 0,  let k=k+1.  If 𝑘 > 𝐽, then stop 

and output the �̂�𝑖
2. Otherwise, go back to the step 6. 

Step 8. 𝑖 = 𝑖 + 1. If 𝑖 > 𝑀, then stop and output �̂�𝑖−1
2 . Otherwise, go to the step 4. 

 

Maximum Likelihood (ML) Estimator 
 

The ML estimate of 𝜏2 is the value that maximizes the log-likelihood function  

ln 𝐿𝑀𝐿(𝜏2) = −
1

2
𝑁 ∗ ln(2𝜋) −

1

2
ln|𝜏2𝑰 + 𝑾−1| −

1

2
𝜽𝑇𝑷𝜽 

The factor Δ is  

 

Δ(�̂�2)𝑀𝐿 =
𝜽𝑇𝑷𝑷𝜽 − 𝑡𝑟(𝑾�̂�2

)

𝑡𝑟(𝑾�̂�2
𝑾�̂�2

)
=

∑ 𝑤𝑗
∗2(𝜃𝑗 − 𝒙𝒋�̂�)

2
− ∑ 𝑤𝑗

∗𝑁
𝑗=1

𝑁
𝑗=1

∑ 𝑤𝑗
∗2𝑁

𝑗=1

 

where 𝑷 is defined (4.3) with 𝑾∗ = 𝑾�̂�2
, 𝑤𝑗

∗ =
1

𝜎𝑗
2+�̂�2, and �̂� = (𝑿𝑇𝑾�̂�2

𝑿)
−

𝑿𝑇𝑾�̂�2
𝜽.                                                                

 

Restricted Maximum Likelihood (REML) Estimator 

 

The REML estimate of 𝜏2 is the value that maximizes restricted the log-likelihood function 

 

ln 𝐿𝑅𝐸𝑀𝐿 (𝜏2) = ln 𝐿𝑀𝐿(𝜏2) −
1

2
ln |∑

1

𝜏2 + 𝜎𝑗
2

𝑁

𝑗=1

𝒙𝒋
𝑻𝒙𝒋| +

𝑝

2
ln(2π) 

The factor Δ is given by 

Δ(�̂�2)𝑅𝐸𝑀𝐿 =
𝜽𝑇𝑷𝑷𝜽 − 𝑡𝑟(𝑷)

𝑡𝑟(𝑷𝑷)
=

∑ 𝑤𝑗
∗2(𝜃𝑗 − 𝒙𝒋�̂�)

2
− ∑ 𝑤𝑗

∗(1 − ℎ𝑗𝑗)𝑁
𝑗=1

𝑁
𝑗=1

∑ 𝑤𝑗
∗2(1 − 2ℎ𝑗𝑗)𝑁

𝑗=1 + ∑ ∑ 𝑤𝑖
∗2𝑁

𝑗=1 ℎ𝑖𝑗
2𝑁

𝑖=1

 

where 𝑷 is defined by (4.3) with 𝑾∗ = 𝑾�̂�2
, 𝑤𝑗

∗ =
1

𝜎𝑗
2+�̂�

2, �̂� = (𝑿𝑇𝑾�̂�2
𝑿)

−
𝑿𝑇𝑾�̂�2

𝜽, and ℎ𝑖𝑗  is the 

(𝑖, 𝑗)𝑡ℎ element of the hat matrix 𝑿(𝑿𝑇𝑾�̂�2
𝑿)

−
𝑿𝑇𝑾�̂�2

.  If the denominator 𝑡𝑟(𝑷𝑷) = 0, then we set Δ =

0. 

 

 
Empirical Bayes (EB) Estimator 

 
The estimator was first proposed by Morris (1983) and was later adapted to Berkely et al(1995). The 

method computes the factor Δ as 

 

Δ(�̂�2)𝐸𝐵 =
𝑁/(𝑁 − 𝑝∗)𝜽𝑇𝑷𝜽 − 𝑁

𝑡𝑟(𝑾�̂�2
)

=
𝑁/(𝑁 − 𝑝∗) ∑ 𝑤𝑗

∗(𝜃𝑗 − 𝒙𝒋�̂�)
2𝑁

𝑗=1 − 𝑁

∑ 𝑤𝑗
∗𝑁

𝑗=1

 

 

where 𝑷 is defined by (4.3) with 𝑾∗ = 𝑾�̂�2
, 𝑤𝑗

∗ =
1

𝜎𝑗
2+�̂�

2, and �̂� = (𝑿𝑇𝑾�̂�2
𝑿)

−
𝑿𝑇𝑾�̂�2

𝜽. 
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Coefficients and statistical inference 

 
After the model building, the following statistics should be computed and output 

 

• The number of observations: N 

• The between-study variance estimate: �̂�2 

• Coefficients: �̂�𝑗 , 𝑗 = 1, ⋯ , 𝑝 

• Standard error of �̂�𝑗:  𝜎�̂�𝑗
, the square root of the jth diagonal elements of the matrix (𝑿𝑇𝑾�̂�2

𝑿)
−

, 

𝑗 = 1, ⋯ , 𝑝. 

• Individual coefficient test 

The null hypothesis 𝐻0: �̂�𝑗 = 0, and the alternative hypothesis 𝐻0: �̂�𝑗 ≠ 0 

Z statistics:  

𝑧𝑗 =
�̂�𝑗

𝜎�̂�𝑗

, 𝑗 = 1, ⋯ , 𝑝 

p-value:  

𝑃𝑗 = 2 × (1 − 𝑝𝑟𝑜𝑏(𝑧 ≤ |𝑧𝑗|)), 𝑗 = 1, ⋯ , 𝑝, 

where 𝑧 is random variable following the standard normal distribution. 

• 100(1 − 𝛼)% confidence intervals  

(�̂�𝑗 − 𝜎�̂�𝑗
∗ 𝑧

1−
𝛼
2

, �̂�𝑗 + 𝜎�̂�𝑗
∗ 𝑧

1−
𝛼
2

 ) 

where 𝑧𝑝 is the (100p)th percentile of the standard normal distribution.  

• Model coefficient test  

 

The Wald Chi-Square test is used to test that all coefficients other than the intercept are equal to 

zero, i.e., the null hypothesis and alternative hypothesis are 

𝐻0: �̂�2 = �̂�3 = ⋯ �̂�𝑝 = 0, 𝐻1: at least there is one �̂�𝑗 ≠ 0 

The test statistic is construct as 

𝜒𝑊𝑎𝑙𝑑
2 = �̂�𝑇𝑳𝑻(𝑳(𝑿𝑇𝑾�̂�2

𝑿)
−

𝑳𝑻)
−

𝑳�̂�  

where �̂� = (�̂�1, �̂�2 ⋯ , �̂�𝑝)
𝑇
,  𝑳 = [ 𝟎(𝑝−1)×1,  𝑰(𝑝−1)×(𝑝−1)] if the intercept is included in the 

model, otherwise 𝑳 =  𝑰𝑝×𝑝. The  𝟎(𝑝−1)×1 is (𝑝 − 1) × 1 vector with all elements being 0, and 

 𝑰(𝑝−1)×(𝑝−1) and  𝑰𝑝×𝑝 are (𝑝 − 1) × (𝑝 − 1) and 𝑝 × 𝑝 identity matrix, respectively. 

 The p-value is computed as 

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑑𝑓
2 ≤ 𝜒𝑊𝑎𝑙𝑑

2 ) 

Where 𝜒𝑑𝑓
2  is a random variable following the chi-square distribution with degree of freedom 

being 𝑑𝑓. If the intercept is included in the model, then 𝑑𝑓 = 𝑝∗ − 1, otherwise, 𝑑𝑓 = 𝑝∗. 

If there is no coefficient other than intercept, the model coefficient test will not be performed 

• Residual homogeneity test 

The test of null hypothesis and alternative hypothesis are 

𝐻0: 𝜏2 = 0   vs    𝐻1: 𝜏2 ≠ 0 

The test statistic is 
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𝑄𝑟𝑒𝑠 = ∑ (
𝜃𝑗 − 𝒙𝒋�̂�

𝜎𝑗
)

2𝑁

𝑗=1

 

where �̂� = (𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾𝜽. 

And the p-value is 

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝜒𝑁−𝑝∗
2 ≤ 𝑄𝑟𝑒𝑠) 

where 𝜒𝑁−𝑝∗
2  is a random variable following the chi-square distribution with degree of freedom 

being 𝑁 − 𝑝∗. If 𝑁 − 𝑝∗ = 0, the p-value will be missing. 

• Residual heterogeneity measure 

Three residual heterogeneity measure are defined as follows: 

The 𝐼𝑟𝑒𝑠
2  statistic, which is defined by Higgins and Thompson (2002), represents the percentage of 

residual between-study variation relative to the total variability: 

𝐼𝑟𝑒𝑠
2 =

�̂�2

�̂�2 + 𝑠2 × 100% 

where 𝑠2 =
𝑁−𝑝∗

𝑡𝑟(𝑷)
=

𝑁−𝑝∗

∑ 𝑤𝑗(1−ℎ𝑗)𝑁
𝑗=1

 and 𝑾∗ = 𝑾 is used for 𝑷 defined by (4.3), 𝑤𝑗 =
1

𝜎𝑗
2, and ℎ𝑗 is 

the 𝑗𝑡ℎ diagonal element of the hat matrix 𝑿(𝑿𝑇𝑾𝑿)−𝑿𝑇𝑾. 

The 𝐻𝑟𝑒𝑠
2  statistic is defined as 

𝐻𝑟𝑒𝑠
2 =

�̂�2 + 𝑠2

𝑠2  

The 𝑅2 statistics is proposed in Harbord and Higgins (2016), which measures the proportion of 

the between-study variance that is explained by the moderators: 

𝑅2 =
�̂�𝑐

2−�̂�2

�̂�𝑐
2  

where �̂�𝑐
2 is the between-study variance estimated from an intercept only model. 

If �̂�2 + 𝑠2 = 0 then 𝐼𝑟𝑒𝑠
2  is set to 0 and 𝐻𝑟𝑒𝑠

2  is set to 1 

For the 𝑅2, it will be truncated to be 0 if it is negative. 

Note: if user specifies the t-distribution for the individual coefficients test and confidence intervals, then t 

statistics are computed like Z statistics, but the p values and confidence intervals are based on t 

distribution with the degree of freedom 𝑁 − 𝑝∗. 

Knapp-Hartung standard-error adjustment 

Knapp and Hartung (2003) found that the Wald-type test for the individual regression coefficients and 

model test cannot control the Type I error rate adequately. They proposed a method that adjusts the 

estimate of variance-covariance matrix to improve the Type I error rate. The method is described as 

below: 
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The variance-covariance matrix can be adjusted by 

 

Σ̂𝐾𝐻 = 𝑠𝐾𝐻
2 (𝑿𝑇𝑾�̂�2

𝑿)
−

 

where 

 

𝑠𝐾𝐻
2 =

𝜽𝑇𝑷𝜽

𝑁 − 𝑝∗ =
∑ 𝑤𝑗

∗(𝜃𝑗 − 𝒙𝒋�̂�)
2𝑁

𝑗=1

𝑁 − 𝑝∗  

where the 𝑃 is defined by (4.3) with 𝑾∗ = 𝑾�̂�2
, 𝑤𝑗

∗ =
1

𝜎𝑗
2+�̂�

2, and �̂� = (𝑿𝑇𝑾�̂�2
𝑿)

−
𝑿𝑇𝑾�̂�2

𝜽.  

 

The value of 𝑠𝐾𝐻
2  should be equal or greater than 1. So, we allow user to truncate the value if it is less than 

1, i.e.,  

𝑠𝐾𝐻
2 = 𝑚𝑎𝑥 (1,

𝜽𝑇𝑷𝜽

𝑁 − 𝑝∗) 

 

But please note that when the denominator 𝑁 − 𝑝∗ = 0, 𝑠𝐾𝐻
2  will be set to 1 automatically, no matter the 

truncation method is used or not. 

 

The following tests will be implemented based on adjusted variance-covariance matrix if Knapp-Hartung 

standard-error adjustment is used: 

 
• Standard error of �̂�𝑗:  𝜎�̂�𝑗

, the square root of the jth diagonal elements of the matrix Σ̂𝐾𝐻, 𝑗 =

1, ⋯ , 𝑝. 

• Individual coefficient test 

T test is used for the coefficient test and the T statistics are   

𝑡𝑗 =
�̂�𝑗

𝜎�̂�𝑗

, 𝑗 = 1, ⋯ , 𝑝 

p-value:  

𝑃𝑗 = 2 × (1 − 𝑝𝑟𝑜𝑏(𝑡 ≤ |𝑡𝑗|)), 𝑗 = 1, ⋯ , 𝑝, 

where 𝑡 is random variable following the t distribution with 𝑁 − 𝑝∗degree of freedom. Please 

note that the p-value will be missing if the 𝑁 − 𝑝∗ = 0. 

 

• 100(1 − 𝛼)% confidence internals  

(�̂�𝑗 − 𝜎�̂�𝑗
∗ 𝑡

1−
𝛼
2,𝑁−𝑝∗ , �̂�𝑗 + 𝜎�̂�𝑗

∗ 𝑡
1−

𝛼
2,𝑁−𝑝∗  ) 

where 𝑡𝑝,𝑑𝑓 is the (100p)th percentile of the t distribution with 𝑑𝑓 degree of freedom. The 𝑡𝑝,𝑑𝑓 

will be 0 if the 𝑁 − 𝑝∗ = 0. 

 

• Model coefficient test 

 

The F test will be used to test if all coefficients other than the intercept are equal to zero. The F 

statistic is construct as 

𝐹 =
1

𝑑𝑓1
�̂�𝑇𝑳𝑻(𝑳Σ̂𝐾𝐻𝑳𝑻)

−
𝑳�̂� 
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where �̂� = (�̂�1, �̂�2 ⋯ , �̂�𝑝)
𝑇
,  𝑳 = [ 𝟎(𝑝−1)×1,  𝑰(𝑝−1)×(𝑝−1)] if the intercept is included in the 

model, otherwise 𝑳 =  𝑰𝑝×𝑝. The  𝟎(𝑝−1)×1 is (𝑝 − 1) × 1 vector with all elements being 0, and 

 𝑰(𝑝−1)×(𝑝−1) and  𝑰𝑝×𝑝 are (𝑝 − 1) × (𝑝 − 1) and 𝑝 × 𝑝 identity matrix, respectively. 

The p-value is computed as 

𝑃 = 1 − 𝑝𝑟𝑜𝑏(𝐹𝑑𝑓1 ,𝑑𝑓2
≤ 𝐹) 

Where 𝐹𝑑𝑓1 ,𝑑𝑓2
 is a random variable following the F distribution with  𝑑𝑓1 = 𝑝∗ − 1 numerator 

degree of freedom if the intercept is included, and 𝑑𝑓1 = 𝑝∗ otherwise, and 𝑑𝑓2 = 𝑁 − 𝑝∗for the 

denominator freedom of freedom. 

If 𝑑𝑓2=0, the p-value will be set to system missing. 

If there is no coefficient other than intercept, the model coefficient test will not be performed. 

 

 

 

Predict 
Based on the RE meta-regression model, the following predictions can be obtained for each study: 

 

• Fixed-portion of linear prediction: 𝒙𝒋�̂�  

• Standard error of fixed-portion of linear prediction: 𝑆𝐸(𝒙𝒋�̂�) = √𝒙𝒋(𝑿𝑇𝑾�̂�2
𝑿)

−
𝒙𝑗

𝑇 

• The best linear unbiased predictions (BLUPs) of the random effects: �̂�𝑗 = 𝜆𝑗(𝜃𝑗 − 𝒙𝒋�̂�), where 

𝜆𝑗 =
�̂�2

𝜎𝑗
2+�̂�2 

• Standard error of BLUP: 𝑆𝐸(�̂�𝑗) = 𝜆𝑗√𝜎𝑗
2 + �̂�2 − 𝒙𝒋(𝑿𝑇𝑾�̂�2

𝑿)
−

𝒙𝑗
𝑇 

• Fitted value: 𝜃𝑗 = 𝒙𝒋�̂� + �̂�𝑗 

• Standard error of fitted value 𝑆𝐸(𝜃𝑗) = √𝜆𝑗
2(𝜎𝑗

2 + �̂�2) + (1 − 𝜆𝑗
2)𝒙𝒋(𝑿𝑇𝑾�̂�2

𝑿)
−

𝒙𝑗
𝑇  

• 100(1 − 𝛼)% confidence interval for fitted values:  

(𝜃𝑗 − 𝑆𝐸(𝜃𝑗) ∗ 𝑧
1−

𝛼
2

, 𝜃𝑗 + 𝑆𝐸(𝜃𝑗) ∗ 𝑧
1−

𝛼
2

 ) 

If he t distribution is specified, then the confidence interval will be: 

(𝜃𝑗 − 𝑆𝐸(𝜃𝑗) ∗ 𝑡
1−

𝛼
2,𝑁−𝑝∗ , 𝜃𝑗 + 𝑆𝐸(𝜃𝑗) ∗ 𝑡

1−
𝛼
2,𝑁−𝑝∗  ) 

 

• Residual: 𝑒𝑗 = 𝜃𝑗 − 𝜃𝑗  

• Standard error of residual: 𝑆𝐸(𝑒𝑗) = √(1 + 𝜆𝑗
2)(𝜎𝑗

2 + �̂�2 − 𝒙𝒋(𝑿𝑇𝑾�̂�2
𝑿)

−
𝒙𝑗

𝑇) 

• Leverage: ℎ𝑗 =
1

𝜎𝑗
2+�̂�2 𝒙𝒋(𝑿𝑇𝑾�̂�2

𝑿)
−

𝒙𝑗
𝑇  
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Please note that if the Knapp-Hartung standard error adjustment is used, then the matrix (𝑿𝑇𝑾�̂�2
𝑿)

−
 will 

be multiplied by the factor 𝑠𝐾𝐻
2 =

𝜽𝑇𝑷𝜽

𝑁−𝑝∗  when truncation method is not specified and 𝑠𝐾𝐻
2 =

𝑚𝑎𝑥 (1,
𝜽𝑇𝑷𝜽

𝑁−𝑝∗) when the truncation method is specified. And the 100(1 − 𝛼)% confidence interval for 

fitted values will be computed based on t-distribution:  

 

(𝜃𝑗 − 𝑆𝐸(𝜃𝑗) ∗ 𝑡
1−

𝛼
2,𝑁−𝑝∗ , 𝜃𝑗 + 𝑆𝐸(𝜃𝑗) ∗ 𝑡

1−
𝛼
2,𝑁−𝑝∗  ) 
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MIXED Algorithms 
This document summarizes the computational algorithms for the linear mixed model (Wolfinger, 
Tobias, and Sall, 1994). 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Overall covariance parameter vector 

                                          A vector of covariance parameters associated with random effects. 

k A vector of covariance parameters associated with the kth random effect. 

R A vector of covariance parameters associated with the residual term. 

K Number of random effects. 
                                            Number of repeated subjects. 

                                          Number of subjects in kth random effect. 

The n×n covariance matrix of y. This matrix is sometimes denoted by . 

                                     First derivative of with respect to the sth parameter in  . 

Second derivative of with respect to the sth and tth parameters in  . 
 

The n×n covariance matrix of ε. This matrix is sometimes denoted by 

                                     First derivative of with respect to the sth parameter in  R. 

Second derivative of with respect to the sth and tth parameters in  R. 

The covariance matrix of random effects. This matrix is sometimes denoted 
by 
First derivative of with respect to the sth parameter in  G. 

Second derivative of with respect to the sth and tth parameters in  G. 

                                         The covariance matrix of the kth random effect for one random subject. This 
matrix is sometimes denoted by . 

                                   First derivative of with respect to the sth parameter in . 

Second derivative of  with respect to the sth and tth parameters in . 
 

y n×1 vector of dependent variable. 
X n×p design matrix of fixed effects. 
Z n×q design matrix of random effects. 
r n×1 vector of residuals. 
β p×1 vector of fixed effects parameters. 
γ q×1 vector of random effects parameters. 
ε n×1 vector of residual error. 
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n×n diagonal matrix of case weights. 

n×n diagonal matrix of regression weights. 
 
 

Model  
 

In this document, we assume a mixed effect model of the form 
 

 
In this model, we assume that ε is distributed as  and γ is independently distributed 
as .  Therefore y is distributed as , where         . The unknown 
parameters include the regression parameters in β and covariance parameters in θ. Estimation 
of these model parameters relies on the use of a Newton-Ralphson or scoring algorithm. When 
we use either algorithm for finding MLE or REML solutions, we need to compute   and   
its derivatives with respect to θ, which are computationally infeasible for large n. Wolfinger 
et.al.(1994) discussed methods that can avoid direct computation of .  They tackled the 
problem by using the SWEEP algorithm and exploiting the block diagonal structures of G and R. 
In the first half of this document, we will detail the algorithm for mixed models without subject 
blocking. In second half of the document we will refine the algorithm to exploit the structure of 
G; this is the actual implementation of the algorithm. 

 
If there are regression weights, the   covariance matrix will be replaced  by 

 . For simpler notations, we will assume that the weights are already 
included in the matrix and they will not be displayed in the remainder of this document. When 
case weights are specified, they will be rounded to nearest integer and each case will be entered 
into the analysis multiple times depending on the rounded case weight. Since replicating a case 
will lead to duplicate repeated measures (Note: repeated measures are unique within a repeated 
subject), non-unity case weights will only be allowed for with scaled identity structure. In 
MIXED, only cases with positive case weight and regression weight will be included analysis. 

 

Fixed Effects Parameterization 

The parameterization of fixed effects is the same as in the GLM procedure. 
 

Random Effects Parameterization 

If we have K random effects and there are  random subjects in kth random effect, the design 
matrix Z will be partitioned as 

 

 
where  is the design matrix of the kth random effect. Each  can be partitioned further by 
random subjects as below, 

 

                       , k=1,..,K 
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The number of columns in the design matrix  (jth random subject of kth random effect) is equal 
to number of levels of the kth random effect variable. 

Under this partition, the will be a block diagonal matrix which can be expressed as 
 

It should also be noted that each random effect has its own parameter vector , k=1,...,K, and there 
are no functional constraints between elements in these parameter vectors. Thus                       . 

 
When there are correlated random effects,   will be a combined design matrix of the correlated 
random effects. Therefore in subsequent sections, each random effect can either be one single 
random effect or a set of correlated random effects. 

 
Repeated Subjects 

When the REPEATED subcommand is used, will be a block diagonal matrix where the ith 
block is , . That is, 

 

 

The dimension of  will be equal to number of cases in one repeated subject but all  share the 
same parameter vector . 

 
Likelihood  Functions 

Recall that the –2 times log likelihood of the MLE is 
 

 

and the –2 times log likelihood of the REML is 
 

where n is the number of observations and p is the rank of fixed effects design matrix. The key 
components of the likelihood functions are 

 

Therefore, in each estimation iteration, we need to compute  ,   and   as well as their 
1st and 2nd derivatives with respective to   . 

 
Newton & Scoring Algorithms 

Covariance parameters in can be found by maximizing the MLE or REML log-likelihood; 
however, there are no closed form solutions in general. Therefore Newton and scoring algorithms 
are used to find the solution numerically. The algorithm is outlined as below, 
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1. Compute starting value and initial log-likelihood (REML or ML). 

 
2. Compute gradient vector g and Hessian matrix H of the log-likelihood function using last 

iteration’s estimate . (See later section for computation of g and H) 
 

3. Compute the new step . 
 

4. Let . 
 

5. Compute estimates of ith iteration                 . 
 

6. Check if  generates valid covariance matrices and improve the likelihood. If not, reduce ρ by 
half and repeat step (5). If this process is repeated for pre-specified number of times and the 
stated conditions are still not satisfied, stop. 

 
7. Check convergence of the parameter. If convergence criteria are met, then stop. Otherwise, 

go back to step (2). 
 

Newton’s algorithm performs well if the starting value is close to the solution. In order to improve 
the algorithm’s robustness to bad starting values, the scoring algorithm is used in the first few 
iterations. This can be done easily be applying different formulae for the Hessian matrix at each 
iteration.  Apart from improved robustness, the scoring algorithm is faster due to the simpler  
form of the Hessian matrix. 

 

Convergence  Criteria 

There are three types of convergence criteria: parameter convergence, log-likelihood convergence 
and Hessian convergence. For parameter and log-likelihood convergence, they are subdivided into 
absolute and relative. If we let ε be some given tolerance level and  be the sth parameter in ith 
iteration, be the log-likelihood in the ith iteration, be the gradient vector in ith iteration, and 

 be the hessian matrix in ith iteration, then the criteria can be written as follows: 
 

Absolute parameter convergence: 
 

Relative parameter convergence: 
 

Absolute log-likelihood convergence: 
 

Relative log-likelihood convergence: 
 

Absolute Hessian convergence:   

Relative Hessian convergence: 

Denominator terms that equal 0 are replaced by 1. 



 
 

 
Starting value of Newton’s Algorithm 

MIXED Algorithms 

If no prior information is available, we can choose the initial values of G and R to be the identity. 
However, it is highly desirable to estimate the scale of the parameter. By ignoring the random 
effects, and assuming the residual errors are i.i.d. with variance , we can fit a GLM model and 
estimate  by the residual sum of squares . Then we choose the starting value of Newton’s 
algorithm to be 

  and  
 
Confidence Intervals of Covariance Parameters 

The estimate (ML or REML) is asymptotically normally distributed. Its variance covariance 
matrix can be approximated by −2H−1, where H is the hessian matrix of the log-likelihood 
function evaluated at . A simple Wald’s type confidence interval for any covariance parameter 
can be obtained by using the asymptotic normality of the parameter estimates, however it is   
not very appropriate for variance parameters and correlation parameters that have a range of 

and respectively. Therefore these parameters are transformed to parameters that 
have range  . Using the uniform delta method, see for example (van der Vaart, 1998), 
these transformed estimates still have asymptotic normal distributions. 

 
Suppose we are estimating a variance parameter   by    that is distributed as 

asymptotically.  The transformation we used is which can correct 
the skewness of , moreover has the range which matches that of normal 
distribution. Using the delta method, one can show that the asymptotic distribution of    is 

. Thus, a (1−α)100% confidence interval of    is given by 
 

where is the upper           percentage point of standard normal distribution. By this 
confidence interval, a (1−α)100% confidence interval for  is given by 

 

When we need a confidence interval for a correlation parameter ρ, a possible transformation 
will be its generalized logit . The resulting confidence 
interval for ρ will be 

 

 

Fixed and Random Effect Parameters: Estimation and Prediction 
After we obtain an estimate of , the best linear unbiased estimator (BLUE) of β and the best 
linear unbiased predictor (BLUP) of γ can be found by solving the mixed model equations, 
Henderson (1984). 
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The solution of this equation can be expressed as 

 
 
 
 
 
 

The covariance matrix C of  and  is given by 
 
 
 
 
 
 
 

where 
 

 

 

 
Custom Hypotheses 

In general, one can construct estimators or predictors for 
 

 

for some hypothesis matrix L. Estimators or predictors of Lb can easily be constructed by 
substituting  and into the equation for Lb and its variance covariance matrix  can be 
approximated by  . If   is zero and  is estimable,  is called the best linear unbiased 
estimator of .  If   is nonzero and  is estimable,  is called the best linear unbiased 
predictor of Lb. 

 
To test the hypothesis                  for a given vector a, we can use the statistic 

 

 

where q is the rank of the matrix L. This statistic has an approximate F distribution. The 
numerator degrees of freedom is q and the denominator degree of freedom can be obtained by 
Satterthwaite (1946) approximation. The method outlined below is similar to Giesbrecht and 
Burns (1985), McLean and Sanders (1988), and Fai and Cornelius (1996). 
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Method for computing degrees of freedom 
 

Residual method 
 
The value of degrees of freedom is given by 𝑁𝑁 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(X), where N is the effective sample size 
and X is the design matrix of fixed effects. 
 

 
Satterthwaite’s approximation 
 
First perform the spectral decomposition      where Γ is an orthogonal matrix of 
eigenvectors and D is a diagonal matrix of eigenvalues. If  is the mth row of ΓL,  is the 
mth eigenvalues and 
 

 
where and   is the asymptotic covariance matrix of 𝜃𝜃� obtained from 
the Hessian matrix of the objective function; that is,  = 2H-1. If 
 

then the denominator degree of freedom is given by 
 

Note that the degrees of freedom can only be computed when E >q. 
 
Kenwald-Roger approximation 
 
Kenward and Roger (1997) proposed a scaled Wald statistic: 
 

𝐹𝐹∗ = 𝜆𝜆𝐹𝐹 =
𝜆𝜆
𝑟𝑟0

(𝐹𝐹0�̂�𝛽 − 𝐹𝐹0𝛽𝛽)𝑇𝑇�𝐹𝐹0�̂�𝐴11𝐴𝐴 𝐹𝐹0𝑇𝑇�
−(𝐹𝐹0�̂�𝛽 − 𝐹𝐹0𝛽𝛽) 

 
where r0 = rank(𝑳𝑳0𝑪𝑪�11𝐴𝐴 𝑳𝑳0𝑇𝑇),  𝑪𝑪�11𝐴𝐴  is an approximate variance-covariance of the fixed effects 
parameters, λ and the degree of freedom of denominator, 𝜈𝜈, are computed as following: 
 

                                                                             𝜈𝜈 = 4 + 𝐹𝐹0+2
𝐹𝐹0∗𝜌𝜌−1

                                                                  
and  

                                                                               𝜆𝜆 = 𝜈𝜈
𝐸𝐸(𝐹𝐹)(𝜈𝜈−2)

                                                                   
where 
 

𝜌𝜌 =
𝑉𝑉(𝐹𝐹)

2𝐸𝐸(𝐹𝐹)2
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Type I and Type III Statistics 

Type I and type III test statistics are special cases of custom hypothesis tests. 
 
Estimated Marginal Means (EMMEANS) 

Estimated marginal means are special cases of custom hypothesis test. The construction of the 
matrix for EMMEANS can be found in “Estimated Marginal Means” section of GLM’s algorithm 
document. If Bonferroni or Sidak adjustment is requested for multiple comparisons, they will be 
computed according to the algorithm detailed in Appendix 10:Post Hoc Tests. 

 
Saved Values 

Predicted values are computed by 
 

Fixed predicted values are be computed by 
 

 
Residuals are computed by 

 

If standard errors or degrees of freedom are requested for predicted values, a L matrix will be 
constructed for each case and the formula in custom hypothesis section will be used to obtain 
the requested values. 
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Information Criteria 

Information criteria are for model comparison, the following criteria are given in smaller is better 
form.  If we let l be the log-likelihood of (REML or ML), n be total number of cases (or total 
of case weights if used) and d is number of model parameters, the formula for various criteria 
are given as below, 

 
Akaike information criteria (AIC), Akaike (1974): 

 

 

Finite sample corrected (AICC), Hurvich and Tsai (1989): 
 

Bayesian information criteria (BIC), Schwarz (1978): 
 

 

Consistent AIC (CAIC), Bozdogan (1987): 
 

 
For REML, the value of n is chosen to be total number of cases minus number fixed effect 
parameters and d is number of covariance parameters. For ML, the value of n is total number of 
cases and d is number of fixed effect parameters plus number of covariance parameters. 

 
Derivatives of Log-Likelihood 

In each Newton or scoring iteration we need to compute the 1st and 2nd derivatives of the 
components of the log-likelihood  , k=1,2,3. Here we let and                  ,  
k=1,2,3, then the 1st derivatives with respect to the sth parameter in θ is given by 

 

 

 

and the 2nd derivatives with respect to s and tth parameter are given by 
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of 

 

 
 
 
 
 
 
 
 

where              for a matrix C satisfying                             and . 
 
Derivatives: Parameters in G 

Derivatives with respect to parameters in G can be constructed by from the entries of 
 
 
 
 
 
 
 

The matrix                 can be computed from                 given in “Cross Product Matrices”, 
by using the following relationship, 

 

 
where   is the current estimate of . 

 
Using the above formula, we can obtain the following expressions, 

 
 
 

 
 
 

In terms of the elements in               , we can write down the 1st derivatives of  ,   and 
  with respect to a parameter the G matrix, 

 

 

 

For the second derivatives, we first define the following simplification factors 
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then second derivatives of ,  and  w.r.t.   and  (in G) are given by 
 

 

 

 
Derivatives: Parameters in R 

To compute R derivatives, we need to introduce the matrices 
 

and 
 

where   and  are the sth and tth parameters of R. Therefore, 
 

 
 
 
 

The matrices A and B can be X, Z,  or r, where 
 

and 
 

 

involved in  can be obtained by pre/post multiplying 
 
 

Using these notations, the 1st derivatives of        with respect to a parameter in R are as follows, 

Note: The matrix  
 

by L and ). 
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To compute 2nd derivatives w.r.t.    and   (of R), we need to consider the following 
simplification factors. 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on these simplification terms, the entries of the Hessian matrices are given by 
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G and R Cross-derivatives 
This section gives expressions for the 2nd derivatives of ,  and  with respect to a parameter 

 in G and a parameter  in G . First, we introduce the following simplification terms, 
 
 
 
 
 
 

        
  

 

        
  

Based on these simplification terms, the second derivatives are given by 
 

 

 

 

Gradient and Hessian of REML 
The restricted log likelihood is given by 

 

where p is equal to the rank of X. Therefore the sth element of the gradient vector is given by 
 

and the (s,t)th element of the Hessian matrix is given by 
 

If scoring algorithm is used, the Hessian can be simplified to 
 

 
Gradient and Hessian of MLE 

The log likelihood is given by 
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Therefore the sth element of the gradient vector is given by 
 

 
and the (s,t)th element of the Hessian matrix is given by 

 

 
If scoring algorithm is used the Hessian can be simplified to 

 

 
It should be noted that the Hessian matrices for the scoring algorithm in both ML and REML are 
not ‘exact’. In order to speed up calculation, some second derivative terms are dropped. Therefore, 
they are only used in intermediate step of optimization but not for standard error calculations. 

 
Cross Product Matrices 

During estimation we need to construct several cross product matrices in each iteration, namely: 
                , ,                 ,              ,           , and . The 

sweep operator (see for example Goodnight (1979)) is used in constructing these matrices. 
Basically, the sweep operator performs the following transformation 

 

The steps needed to construct these matrices are outlined below: 

STEP 1: Construct 

 

 
STEP 2: 

 
Construct               which is an augmented version of               . It is given by the 
following expression. 

 

where L is the lower-triangular Cholesky root of G, i.e.  G=LLT and                is the 
rows of   corresponding to Z. 

 
STEP 3: Sweeping  by pivoting on diagonal elements in upper-left partition will 
give us the matrix , which is shown below. 
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where 
 
 
 
 

and 
 

 

During the sweeping, if we accumulate the log of the ith diagonal element just before ith sweep, 
we will obtain  as a by-product. Thus, adding to this 
quantity by will give us         . 

 
STEP 4: Consider the following submatrix             of              , 

 

Sweeping            by pivoting on diagonal elements of will give us 
 

where b0 is an estimate of β0 in the current iteration.  After this step, we will obtain  and 
. 
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MLP Algorithms 
The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two 
hidden layers. The MLP network is a function of one or more predictors (also called inputs or 
independent variables) that minimizes the prediction error of one or more target variables (also 
called outputs). Predictors and targets can be a mix of categorical and scale variables. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

 
Architecture 

The general architecture for MLP networks is: 
 
Input layer: J0=P units, ; with . 
 
ith hidden layer: Ji units, ; with and                 where 
. 
 

Output layer: JI=R units, ; with and   where 

. 
 
Note that the pattern index and the bias term of each layer are not counted in the total number of 
units for that layer. 
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Activation Functions 

Hyperbolic Tangent 
 

       tanh   
 

Sigmoid 
 

 

Identity 
 

 

This is only available for output layer units. 
 

Softmax 
 

 

This is only available if all output layer units correspond to categorical variables and cross-entropy 
error is used. 

 
Error Functions 

Sum-of-Squares 
 
 

  

 
  

 
where 

 

 
Cross-Entropy 
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where 
 

 

This is only available if all output layer units correspond to categorical variables and the softmax 
activation function is used. 

 
Expert Architecture Selection 

Expert architecture selection determines the “best” number of hidden units in a single hidden 
layer. The hyperbolic tangent activation function is used for the hidden layer, and the identity 
function is used for the output layer (softmax if the output is categorical). 

 
A random sample is taken from the entire data set and split into training (70%) and testing 
samples (30%). The size of random sample is N = min(1000, memsize), where memsize is the 
user-controlled maximum number of cases stored in memory. If entire dataset has less than N 
cases, use all of them. If training and testing data sets are supplied separately, the random samples 
for training and testing should be taken from the respective datasets. 

 
Given Kmin and Kmax , the algorithm is as follows. 

1. Start with an initial network of k hidden units. The default is k=min(g(R,P),20,h(R,P)), where 
 

otherwise 
 

where   denotes the largest integer less than or equal to x. is the maximum 
number of hidden units that will not result in more weights than there are cases in the entire 
training set. 

If k < Kmin, set k = Kmin. Else if k > Kmax, set k = Kmax. Train this network once via the alternated 
simulated annealing and training procedure (steps 1 to 5). 

2. If k>Kmin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and 
report the initial network. 

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k=k−1. Else add a hidden unit; 
k=k+1. 

4. Using the previously fit weights as initial weights for the old weights and random weights for the 
new weights, train the old and new weights for the network once through the alternated simulated 
annealing and training procedure (steps 3 to 5) until the stopping conditions are met. 

5. If the error on test data has dropped: 

If DOWN=FALSE, If k< Kmax and training error is dropped but the error ratio is still above 0.01, 
return to step 3. Else stop and report the network with the minimum test error. 

Else if DOWN=TRUE, If k> Kmin, return to step 3. Else, stop and report the network with the 
minimum test error. 
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Else if the error increased, If DOWN=TRUE, If k - k0|>1, stop and report the network with the 
minimum test error. 

Else if training error ratio for k= k0 is bigger than 0.01, set DOWN = FALSE, k= k0 return to 
step 3.  Else stop and report the initial network. 

Else stop and report the network with the minimum test error. 
 

If more than one network attains the minimum test error, choose the one with a smaller number 
of hidden units. 

 
If the resulted network from above procedure has training error ratio (training error divided by 
error from the model using average of an output variable to predict that variable) bigger than 0.1, 
repeat above procedure with different initial weights until either the error ratio is <=0.1 or the 
procedure is repeated K times already, say K=5.  If the procedure is repeated K times, pick the 
one with smallest test error. 

 
The weakest hidden unit 

 
For each hidden unit j, calculate the error on the test data when j is removed from the network. 
The weakest hidden unit is the one having the smallest total test error upon its removal. 

 
Training 

Given the training type (online, batch, or mini-batch), the problem of estimating the weights 
consists of the following parts: 

► Initializing the weights. Take a random sample (as described in “Expert Architecture 
Selection”) and apply the alternated simulated annealing and training procedure on the random 
sample to derive the initial weights. Training in step 3 is performed using all default training 
parameters. 

► Computing the derivative of the error function with respect to the weights. This is solved via 
the error backpropagation algorithm. 

► Updating the estimated weights. This is solved by the gradient descent or scaled conjugate 
gradient method. 

 
Alternated Simulated Annealing and Training 

The following procedure uses simulated annealing and training alternately up to K1 times. 
Simulated annealing is used to break out of the local minimum that training finds by perturbing 
the local minimum K2 times. If break out is successful, simulated annealing sets a better initial 
weight for the next training. We hope to find the global minimum by repeating this procedure K3 
times. This procedure is rather expensive for large data sets, so it is only used on a random sample 
to search for initial weights and in architecture selection. Let K1=K2=4, K3=3. 

1. Randomly generate K2 weight vectors between [a0−a, a0+a]. This is a user controllable interval 
with default a0=0 and a=0.5. Calculate the training error for each weight vector. Pick the weights 
that give the minimum training error as the initial weights. 
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2. Set k1=0. 

3. Train the network with the specified initial weights. Call the trained weights w. 
 

4. If the training error ratio <= 0.05, stop the k1 loop and use w as the result of the loop. Else  set 
k1 = k1+1. 

5. If k1<K1, perturb the old weight to form K2 new weights  by adding K2 different 
random noise between [a(k1), a(k1)] where . Let  be the weights that 
give the minimum training error among all the perturbed weights. If                             , set the 
initial weights to be , return to step 3. Else stop and report w as the final result. 

Else stop the k1 loop and use w as the result of the loop. 

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either 
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with 
smallest test error among the result of the k1 loops. 

 
Error Backpropagation 

Error-backpropagation is used to compute the first partial derivatives of the error function with 
respect to the weights. 

 
 

 
 

First note that  
 

The backpropagation algorithm follows: 

For each i,j,k, set . 

tanh 
sigmoid 
identity 

For each m in group T; For each p=1,...,JI, let 

if cross-entropy error is used 
                                                  otherwise 

For each i=I,...,1 (start from the output layer); For each j=1,...,Ji; For each k=0,...,Ji−1 

► Let , where  

► Set 
 

► If k > 0 and i > 1, set    
 
 

This gives us a vector of elements that form the gradient of          . 



 
 

,  then set 
. 
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Gradient Descent 

 
Online or Mini-Batch 

 
Given the learning rate parameters and , momentum rate   , and learning rate decay factor 
β, the gradient descent method for online and mini-batch training is as follows. 

 
1. Let k=0. Initialize the weight vector to , learning rate to . Let        . 

 
2. Read records in ( is randomly chosen) and find           and its gradient          . 

 
3. If , . This step is to make sure that the steepest gradient descent 

direction dominates weight change in next step. Without this step, the weight change in next step 
could be along the opposite direction of the steepest descent and hence no matter how small is, 
the error will not decrease. 

 
4. Let . 

 

5. If and , Else 
 

6. . If , then set . 

7.   If a stopping rule is met, exit and report the network as stated in the stopping criteria.  Else let 
k=k+1 and return to step 2. 

 
Batch 

 
Given the learning rate parameter and momentum rate   , the gradient descent method for 
batch training is as follows. 

 
1. Let k=0. Initialize the weight vector to , learning rate to . Let        . 

 
2. Read all data and find and its gradient . If , stop and report 

the current network. 
 

3. If , . This step is to make sure that the steepest gradient descent 
direction dominates weight change in next step. Without this step, the weight change in next step 
could be along the opposite direction of the steepest descent and hence no matter how small is, 
the error will not decrease. 

 
4. Let 

 
5. If , then set ,                      , and , Else  and 

return to step 3. 
 

6. If a stopping rule is met, exit and report the network as stated in the stopping criteria.  Else let 
k=k+1 and return to step 2. 



 
 

 

Scaled Conjugate Gradient 
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This method is only available to batch training. To begin, initialize the weight vector to , and 
let N be the total number of weights. 

1. k=0. Choose scalars . Set , and 
success=true. 

2. If success=true, find the second-order information: , , 
      , where the superscript t denotes the transpose. 

3. Set                     . 

4. If , make the Hessian positive definite:  , , . 

5. Calculate the step size: , . 

6. Calculate the comparison parameter: . 

7. If        , error can be  reduced. Set , , If 
, return as the final weight vector and exit. Set , success=true. If k mod 

N=0, restart the algorithm: , else set                           , . If 
, reduce the scale parameter: . else (if ): Set , success=false. 

8. If , increase the scale parameter: . 

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network 
as stated in the stopping criteria. Else set k=k+1 , ,        and return to step 2. 

 
Note: each iteration of batch training requires at least two data passes. 

 
Stopping Rules 

Training proceeds through at least one complete pass of the data. Then the search should be 
stopped according to following criteria. These stopping criteria should be checked in the listed 
order. For batch training, check of any stopping criteria is performed after completion of an 
iteration. For online or mini-batch training, check of any of stopping criterion 1, 3, 4, and 5 is 
performed after completion of a data pass, only check of criterion 2 is performed after an iteration. 
Let step mean a data pass for online and mini-batch methods, an iteration for batch method. Let 
E1 denote the current minimum error and K1 denote the step where it occurs for training data, E2 
and K2 are that for testing data, and K3=min(K1,K2). 

1. If there is no testing dataset and the training method is online or mini-batch, compute the total 
error for training data at the end of each step. From step K1, if the training error does not decrease 
below E1 over the next n steps, stop. Report the weights at step K1. If there is a testing  dataset, 
users have the following options: 

Check testing data only: at the end of each step compute the total error for testing data. From 
step K2, if the testing error does not decrease below E2 over the next n steps, stop. Report the 
weights at step K2. 
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Check both training and testing data: at the end of each step simultaneously check the total error 
for training and testing data. From step K1 for training and step K2 for testing, if either training 
or testing error does not decrease below its current minimum over the next n steps, stop. Report 
the weights at step K3. Notice that for batch method there is no need to check the total error for 
training data because a decrease in total error for training data is guaranteed by the algorithm. 

 
2. The search has lasted beyond some maximum allotted time. For batch training, report the weights 

at step K3. For on-line or mini-batch training, even though training stops before the completion of 
current step, treat this as a complete step. Calculate current errors for training and testing datasets 
and update E1, K1, E2, K2 correspondingly. Report the weights at step K3. 

 
3. The search has lasted more than some maximum number of data passes. Report the weights 

at step K3. 

4. When current training error is the minimum ( , always true for batch), stop if the 
relative change in training error is small:  for         and    , where 

are the weight vectors of two consecutive steps. Report weights at step K3. 
 

5. The current training error ratio is small compared with the  initial error: for 
 and , where  is the total error from the model using the average of an output 

variable to predict that variable;  is calculated by using                          in the error function, 

where is the weight vector of one step. Report weights at step K3. 

Note: In criteria 4 and 5, the total error for whole training data is needed. For batch training, the 
error is always calculated, but for online or mini-batch training, error is not available without 
passing the training data one more time. So for online and mini-batch training, criterion 4 and 5 
will not be checked if user decides to use testing data only in criterion 1. 

 

Missing Values 

Missing values are not allowed. 
 
 

Output Statistics 

The following output statistics are available. Note that, for scale variables, output statistics are 
reported in terms of the rescaled values of the variables. 

 

Sum-of-Squares or Cross Entropy Error 

 
As described in “Error Functions”. The cross entropy error is displayed if the output layer 
activation function is softmax, otherwise the sum-of-squares error is shown. 
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Relative Error 
 

For each scale target r: 
 

 
For each categorical target r, report , the percent of incorrect predictions 

 
Average Overall Relative Error 

 
If there is at least one scale target: 

 
 

 
 

where is the mean of   over patterns. 
 

If all targets are categorical, report the average percent of incorrect predictions: 
 
 

 
 

where C is the number of categorical variables. 
 

Sensitivity Analysis 
 

For each predictor p and each input pattern m, compute: 
 

 
where   is the predicted output vector (standardized if standardization of output 
variable is used in training) using as its input, and = 

for scale predictors and for 
categorical predictors. 

Then compute: 
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and normalize the s to sum to 1, and report these normalized values as the sensitivity values for 
the predictors. This is the average maximum amount we can expect the output to change based 
on changes in the pth predictor. The greater the sensitivity, the more we expect the output to 
change when the predictor changes. 
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MULTIPLE  CORRESPONDENCE 
Algorithms 

Multiple Correspondence Analysis, also known as homogeneity analysis, quantifies nominal 
(categorical) data by assigning numerical values to the cases (objects) and categories, such that 
in the low-dimensional representation of the data, objects within the same category are close 
together and objects in different categories are far apart.  Each object is as close as possible to 
the category points of categories that apply to the object. In this way, the categories divide the 
objects into homogeneous subgroups. Variables are considered homogeneous when they classify 
objects that are in the same categories into the same subgroups. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of analysis cases (objects) 

Weighted number of analysis cases: 
 

Total number of cases (analysis + supplementary) 

Weight of object i; if cases are unweighted; if object i is 
supplementary. 

W Diagonal matrix, with on the diagonal. 
m Number of analysis variables 

Weighted number of analysis variables (     ) 

Total number of variables (analysis + supplementary) 

H The data matrix (category indicators), of order , after 
discretization, imputation of missings, and listwise deletion, if applicable. 

p Number of dimensions 
 

For variable j; 
 

 

 

 

 

 
   

 
Variable weight; if weight for variable j is not specified or if variable 
j is supplementary 
Number of categories of variable j (number of distinct values in  , thus, 
including supplementary objects) 
Indicator matrix for variable j, of order 

 
 

The elements of   are defined as 
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when the  th object is in the   th category of variable 
when the  th object is not in the   th category of variable 

                                         Diagonal         matrix, containing the weighted univariate marginals; i.e., 
the weighted column sums of   (  ) 

                                        Diagonal matrix, with diagonal elements defined as 
 

 
 

 
 

The quantification matrices and parameter vectors are: 

X Object scores, of order 
Weighted object scores ( ) 

n X normalized according to requested normalization option 

                                           Category quantifications, of order        . 

 
Note:  The matrices W, , , , and   are exclusively notational devices; they are 
stored in reduced form, and the program fully profits from their sparseness by replacing matrix 
multiplications with selective accumulation. 

 

Discretization 

Discretization is done on the unweighted data. 
 

Multiplying 
 

First, the original variable is standardized. Then the standardized values are multiplied by 10 and 
rounded, and a value is added such that the lowest value is 1. 

 
Ranking 

 
The original variable is ranked in ascending order, according to the alphanumerical value. 

 

Grouping into a specified number of categories with a normal distribution 
 

First, the original variable is standardized. Then cases are assigned to categories using intervals 
as defined in Max (1960). 
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Grouping into a specified number of categories with a uniform distribution 

 
First the target frequency is computed as divided by the number of specified categories, rounded. 
Then the original categories are assigned to grouped categories such that the frequencies of the 
grouped categories are as close to the target frequency as possible. 

 
Grouping equal intervals of specified size 

 
First the intervals are defined as lowest value + interval size, lowest value + 2*interval size, etc. 
Then cases with values in the kth interval are assigned to category k. 

 
Imputation of Missing Values 

When there are variables with missing values specified to be treated as active (impute mode or 
extra category), then first the ’s for these variables are computed before listwise deletion. Next 
the category indicator with the highest weighted frequency (mode; the smallest if multiple modes 
exist), or  (extra category) is imputed. Then listwise deletion is applied if applicable. And 
then the ’s are adjusted. 

 
Configuration 

MULTIPLE CORRESPONDENCE can read a configuration from a file, to be used as the initial 
configuration or as a fixed configuration in which to fit variables. 

 
For an initial configuration see step 1 in the Optimization section. 

 
A fixed configuration X is centered and orthonormalized as described in the optimization section in 
step 3 (with X instead of Z) and step 4 (except for the factor ), and the result is postmultiplied 
with  (this leaves the configuration unchanged if it is already centered and orthogonal). The 
analysis variables are set to supplementary and variable weights are set to one. Then MULTIPLE 
CORRESPONDENCE proceeds as described in the Supplementary Variables section. 

 
Objective Function Optimization 

The MULTIPLE CORRESPONDENCE objective is to find object scores X and a set of   (for 
j=1,...,m) — the underlining indicates that they may be restricted in various ways — so that   
the function 

 

tr 
 
 

is minimal, under the normalization restriction   (I is the p×p identity 
matrix). The inclusion of   in ensures that there is no influence of passive missing 
values (missing values in variables that have missing option passive, or missing option not 
specified). contains the number of active data values for each object. The object scores are 
also centered; that is, they satisfy  with u denoting an n-vector with ones. 
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Optimization is achieved by executing the following iteration scheme: 

 
1. Initialization 

 
2. Update category quantifications 

 
3. Update object scores 

 
4. Orthonormalization 

 
5. Convergence test: repeat (2) through (4) or continue 

 
6. Rotation 

 
These steps are explained below. 

 
Initialization 

 
If an initial configuration is not specified, the object scores X are initialized with random numbers. 
Then X is orthonormalized (see step 4) so that and , 
yielding . 

 
Update Category Quantifications; Loop Across Analysis Variables 

 
With fixed current values   the unconstrained update of   is 

 

 
Update Object Scores 

 
First the auxiliary score matrix Z is computed as 

 

 
and centered with respect to W and : 

 

These two steps yield locally the best updates when there would be no orthogonality constraints. 
 

Orthonormalization 
 

To find an -orthonormal that is closest to in the least squares sense, we 
use for the Procrustes rotation (Cliff, 1966) the singular value decomposition 
𝑚𝑚𝑤𝑤
1/2𝐌𝐌∗

−1/2𝐖𝐖1/2𝐗𝐗∗ = 𝐊𝐊𝚲𝚲1/2𝐋𝐋′, then yields 𝑟𝑟𝑤𝑤
1/2𝑚𝑚𝑤𝑤

1/2𝐌𝐌∗
−1/2𝐖𝐖1/2𝐊𝐊𝐋𝐋′ -orthonormal 

weighted object scores:    ← 𝑟𝑟𝑤𝑤
1/2𝑚𝑚𝑤𝑤𝐌𝐌∗

−1𝐖𝐖𝐗𝐗∗𝐋𝐋𝚲𝚲−1/2𝐋𝐋′, and 𝐗𝐗+ = 𝐖𝐖−1𝐗𝐗𝑤𝑤+ . The 
calculation of L and Λ is based on tridiagonalization with Householder 
transformations followed by the implicit QL algorithm (Wilkinson, 1965). 
 



 
 
 

 

MULTIPLE CORRESPONDENCE Algorithms 
 

Convergence Test 
 

The difference between consecutive values of the quantity 

TFIT = tr  

is compared with the user-specified convergence criterion ε - a small positive number. It can 
be shown that TFIT = .  Steps (2) through (4) are repeated as long as the loss 
difference exceeds ε. 

 
After convergence TFIT is also equal to tr  , with Λ as computed in step (4) during the last 
iteration. (See also Model Summary, and Correlations Transformed Variables for interpretation 
of ). 

 
Rotation 

 
To achieve principal axes orientation, is rotated with the matrix L. Then step (2) is executed, 
yielding the rotated quantifications. 

 
Supplementary  Objects 

To compute the object scores for supplementary objects, after convergence steps (2) and (3) are 
repeated, with the zero’s in W temporarily set to ones in computing Z and . If a supplementary 
object has missing values, passive treatment is applied. 

 
Supplementary  Variables 

The quantifications for supplementary variables are computed after convergence by executing step 
(2) once. 

 
Diagnostics 

The following diagnostics are available. 

 
Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank pmax indicates the maximum number of dimensions that can be computed 
for any dataset.  In general 

 

if there are no variables with missing values to be treated as passive. If variables do have missing 
values to be treated as passive, the maximum rank is 
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with m1 the number of variables without missing values to be treated as passive. 

Here  is exclusive supplementary objects (that is, a category only used by supplementary objects 
is not counted in computing the maximum rank). Although the number of nontrivial dimensions 
may be less than pmax when m=2, MULTIPLE CORRESPONDENCE does allow dimensionalities 
all the way up to pmax. When, due to empty categories in the actual data, the rank deteriorates 
below the specified dimensionality, the program stops. 

 

Descriptives 

The descriptives tables gives the weighted univariate marginals and the weighted number of 
missing values (system missing, user defined missing, and values less than or equal to 0) for 
each variable. 

 
Fit and Loss Measures 

When the HISTORY option is in effect, the following fit and loss measures are reported: 
 

Fit (VAF). This is the quantity TFIT as defined in step  (5). 
 

Loss.  This is . 

 
Model Summary 

Model summary information consists of Cronbach’s alpha, the variance accounted for, and the 
inertia. 

 
Cronbach’s Alpha 

 
Cronbach’s Alpha per dimension (s=1,...,p): 

 

Total Cronbach’s Alpha is 
 

with the sth diagonal element of Λ as computed in step (4) during the last iteration. 

 
Variance Accounted For 

 
Variance Accounted For per dimension (s=1,...,p): 

 
VAF tr , (% of variance is VAF1 ), 
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Eigenvalue per dimension: 

=VAF  , 

with the sth diagonal element of Λ as computed in step (4) during the last iteration. (See also 
Optimization step (5), and Correlations Transformed Variables for interpretation of ). 

The Total Variance Accounted For is the mean over dimensions. So, the total eigenvalue is 

tr  = VAF  . 

If there are no passive missing values, the eigenvalues  are those of the correlation matrix 
(see the Correlations and Eigenvalues section) weighted with variable weights: 

w , and  w w  

If there are passive missing values, then the eigenvalues are those of the matrix c c, 
with    c , (for Q see the Correlations and Eigenvalues 
section) which is not necessarily a correlation matrix, although it is positive semi-definite. This 
matrix is weighted with variable weights in the same way as R. 

 
Inertia 

The inertia per dimension is the eigenvalue per dimension divided by . The total inertia is 
the total eigenvalue divided by . 

 
Correlations and Eigenvalues 

Before transformation 

c c, with c weighted centered and normalized H. For  the eigenvalue 
decomposition of R (to compute the eigenvalues), first row j and column j are removed from R if j 
is a supplementary variable, and then is multiplied by . 

 
If passive missing treatment is applicable for a variable, missing values are imputed with the 
variable mode, regardless of the passive imputation specification. 

 
After transformation 

 
After transformation, p correlation matrices are computed (s=1,...,p): 

 
                                  , 

 
with . 

 
Usually, for the higher eigenvalues, the first eigenvalue of   is equal to 𝜆𝜆𝑠𝑠

1/2 (see Model 
Summary section).  The lower values of   are in most cases the second or subsequent 
eigenvalues of . 



 
 

tr( 
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If there are missing values, specified to be treated as passive, the mode of the quantified variable 
or the quantification of an extra category (as specified in syntax; if not specified, default (mode) 
is used) is imputed before computing correlations. Then the eigenvalues of the correlation 
matrix do not equal  (see Model Summary section). The quantification of an extra category 
is computed as 

 
, 

 

with I an index set recording which objects have missing values. 
 

For the eigenvalue decomposition of R (to compute the eigenvalues), first row j and column j are 
removed from R if j is a supplementary variable, and then is multiplied by . 

 
Discrimination measures 

The discrimination measures are the dimensionwise variances of the quantified variables, which 
are equal to the dimensionwise squared correlations of the quantified variables with the object 
scores. For variable j and dimension the discrimination measure is 

 
Discr 

 
which is equal to the squared correlation between   and . 

 
Object Scores 

If  gives the eigenvalues, then  gives the singular values, that can be used to spread the 
inertia over the object scores X and the category quantifications Y. During the optimization phase, 
variable principal normalization is used, then n and n , else n and 

n , with a=(1+q)/2, b=(1−q)/2, and q any real value in the closed interval 
[-1,1], except for independent normalization: then there is no q value and a=b=1. q=1 is equal to 
variable principal normalization, q=-1 is equal to object principal normalization, q=0 is equal to 
symmetrical normalization. 

 
Mass 

The mass of object i is 

Mass 

Inertia 

The inertia of object i is 
 

Inertia Mass 



 
 

Inertia 

tr( 
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where   is the frequency of the category of object i on variable j, and       indicates to 
exclude a variable if object i has a missing value on the variable and the missing option for  
the variable is passive. 

 

Contribution of point to inertia of dimension 
 

The contribution of object i to the inertia of dimension s is 

Contribution 

Contribution of dimension to inertia of point 
 

The contribution of dimension s to the inertia of object i is 
 

Contribution 
  

 
Quantifications 

Inertia 

 

The quantifications are the centroid coordinates. If a category is only used by supplementary 
objects (i.e. treated as a passive missing), the centroid coordinates for this category are computed 
as 

 

where is the rth row of , is the number of objects that have category r, and I is an 
index set recording which objects are in category r. 

 

Mass 
 

The mass of category r of variable j is 

Mass 

Inertia 
 

The inertia of category r of variable j is 
 
 
 

Inertia Mass 
 

if there are no missing values with missing option passive, this is equal to Mass , and 
then the total inertia for variable j is . 



 
 

 
Inertia 

 
Inertia 
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Contribution of point to inertia of dimension 

 
The contribution of category r of variable j to the inertia of dimension s is 

 

Contribution 

the total contribution of variable j to the inertia of dimension s is     Discr   . 

 
Contribution of dimension to inertia of point 

 
The contribution of dimension s to the inertia of category r of variable j is 

Contribution 

Residuals 

Plots per dimension are produced of 
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Multiple Imputation Algorithms 
Multiple imputation imputes missing values multiple times. This algorithm only considers the 
imputation phase. See “Multiple Imputation: Pooling Algorithms” for the algorithm for 
combining analysis results of multiply imputed data sets. 

Univariate and multivariate methods are given here. Univariate methods are used in situations 
where only the variable to be imputed has missing values, and all variables used as predictors 
in the imputation have no missing values. Multivariate methods are used in situations where 
variables are used both as dependents and predictors during imputation. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Set of variables that have no missing values. 

The data value for case i, variable j. It may be missing. 

                                      The collection of observed values of variable j. 

                                        The collection of missing values of variable j. 

                                        The collection of all observed data. 

                                      The collection of all missing data. 
 

                                           Frequency (replication) weight for case i. Must be integer. 

Frequency weight matrix, diagonal with case frequency weight on the 
diagonal. 
Regression or analysis weight for case i. 

Regression weight matrix. 

n The total number of cases.  Each case may represent more  than one 
observation due to frequency (replication) weights. 
The total number of observations. 

 

 
 

 
 

 

 
Univariate Methods 

The total weight. 

 

y:  the variable to be imputed, has missing values. 
 

x:  predictor variables, no missings. 
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Linear Regression 

The variable to be imputed, y, is a continuous variable and is to be used as the dependent variable 
in the regression model. Both frequency and regression weights are accepted. 

 
Model with is used. 

 
Prior: , or equivalently  

 
Using the complete cases, fit the regression model, assuming that all redundant parameters are 
removed if there are any.  Denote the fitted parameters as such that 

 

 
where                         is the number of complete cases, p is the number of parameters, and  

are the dependent vector, design matrix and frequency weight, regression weight 
matrix  for  complete  cases. 

The posterior distributions are: 

 

  
  

 

 

Let A be the upper triangular matrix of Cholesky decomposition 𝐹𝐹′   . 
 

Draw parameters from the posterior distributions. 

► Draw   : draw a random value u from      , then                       . 

► Draw  : draw p independent N(0,1) values to create a random vector v, 𝛽𝛽∗ = �̂�𝛽 + 𝜎𝜎∗𝐹𝐹′𝐯𝐯. 

Impute missing values. For i in mis(Y), draw   from N(0,1); imputation is 𝑦𝑦𝑖𝑖∗ = 𝐱𝐱𝑖𝑖′𝛽𝛽∗ + 𝜎𝜎
�𝑤𝑤𝑖𝑖

∗
𝑧𝑧𝑖𝑖. 

Repeat the drawing of parameters and imputation of missing values to generate multiple 
imputations. 

 
Incorporate restrictions 

 
Using the linear regression method, a continuous variable may have an imputed value well outside 
the range of observed values, so the imputed values of continuous variables can be restricted to 
fall within a user-specified range, R. When an imputed value falls outside R, the algorithm draws 
another imputed value until a value is drawn within R or draws have been made (the maximum 
number of tries allowed for drawing each missing case under the given parameter). If the limit 
is reached, a new set of parameters are drawn from the posterior distributions (discarding any 
successfully imputed values for this variable during this imputation) and the process of imputing 
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missing values is repeated until a set of imputed values is obtained for this variable and this 
imputation or sets of parameters have been drawn (the maximum number of tries allowed for 
drawing parameters). 

 
If the limit is reached, the algorithm stops and issues an error. 

 

Predictive Mean Matching 

This is the same as the linear regression method, but with the following changes. 

Replace the impute missing values step of linear regression by the following: 

Calculate                                      .  For i in mis(Y): 

►    ; 

► Among , find the observation whose corresponding predicted values are closest to ; 

► Pick that one as the imputation. 

 
Logistic Regression 

The variable to be imputed, y, is a categorical variable with K categories taking values 1,  2, 
…, K, and is used as dependent variable in the logistic regression model.  In the  following, 

, and for case i. 
 

Model: for k = 1, …, K−1. 
 

Prior: , where   
 

Using the complete cases, fit the logistic regression model with user specified frequency and 
analysis/regression weight variables. Denote the fitted parameter vector and its variance matrix as 

 . The posterior distribution is approximately: . Let A be the upper 
triangular matrix of the Cholesky decomposition. 𝑉𝑉� = 𝐹𝐹′𝐹𝐹. 

 
Draw parameters from the posterior distributions: draw : draw length ( )  independent  N(0,1) 
values to create a random vector z, then                 . 

 
Impute missing values.  For i in mis(Y): 

 
► Calculate for . 

 
► Draw a random value u from uniform distribution [0,1]. 
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Repeat the drawing of parameters and imputation of missing values to generate multiple 
imputations. 

 
Multivariate Methods 

Multivariate methods apply to situations in which multiple variables have missing values. Patterns 
of missing values are important here because a fast non-iterative procedure can be used for 
monotone missing patterns. For general missing patterns, the fully conditional specification (FCS) 
is available.  This is an iterative MCMC method. 

 

Monotone Method 

Missing patterns are monotone if the variables can be ordered such that, for each case, all earlier 
variables are observed if the later variable is observed. This method also assumes that the 
parameters of individual imputation models have independent priors. 

 
Let be variables with missing values in the sorted monotone order such that   has the 
smallest number of missing values. Let X be the set of variables without missing values. Starting 
from , sequentially use univariate method with the previous Y variables and X variables as 
predictors to impute. 

► Given and imputation model for , impute  by univariate method m times to get m 
complete variable . 

 
► For l = 1, …, m, given  and imputation model for , impute   by univariate 

method once to get . 
 

► For l = 1, …, m, given  and imputation model for , impute   by 
univariate method once to get . 

 
► Continue until last variable   is imputed. 

 
Notes: 
 The imputation model for variable  can only use variables from as predictors. 

In the case of no X variables, a constant model for   is used. 
 The posterior distribution used to draw parameters for imputing   doesn’t depend on 

previously imputed values ��𝑌𝑌𝑘𝑘
∗(𝑙𝑙)� 𝑚𝑚

𝑙𝑙 = 1�
𝑗𝑗 − 1
𝑟𝑟 = 1. 

 
Fully Conditional Specification (FCS) 

In this method, an imputation model for each variable with missing values is specified. This 
method is an iterative MCMC procedure. In each iteration, it sequentially imputes missing values 
starting from the first variable with missing values. 

► Set initial values for missing values in all variables (see below). 



 
 

. 
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► At iteration t, for j = 1 to K: Given ; that is, the most recently 

imputed values of all other variables, for j =1, and for j = K, 
use a univariate method to impute all missing values in the jth variable, 

► Continue iterations until the maximum number of iterations is reached. 
 

We create multiple imputations by the multiple chain method; that is, we repeat above steps m 
times to get m imputations. Each chain starts with a different seed for random numbers and 
different initial values. 

 
Initial Values 

 
For a continuous variable with missing values, use the non-missing values to find its sample  
mean and standard deviation, then fill in the missing values with random draws from a normal 
distribution with mean and standard deviation equal to the sample values, limited within the range 
of the observed minimum and maximum values. 

 
For a categorical variable with missing values, use the non-missing values to find the observed 
proportion of each category, then fill in the missing values with random draws from a multinomial 
distribution with category probabilities equal to the observed category proportions. 

 
Assessment of Convergence 

 
For each imputation and each iteration, missing values are imputed for each variable. Let 

  be the vector of imputed values of   at iteration t, imputation l. For each (l, t), 
calculate the sample mean and standard deviation of  : 

 

 

  
 

Sequence plots of  versus  and  versus  are useful in assessing convergence. If there are  
5 imputations, then there will be 5 lines (different color) in the same plot. On convergence, for 
each variable j, the traces of different l should be intermingled with each other without showing 
any definite trends, and the variance between different sequences is no larger than the variance 
with each individual sequence. When frequency and analysis weights are involved, the mean and 
standard deviation are calculated using the weights as well. 

 
Automatic Selection of Imputation Method 

If automatic selection of the imputation method is selected, the method is chosen as follows: 

► If the pattern of missing values is monotone, then the monotone method is used. 

► Otherwise, the fully conditional specification (FCS) method is used. 
 

Note: only main effects models are used during automatic selection. 

mean 
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Special Situations 

When the variable to be imputed is constant over all its observed values, we use this constant to 
impute its missing values. 

 
Missing Values 

The following cases are not used during imputation. 
 Cases with every variable missing. 
 Cases with zero/negative replication or analysis weight. 
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Multiple Imputation: Pooling 
Algorithms 

Analysis of missing values consists of two sequential steps: analysis of each individual complete 
data set to create multiple analysis results and then combining (pooling) these multiple analysis 
results. This algorithm only considers combining the multiple analysis results assuming that 
multiple complete datasets are created and the analysis of each individual complete  dataset 
is complete. See “Multiple Imputation Algorithms” for the algorithm for creating multiply 
imputed data sets. See the algorithm of the analysis you’re performing for details on the 
analysis an individual complete data set. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

 
Rubin’s Rules 

Across all the complete datasets, it is assumed that: 
 the model of the same effects in the same order is fit, 
 a categorical variable has the same set of categories and the reference category is the same. 

 
Assuming that each individual analysis result �𝐐𝐐�(𝑖𝑖),𝐔𝐔(𝒊𝒊)� 𝑚𝑚

𝑖𝑖 = 1 is available, the goal is to derive 

the final combined result based on these m individual results. 

 
Combining Results after Multiple Imputation 

The final estimate of  is simply the average of individual ones: 
 
 
 
 
 

The estimated total variance is 
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where B and  are respectively the between-imputation and average within-imputation variance 
calculated by 

 

 
 
 
 

Special Situations 
 

Redundant parameters. Standard procedures set redundant parameter estimates at 0 and 
variance/covariance as missing. If a parameter is redundant across all imputations, then the 
combined parameter is still redundant. If there is a parameter that is redundant in some imputations 
but not in others, this causes an error.  The reason is that the combined results depend on the  
order of effects in the model (for example x1,x2,x3 or x3,x1,x2 when x3=x1+x2 holds in some 
imputations but not in others) which makes the combined results arbitrary and useless. 

 
Different sets of parameters. There may be situations in which some model coefficients occur in 
some model fits but not in others (for example, a certain combination of two categorical variables 
occurs in some complete datasets but not in others). If the parameters across imputations are 
different, this causes an error. The reason is that the combined results depend on the choice of 
reference categories of categorical predictors which makes the results arbitrary and useless. 

 
Missing Elements.  If there are any missing elements in �𝐐𝐐�(𝑖𝑖),𝐔𝐔(𝒊𝒊)� 𝑚𝑚

𝑖𝑖 = 1, then we will only use the 

non-missing part to do calculations. 
 

Scalar Q  
 
If Q is a scalar (k=1), then 
 

 
has an approximate Student’s t distribution with degrees of freedom 
 

 
where r is the relative increase in variance due to non-response 
 

 
The fraction of missing information about Q due to missing values is 

 

 
 

 



 
 

 
 
 
 
 
 

Vector Q 

Multiple Imputation: Pooling Algorithms 

 
The relative efficiency (RE) of using the finite m imputation estimator, rather than using an infinite 
number for the fully efficient imputation, in units of variance, is approximately 
 

 

If the number of imputations m is big enough (at least 50,000), then 
 

 
has an approximate F distribution with k numerator degrees of freedom and denominator degrees 
of freedom 

 

 
where 

 

 
 

But for small m (this usually is the case in practice), this approximation is bad because the estimate 
of B is unstable and when m ≤ k, B is not even full rank. Alternatively, we assume that B and  
are proportional to one another. Under this assumption, a more stable estimate of total variance is 

 

 

and 
 

 
has an approximate F distribution with k numerator degrees of freedom and denominator degrees 
of freedom (Li, Raghunathan and Rubin (1991)), let , 

 

 
Note: 
 When k=1,  reduces to T for a scalar statistic. 
 When k=1, if , and if . 
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Output Statistics 

Other than , we are also interested in some statistics for each individual element of 
Q (for example the vector of regression coefficients). For the jth element of Q, we calculate the 
following. Please notice that the following listed quantities do not use the off diagonal elements of 
matrix T, or B, or U. They are the same as treating each element as scalar and calculating them 
separately. In the following denotes a random variable following a Student’s t distribution with 
degrees of freedom   , and  denotes the percentile of the distribution such 
that                                        . 

Estimate:  

Standard error:  

Degrees of freedom: 

Confidence interval:   

t-value:  
 

p-value for hypothesis test :        :  
 

Relative increase in variance due to non-response:                 
Fraction of missing information:    

Relative efficiency (RE):         

 
Hypothesis Tests 

The p-value for testing             is 
 

 
where 

 

 

   
 

We will also apply this test to scalar statistics. Note that for k = 1 this test does not necessarily 
reduce to the equivalent student t test mentioned in the scalar Q section due to possibly different 
degrees of freedom. 
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General Linear Contrast of Model Parameters 
 

The above test can be applied to test hypotheses about linear combinations of parameters. For a 
given matrix L and a vector K,                  can be tested, where  is a model parameter vector 
(regression coefficients for example). Let , , and      . This 
test becomes testing              . 

 
It is likely that only K,  and diagonal elements of  are available, so the simultaneous test 
of   cannot be done.  Instead, we will test each row of   separately. Denote the l-th row 
hypothesis of   as           . Let be the p-value for testing   alone.  If multiple 
comparisons are requested, the p-values are adjusted as usual. 

 
In multivariate GLM, there is a parameter matrix, B, instead of a vector. In multivariate GLM 

                       can be tested for the given matrices L, M, K. Where possible, we separately 
test each element of the hypotheses                                   where is the i-th row vector of 
matrix L, and   is the ijth element of vector K. Again, if multiple comparisons are requested, 
the p-values are adjusted as usual. 
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MVA Algorithms 
The Missing Value procedure provides descriptions of missing value patterns; estimates of means, 
standard deviations, covariances, and correlations (using a listwise, pairwise, EM, or regression 
method); and imputation of values by either EM or regression. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

X Data matrix 
Value of the ith case, jth variable 

Number of variables 
m Number of cases 

Number of nonmissing values of the ith variable 

Number of nonmissing value pairs of the ith and jth variables 

Number of complete cases 

J Index of all variables 
J#=J(condition) Index of variables satisfying “condition” 
I Index of all cases 

Index of cases at which variables are not missing 

I(J)  Index of complete cases  
                                   Vector whose ith element is 

                               Matrix whose ith row, jth column element is 
 
 

Example to Illustrate Notation 
 
 
 
 
 
 
 

The 2nd row, 3rd element 

Number of variables 

n=7 Number of cases 
Number of nonmissing values in the 2nd variable 

Number of nonmissing value pairs in the 2nd and 3rd variables 

Number of complete cases 

J={1,2,3} Index of variables 

  





 
 
 

 

MVA Algorithms 

 
J(2 or more missing)={1,2}    The 1st and 2nd variables have two or more missing values 
I={1,2,3,4,5,6,7} Index of cases 
I(2)={1,2,3,6,7} Index of cases at which the 2nd variable is not missing 
I(2,3)={1,2,3,7} Index of cases at which the 2nd and 3rd variables are not missing 
I(J)={1,7} Index of complete cases 

The 2nd element of the vector 
 
 

Univariate  Statistics 

The index j refers to quantitative variables. 
 

Mean 
 

 
Standard Deviation 

 

 
Extreme Low 

NL        number of values 

 
Extreme High 

NH number of values 
 

where 
 
 

 

                                              if 
th percentile of the  th varible if  

 

and  

                                                if 
th percentile of the  th variable if  

 
Separate Variance T Test 

The index k refers to quantitative variables, and index j refers to all variables. 
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    variable   is missing 

   variable   is missing 

 

 
 
 

 
where and are defined in “Pairwise Statistics”. 

 
 

df 2-tail tcdf df 
 
 

where “tcdf” is the t cumulative distribution function 
 
Listwise Statistics 

The indices j and k refer to quantitative variables. 
 

Mean 
 

 
Covariance 

 

 
Correlation 

 

 
Pairwise Statistics 

The indices j and k refer to quantitative variables, and l refers to all variables. 
 

Mean 
 

variable is missing 

    variable   is missing 
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Standard Deviation 

 

 
Covariance 

 

 
Correlation 

 

 
Regression Estimated Statistics 

The indices j and k refer to quantitative variables, and l refers to predictor variables. 
 

Estimates of Missing 
Values 

 
 
if is not missing 

regression estimated if is missing 
 

where the regression estimated is 
 

 
 
 

 
where: 

is computed from Diag                    and by pivoting on the “best” “q” of the 
J1 diagonals of . 

“best” is forward stepwise selected. 
 

“q” is less than or equal to the user-specified maximum number of predictors; it may also be 
limited by the user-specified F-to-enter limit. 

 
“ ” is the optional random error term, as specified: 

1. residual of a randomly selected complete case 

2. random normal deviate, scaled by the standard error of estimate 

3. random t(df) deviate, scaled by the standard error of estimate, df is specified by the user 

4. no error term adjustment 
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Mean 

Note that for each missing value , a unique set of regression coefficients and 
error terms is computed. 

 

 
 

 

 
 

 
 

 

Covariance 
 

 
Correlation 

 

 

EM Estimated Statistics 
The indices j and k refer to quantitative variables, and l refers to predictor variables. 

 
Estimates of Missing Values, Mean Vector, and Covariance Matrix 

 

Diag 
 

 

For m=1 to M, or until convergence is attained: 
 

If is not missing then          . 

If is missing then it is estimated in the mth iteration as: 
 

 

where is computed from and  . 
 

 

                                                                                                                                        and  

 
where is the jth row, sth element of the J2 pivoted 𝐂𝐂𝑚𝑚−1.
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Note that some sources (Little & Rubin, 1987, for example) simply use n as the denominator of 
the formula for , which produces full maximum likelihood (ML) estimates. The formula used 
by MVA produces restricted maximum likelihood (REML) estimates, which are n/(n−1) times the 
ML estimates. 
 

 
 

Convergence 

The algorithm is declared to have converged if, for all j, 
 

  CONVERGENCE 
 
Filled-In Data 

 

where is the last value of m. 
 
Mean 

 

 
Covariance 

 

 
Correlation 
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Little’s MCAR Test 
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NAIVE BAYES Algorithms 
The Naive Bayes model is an old method for classification and predictor selection that is enjoying 
a renaissance because of its simplicity and stability. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 65-1 
Notation 
Notation Description 
J0 Total number of predictors. 
X Categorical predictor vector X’ = ( X1, ..., XJ ), where J is the number of 

predictors considered. 
Mj Number of categories for predictor Xj. 
Y Categorical target variable. 
K Number of categories of Y. 
N Total number of cases or patterns in the training data. 
Nk The number of cases with Y= k in the training data. 
Njmk The number of cases with Y= k and Xj=m in the training data. 
πk The probability for Y= k. 

mk The probability of Xj=m given Y= k. 

 
Naive Bayes Model 

The Naive Bayes model is based on the conditional independence model of each predictor given 
the target class. The Bayesian principle is to assign a case to the class that has the largest posterior 
probability. By Bayes’ theorem, the posterior probability of Y given X is: 

 

Let X1, ..., XJ be the J predictors considered in the model. The Naive Bayes model assumes that 
X1, ..., XJ are conditionally independent given the target; that is: 

 

These probabilities are estimated from training data by the following equations: 
 

 

 

Where Nk is calculated based on all non-missing Y,  Nj is based on all non-missing pairs 
of XJ and Y, and the factors  and f are introduced to overcome problems caused by zero or very 
small cell counts.  These estimates correspond to Bayesian estimation of the multinomial 
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probabilities with Dirichlet priors.  Empirical studies suggest (Kohavi, Becker, and 
Sommerfield, 1997). 

 
A single data pass is needed to collect all the involved counts. 

 
For the special situation in which J = 0; that is, there is no predictor at all, 

                    . When there are empty categories in the target variable or 
categorical predictors, these empty categories should be removed from the calculations. 

 
Preprocessing 

The following steps are performed before building the Naive Bayes model. 

 
Missing Values 

A predictor is ignored if every value is missing or if it has only one observed category. A case is 
ignored if the value of the target variable or the values of all predictors are missing. For each case 
missing some, but not all, of the values of the predictors, only the predictors with nonmissing 
values are used to predict the case, as suggested in (Kohavi et al., 1997). 

 
This implies the following equation: 

 

not missing 

This also implies the following equation for B(J) in average log-likelihood calculations: 
 
 

not missing 
 

Where the log() term for case i is ignored if all the values of the predictors considered in the model 
are missing. For more information, see the topic “Average Log-likelihood”. 

 
Continuous Variables 

The Naive Bayes model assumes that the target and predictor variables are categorical. If there are 
continuous variables, they need to be discretized. There are many ways to discretize a continuous 
variable; the simplest is to divide the domain of a variable into equal width bins. This method 
performs well with the Naive Bayes model while no obvious improvement is found when complex 
methods are used (Hsu, Huang, and Wong, 2000). 

 
Sometimes the equal width binning method may produce empty bins. In this case, empty bins 
are eliminated by changing bin boundary points. Let b1 < b2 < ... bn be the bin boundary points 
produced by the equal width binning method. The two end bins (-∞, b1] and (bn, ∞) are non-empty 
by design. Suppose that bin (bi, bi+1] is empty, and suppose that the closest left non-empty bin has 
right boundary point bj (< bi) and the closest right non-empty bin has left boundary point bk (> 
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bi). Then empty bins are eliminated by deleting all boundary points from bj to bk, and setting 
a new boundary point at (bj+bk)/2. 

 
Feature Selection 

Given a total of J0 predictors, the goal of feature selection is to choose a subset of J predictors 
using the Naive Bayes model (Natarajan and Pednault, 2001). This process has the following steps: 
 Collect the necessary summary statistics to estimate all possible model parameters. 
 Create a sequence of candidate predictor subsets that has an increasing number of predictors; 

that is, each successive subset is equal to the previous subset plus one more predictor. 
 From this sequence, find the “best” subset. 

 
Collect Summary Statistics 

One pass through the training data is required to collect the total number of cases, the number 
of cases per category of the target variable, and the number of cases per category of the target 
variable for each category of each predictor. 

 
Create the Sequence of Subsets 

Start with an initial subset of predictors considered vital to the model, which can be empty. For 
each predictor not in the subset, a Naive Bayes model is fit with the predictor plus the predictors 
in the subset. The predictor that gives the largest average log-likelihood is added to create the next 
larger subset. This continues until the model includes the user-specified: 
 Exact number of predictors 

 
or 
 Maximum number of predictors 

 
Alternatively, the maximum number of predictors,   Max, may be automatically chosen by the 
following equation: 

 
Max Must 

where   Must is the number of predictors in the initial subset. 
 
Find the “Best” Subset 

If you specify an exact number of predictors, the final subset in the sequence is the final model. 
If you specify a maximum number of predictors, the “best” subset is determined by one of the 
following: 
 A test data criterion based on the average log-likelihood of the test data. 
 A pseudo-BIC criterion that uses the average log-likelihood of the training data and penalizes 

overly complex models using the number of predictors and number of cases. This criterion is 
used if there are no test data. 
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Smaller values of these criteria indicate “better” models. The “best” subset is the one with the 
smallest value of the criterion used. 

 
Test Data Criterion 

 
Test  

Where  Test is the average log-likelihood for test data. 

Pseudo-BIC Criterion 

Train 

Where J denotes the number of predictors in the  model, and Train is the average 
log-likelihood for training data. 

 
Average Log-likelihood 

The average (conditional) log-likelihood for data with J predictors is 
 
 

 

 
 

 
 

 

 

 
 

 
 

 

 
  

Let 
 

 

then 
 

 

Note: for the special situation in which J = 0;  that is, there are no predictors, 

 
Calculation of average log-likelihood by sampling 
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When adding each predictor to the sequence of subsets, a data pass is needed to calculate B(J). 
When the data set is small enough to fit in the memory, this is not a problem. When the data set 
cannot fit in memory, this can be costly. The Naive Bayes model uses simulated data to calculate 
B(J). Other research has shown that this approach yields good results (Natarajan et al., 2001). The 
formula for B(J) can be rewritten as, for a data set of m cases: 

 

By default m = 1000. 
 
Classification 

The target category with the highest posterior probability is the predicted category for a given case. 
 

Ties are broken in favor of the target category with greater prior probability πk. 

When cases being classified contain categories of categorical predictors that did not occur in the 
training data, these new categories are treated as missing. 

 
Classification Error 

If there is test data, the error equals the misclassification ratio of the test data. If there is no test 
data, the error equals the misclassification ratio of the training data. 
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NLR Algorithms 
 

 
 
 
Model 

 
NLR produces the least square estimates of the parameters for models that are not linear in their 
parameters. Unlike in other procedures, the weight function is not treated as a case replicate in 
NLR. 

 
 
 
Consider the model 

 
 

  
 

 
 
Goal 

where  is a p×1 parameter vector, is an independent variable vector, and f is a function of 
and . 

 
 
 

Find the least square estimate of such that minimizes the objective function 
 

where 
 
 
 
 
 

and n is the number of cases. For case i, is the observed dependent variable, is the vector of 
observed independent variables,  is the weight function which can be a function of . 

 
The gradient of F at is defined as 

 

where is the jth column of the Jacobian matrix J whose th element is defined by 
 

 

 
 

 
 

 

Estimation 
The modified Levenberg-Marquardt algorithm (Moré, 1977) that is contained in MINPACK is 
used in NLR to solve the objective function. 

 
Given an initial value   for , the algorithm is as follows: 

At stage 

► Compute 

                      ,                  , and 

  

Diag 
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► Choose an appropriate non-negative scalar such that 

 

where 
 

► Set 
 

and compute  
 

► Check the following conditions: 

1. 1 − (𝐹𝐹𝑘𝑘−1/𝐹𝐹𝑘𝑘) <∈1 (𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑁𝑁) 
2. For every element of   

 

3. (maximum number of iterations) 
 

4. For every parameter , the gradient of F at , , is evaluated at by checking 
 

where   is the correlation between the jth column   of and . 

If any of these four conditions is satisfied, the algorithm will stop. Then the final parameter 
estimate 

 

 
and the termination reason is reported. Otherwise, iteration continues. 

 
Statistics 

When the estimation algorithm terminates, the following statistics are printed. 
 

Parameter Estimates and Standard Errors 

The asymptotic standard error of   is estimated by the square root of the jth diagonal element 
of A, where 

 

and and are the Jacobian matrix J and weight function W evaluated at , respectively. 



 

 

 
 
Asymptotic 95% Confidence Interval for Parameter Values 
 

 
Asymptotic Correlation Matrix of the Parameter 
Estimates 

 

where 
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Diag 
 

and is the ith diagonal element of A. 
 

Analysis of Variance Table 
 

Source df Sum of Squares 
Residual n−p  

 

Regression p uncorrected 

Uncorrected Total n uncorrected 

Corrected Total n−1 
 

 

  uncorrected 

 
where 

 

uncorrected 
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NOMREG Algorithms 
The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a 
nominal categorical response on a set of discrete and/or continuous predictor variables. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Y The response variable, which takes integer values from 1 to J. 
J The number of categories of the nominal response. 
m The number of subpopulations. 

                                                     matrix with vector-element , the observed values at the ith 
subpopulation, determined by the independent variables specified in the 
command. 

X  matrix with vector-element , the observed values of the location 
model’s independent variables at the ith subpopulation. 

                                        The frequency weight for the sth observation which belongs to the cell 
corresponding to Y=j at subpopulation i. 
The sum of frequency weights of the observations that belong to the cell 
corresponding to Y=j at subpopulation i. 

N The sum of all nij’s. 
The cell probability corresponding to Y=j at subpopulation i. 

The logit of response category j to response category k. 

vector of unknown parameters in the j-th logit (i.e., logit of response 
category j to response category J). 

p Number of parameters in each logit. p≥1. 
                                        Number of non-redundant parameters in logit j after maximum likelihood 

estimation.    . 
                                        The total number of non-redundant parameters after maximum likelihood 

estimation.        . 
' vector of unknown parameters in the model. 

  

 
The maximum likelihood estimate of B. 

                                           The maximum likelihood estimate of 

 

Data Aggregation 

Observations with negative or missing frequency weights are discarded. Observations 
are aggregated by the definition of subpopulations.  Subpopulations are defined by  the 
cross-classifications of either the set of independent variables specified in the command or the set 
of independent variables specified in the SUBPOP subcommand. 

 
Let ni be the marginal count of subpopulation i, 
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If there is no observation for the cell of Y=j at subpopulation i, it is assumed that , provided 
that         . A non-negative scalar may be added to any zero cell (i.e., cell with ) 
if its marginal count      is nonzero. The value of    is zero by default. 

 
Data Assumptions 

Let Tbe the vector of counts for the categories of Y at subpopulation. It is 
assumed that each T is independently multinomial distributed with probability vector 

T of dimension and fixed total ni. 
 

Model  
 

NOMREG fits a generalized logit model that can also be used to model the results of 1-1 
matched case-control studies. 

 

Generalized Logit Model 

In a Generalized Logit model, the probability of response category j at subpopulation i is 
 

where the last category J is assumed to be the reference category. 
 

In terms of logits, the model can be expressed as 
 

for j = 1, …, J−1. 
 

When J = 2, this model is equivalent to the binary Logistic Regression model. Thus, the above 
model can be thought of as an extension of the binary Logistic Regression model from binary 
response to polytomous nominal response. 

 
1-1 Matched Case Control Model by Conditional Likelihood Approach 

The above model can also be used to estimate the parameters in the conditional likelihood of the 
1-1 Matched Case Control Model.  In this case, let m be the number of matching pairs, xil be   
the vector of independent variables for the case and xi2 that for the control.  The conditional 
log-likelihood for the m matched pairs is given by 
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in which  is the vector of parameters for the difference between the values of independent 
variables of the case and those of the control. This conditional likelihood is identical to the 
unconditional log-likelihood of a binary (i.e., k = 2) logistic regression model when 
 There is no intercept term in the model. 
 The set of subpopulations is defined by the set of matching pairs. 
 The independent variables in the model are set to equal to the differences between the values 

for the case and the control. 
 The number of response categories is J = 2, and the value of the response is 1 (or a constant), 

i.e., Y = 1. 
 

Log-likelihood 

The log-likelihood of the model is given by 
 
 
 
 
 
 
 
 

A constant that is independent of parameters has been excluded here. The value of the constant is 
 

 

Parameter  Estimation 

Estimation of the model parameters proceeds as follows. 
 
 
First and Second Derivatives of the Log-likelihood 

 
For any j = 1, …, J−1, s = 1, …, p, the first derivative of l with respect to  is 

 

 
For any j, j’= 1, …, J −1, s, t = 1, …, p, the second derivative of l with respect to  and is 

 

 
where = 1 if j = j’, 0 otherwise. 
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Maximum Likelihood Estimate 

To obtain the maximum likelihood estimate of B, a Newton-Raphson iterative estimation method 
is used.  Notice that this method is the same as Fisher-Scoring iterative estimation method in  
this model, since the expectation of the second derivative of l with respect to B is the same as  
the observed one. 

 
Let be the vector of the first derivative of l with respect to B. Moreover, let 

be the  matrix of the second derivative of l with respect to B. 
Notice that where  is a                matrix 

            Diag 

in which                            and Diag( is a                diagonal matrix of 
 . Let be the parameter estimate at iteration v, the parameter estimate at iteration 

v + 1 is updated as 
 

 

and is a stepping scalar such that , is a  matrix 
of independent vectors, 

 

 
 

and is  and is , both evaluated at  . 
 

Stepping  
 
Use step-halving method if  . Let V be the maximum number of steps in 
step-halving, the set of values of is {1/2v: v = 0, …, V−1}. 

 

Starting Values of the Parameters 
 

If intercepts are included in the model, set                                where 
 

for j = 1, …, J  −1. 
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If intercepts are not included in the model, set 
 

 
for j = 1, …, J−1. 

 

Convergence Criteria 

Given two convergence criteria and , the iteration is considered to be converged 
if one of the following criteria are satisfied: 

 
1.    

 
2.    

 
3.   The maximum above element in is less than min(  , ). 

 
Stepwise Variable Selection 

Several methods are available for selecting independent variables. With the forced entry method, 
any variable in the variable list is entered into the model. The forward stepwise, backward 
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic 
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score 
statistic or the likelihood ratio statistic to select variables for entry into the model. 

 

Forward Stepwise (FSTEP) 

1. Estimate the parameter and likelihood function for the initial model and let it be our current model. 
 

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic 
for every variable eligible for inclusion and find its significance. 

 
3. Choose the variable with the smallest significance (p-value). If that significance is less than the 

probability for a variable to enter, then go to step 4; otherwise, stop FSTEP. 
 

4. Update the current model by adding a new variable. If this results in a model which has already 
been evaluated, stop FSTEP. 

 
5. Calculate the significance for each variable in the current model using LR or Wald’s test. 

 
6. Choose the variable with the largest significance. If its significance is less than the probability for 

variable removal, then go back to step 2. If the current model with the variable deleted is the same 
as a previous model, stop FSTEP; otherwise go to the next step. 

 
7. Modify the current model by removing the variable with the largest significance from the previous 

model. Estimate the parameters for the modified model and go back to step 5. 
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Forward Only (FORWARD) 

1. Estimate the parameter and likelihood function for the initial model and let it be our current model. 

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable 
eligible for inclusion and find its significance. 

3. Choose the variable with the smallest significance. If that significance is less than the probability 
for a variable to enter, then go to step 4; otherwise, stop FORWARD. 

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop 
FORWARD; otherwise, go to step 2. 

 
Backward Stepwise (BSTEP) 

1. Estimate the parameters for the full model that includes the final model from previous method and 
all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and 
removal.  Let current model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable 
in the BSTEP list and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the probability 
for a variable removal, then go to step 5. If the current model without the variable with the largest 
significance is the same as the previous model, stop BSTEP; otherwise go to the next step. 

4. Modify the current model by removing the variable with the largest significance from the model. 
Estimate the parameters for the modified model and go back to step 2. 

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise, 
go to the next step. 

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable 
not in the model and find its significance. 

7. Choose the variable with the smallest significance. If that significance is less than the probability 
for the variable entry, then go to the next step; otherwise, stop BSTEP. 

8. Add the variable with the smallest significance to the current model. If the model is not the 
same as any previous models, estimate the parameters for the new model and go back to step 
2; otherwise, stop BSTEP. 

 
Backward Only (BACKWARD) 

1. Estimate the parameters for the full model that includes all eligible variables. Let the current 
model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables 
eligible for removal and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the probability 
for a variable removal, then stop BACKWARD; otherwise, go to the next step. 
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4. Modify the current model by removing the variable with the largest significance from the model. 

Estimate the parameters for the modified model. If all the variables in the BACKWARD list are 
removed then stop BACKWARD; otherwise, go back to step 2. 

 
Stepwise Statistics 

The statistics used in the stepwise variable selection methods are defined as follows. 
 

Score Function and Information Matrix 

The score function for a model with parameter B is: 
 

The (j,s)th element of the score function can be written as 
 
 
 
 
 

Similarly, elements of the information matrix are given by 
 
 
 
 
 

where        if , 0 otherwise. 

(Note that in the formula are functions of B) 
 

Block Notations 

By partitioning the parameter B into two parts, B1 and B2, the score function, information matrix, 
and inverse information matrix can be written as partitioned matrices: 

 
 
 
 
 
 

where 
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where 
 

 
 
 
 

Typically, B1 and B2 are parameters corresponding to two different sets of effects. The dimensions 
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in B1   and 
B2 respectively. 

 
Score Test 

 
Suppose a base model with parameter vector  with the corresponding maximum likelihood 
estimate . We are interested in testing the significance of an extra effect E if it is added to the 
base model.  For convenience, we will call the model with effect E the augmented model. Let 

  be the vector of extra parameters associated with the effect E, then the hypothesis can be 
written as 

 
             v.s.        

 

Using the block notations, the score function, information matrix and inverse information of the 
augmented model can be written as 

 

 

 

 

Then the score statistic for testing our hypothesis will be 
 

 
where and               are the 2nd partition of score function and inverse 
information matrix evaluated at and        . 

 
Under the null hypothesis, the score statistic has a chi-square distribution with degrees of 
freedom equal to the rank of              . If the rank of               is zero, then the score 
statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of 𝐽𝐽𝐸𝐸,𝐸𝐸(𝐵𝐵1,𝐵𝐵2) is 
𝑟𝑟𝐸𝐸: 𝑟𝑟𝐸𝐸 > 0, then the p-value of the test is equal to 1 − 𝐹𝐹(𝑠𝑠; 𝑟𝑟𝐸𝐸) is the cumulative 
distribution function of a chi-square distribution with 𝑟𝑟𝐸𝐸 degrees of freedom. 

 



 
 

and 
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Computational Formula for Score Statistic 

When we compute the score statistic s, it is not necessary to re-compute and 

from scratch. The score function and information matrix of the base model can be 
reused in the calculation. Using the block notations introduced earlier, we have 

 

 
and 

 

 
In stepwise logistic regression, it is necessary to compute one score test for each effect that are not 
in the base model.  Since the 1st partition of and depend only on the 

base model, we only need to compute , and                  for 
each new effect. 

 

If is the s-th parameter of the j-th logit in is the t-th parameter of k-th logit in 
, then the elements of                ,                   and                  can be expressed 

as follows: 
 

 

 

 
where ,   are computed under the base model. 

 

Wald’s Test 
 

In backward stepwise selection, we are interested in removing an effect F from an already fitted 
model. For a given base model with parameter vector , we want to use Wald’s statistic to 
test if effect F should be removed from the base model. If the parameter vector for the effect F is 

, then the hypothesis can be formulated as 
 

                vs.        
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In order to write down the expression of the Wald’s statistic, we will partition our parameter vector 
(and its estimate) into two parts as follows: 

 
                            and  

 

The first partition contains parameters that we intended to keep in the model and the 2nd partition 
contains the parameters of the effect F, which may be removed from the model. The information 
matrix and inverse information will be partitioned accordingly, 

 

and 
 

Using the above notations, the Wald’s statistic for effect F can be expressed as 
 

 

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the 
rank of                       . If the rank of                      is zero, then Wald’s statistic will  be 
set to0 and the p-value will be 1. Otherwise, if the   rank of  is , then 
the p-value of the test is equal to  , where is the cumulative distribution 
function of a chi-square distribution with degrees of freedom. 

 
Statistics 

The following output statistics are available. 

 
Model Information 

The model information (-2 log-likelihood) is available for the initial and final model. 
 

Initial Model, Intercept-Only 

If intercepts are included in the model, the predicted probability for the initial model (that is, 
the model with intercepts only) is 

 

 

and the value of the -2 log-likelihood of the initial model is 
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Initial Model, Empty 
 

If intercepts are not included in the model, the predicted probability for the initial model is 
 

 
and the value of the -2 log-likelihood of the initial model is 

 

 

Final Model 
 

The value of -2 log-likelihood of the final model is 
 

 

Model Chi-Square 

The Model Chi-square is given by 
 

 
Model with Intercepts versus Intercept-only Model 

 
If the final model includes intercepts, then the initial model is an intercept-only model. Under the 
null hypothesis that intercepts , the Model Chi-square is asymptotically chi-squared 
distributed with pnr – (J – 1) degrees of freedom. 

 
Model without Intercepts versus Empty Model 

 
If the model does not include intercepts, then the initial model is an empty model. Under the 
null hypothesis that            , the Model Chi-square is asymptotically chi-squared 
distributed with pnr degrees of freedoms. 

 
Pseudo R-Square 

The R2 statistic cannot be exactly computed for multinomial logistic regression models, so these 
approximations are computed instead. 

 
Cox and Snell’s R-Square 

 
CS 
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Nagelkerke’s R-Square 

 

CS 
N  

 

McFadden’s R-Square 
 

M 
 

Measures of Monotone Association 

When the response variable has exactly two levels; that is, k = 2, measures of monotone 
association are available. 

 
Without loss of generality, let the predicted probability for the category which is not the base 
category be . Also, let                     where [x] is the integer part of the value x. 

 
Take a pair of observations indexed by i1 and i2 with different observed responses; the smaller 
index corresponds to a lower predictor value. This pair is a concordant pair if for 
i1<i2.  This pair is a discordant pair if for i1<i2.  If the pair is neither concordant nor 
discordant, it is a tied pair. Suppose there are a total of t pairs with different responses, pairs 
are concordant, pairs are discordant, and  pairs are tied. The following measures 
of monotone association are computed. 

 
Somers’ D 

 

 

Goodman-Kruskal’s Gamma 
 

 

Kendall’s Tau-a 
 

 
 

where n is the total sum of all frequencies n = . 
 
 

Concordance Index C 
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Goodness of Fit Measures 

The following tests of the null hypothesis that the model adequately fits the data are available. 
 

Pearson Goodness of Fit Measure 
 

 

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – pnr degrees of freedom. 

 
Deviance Goodness of Fit Measure 

 

 

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – pnr degrees of freedom. 

 
Overdispersion Adjustments 

Let   > 0 be an estimate of the overdispersion parameter. Possible estimates of this parameter are: 
 A positive value specified in the command. If no value is specified, 1 is assumed. 
 The ratio of Pearson goodness-of-fit measure to its degrees of freedom: 

 The ratio of Deviance goodness of fit measure to its degrees of freedoms: 

 
  

 

Covariance and Correlation Matrices 

The estimate of the covariance matrix of the parameters is the inverse of the negative of the 
second derivative of the log-likelihood evaluated at  , multiplied by the estimate of the 
overdispersion parameter. 

 

Cov  

 
Let be the (J-1)p 1 vector of the square roots of the diagonal elements in Cov  . The estimate 
of the correlation matrix of  is 
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Parameter Statistics 

An estimate of the standard deviation of  is . The Wald statistic for  is 

Wald  

Under the null hypothesis that        , Wald is asymptotically chi-square distributed 
with 1 degree of freedom. 

 
Based on the asymptotic normality of the parameter estimate, a 100(1−α )% Wald confidence 
interval for   is 

 

where is the upper (1−α/2)100th percentile of the standard normal distribution. 

 
Predicted Cell Counts 

At each subpopulation i, the predicted count for response category Y=j is 
 

The (raw) residual is and the standardized residual is                                 .         
 
Likelihood Based Partial Effects 

A likelihood ratio test is performed for any effect (except intercept) in the model. The procedure 
to perform a likelihood ratio test for any effect e is as follows: 

1. Form a submodel that has all the effects in the working model but the one (e) of interest. 

2. Fit the submodel and calculate the value of its –2 log-likelihood, denote it by . 
Moreover, let the number of non-redundant parameters in this submodel be  . 

3. Calculate the difference between the –2 log-likelihood of the submodel and that of the working 
model, . 

 
Under the null hypothesis that the effect e of interest  is zero, is 
asymptotically chi-square distributed with              degrees of freedom. 

 
Linear Hypothesis Testing 

For each matrix of linear combinations L, J Wald’s tests are performed. Each of the first 
J – 1 Wald’s tests corresponds to a Wald’s test on each of the J – 1 logits. The last Wald’s test 
corresponds to a joint Wald’s test for all the J – 1 logits.  In the following, it is assumed that 

Rank(        . 
 

The Wald’s test corresponding to the jth logit is 
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Under the null hypothesis,         , Wald( is asymptotically chi-square distributed 
with q degrees of freedom. 

 
Let L* be a (J – 1)q× (J – 1)p  matrix, 

 
 

. . . 
  

 

The Wald’s joint test for all logits is 
 

 
Under the null hypothesis,                   ,Wald( is asymptotically chi-square distributed with 
(J−1)q degrees of freedom. 

 
Classification Table 

Suppose that c(j, j’) is the (j, j’)-th element of the classification table, j, j’ = 1, …, J. c(j, j’) is  
the sum of the frequencies for the observations whose actual response category is j (as row) and 
predicted response category is j’ (as column) respectively. 

 
The predicted response category for subpopulation i is 

 
* 

*
 

Should there be a tie, choose the category with the smallest category number. 

For j, j’ = 1, …, J, c(j, j’) is given  as 

 

 
 

 

The percentage of total correct predictions of the model is 
 

 

The percentage of correct predictions of the model for response category j is 
 

.. . 

.. . 
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Checking for Separation 

The algorithm checks for separation in the data starting with iteration   chksep (20 by default). To 
check for separation: 

1. For each subpopulation i, find  * 
* . 

2. If * , then there is a perfect prediction for subpopulation i. 

3. If all subpopulations have perfect prediction, then there is complete separation. If some patterns 
have perfect prediction and the Hessian of  is singular, then there is quasi-complete separation. 
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NONPAR CORR Algorithms 
If a WEIGHT variable is specified, it is used to replicate a case as many times as indicated by  
the weight value rounded to the nearest integer. If the workspace requirements are exceeded and 
sampling has been selected, a random sample of cases is chosen for analysis using the algorithm 
described in SAMPLE. For the RUNS test, if sampling is specified, it is ignored. The tests are 
described in (Siegel, 1956). 

 
Spearman Correlation Coefficient 

For each of the variables X and Y separately, the observations are sorted into ascending order and 
replaced by their ranks. In situations where t observations are tied, the average rank is assigned. 
Each time , the quantity        is calculated and summed separately for each variable. These 
sums will be designated   and . 

 
For each of the N observations, the difference between the rank of X and rank of Y is computed as: 

 

 
Spearman’s rho   is calculated as (Siegel, 1956): 

 
 

 

 
 

where 
 

𝑇𝑇𝑥𝑥                                 and 
 

If or   is 0, the statistic is not computed. 

The significance level is calculated assuming that, under the null hypothesis, 
 

 

is distributed as a t with degrees of freedom.  A one- or two-tailed significance level is 
printed depending on the user-selected option. 

 
Kendall’s Tau 

For each of the variables X and Y separately, the observations are sorted into ascending order and 
replaced by their ranks. In situations where t observations are tied, the average rank is assigned. 

 
Each time , the following quantities are computed and summed over all groups of ties for 
each variable separately. 
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and or 
 

Each of the N cases is compared to the others to determine with how many cases its ranking of  
X and Y is concordant or discordant. The following procedure is used. For each distinct pair  of  
cases the quantity 

 

 
is computed. If the sign of this product is positive, the pair of observations is concordant, 
since both members of observation i are either less than or greater than their respective 
measurement in observation j. If the sign is negative, the pair is discordant. 

 
The number of concordant pairs minus the number of discordant pairs is 

 

sign 
 
 

where sign is defined as +1 or –1 depending on the sign of . Pairs in which          
are ignored in the computation of S. 
Kendall’s tau   is computed as 

 
 

 
 

 

If the denominator is 0, the statistic is not computed. 
The variance of S is estimated by (Kendall, 1955): 

 

 
where 

 

 

The significance level is obtained using 
 

 

which, under the null hypothesis, is approximately normally distributed. The significance level is 
either one- or two-sided, depending on the user specification. 
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Nonparametric Tests Algorithms 
Nonparametric tests make minimal assumptions about the underlying distribution of the data. 
The available nonparametric tests can be grouped into three broad categories based on how  
the data are organized: one-sample tests, related-samples tests, and independent-samples tests. 
A one-sample test analyzes one field. A test for related samples compares two or more fields 
for the same set of records. An independent-samples test analyzes one field that is grouped by 
categories of another field. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

Data for one sample tests: is the ith observed value, and    is the 
frequency/replication weight for . 
Data for K related samples tests: each x-column represents one sample,  is 
the frequency/replication weight for row/record i. 
Data for K independent samples: indicates the sample that observation 

belongs to,  is the frequency/replication weight. 
                                                  All record indices in the jth sample. 

The number of records in the jth sample, ignoring the frequency weight. 

The number of records in the jth sample, incorporating frequency weight. 

 
rank The rank of when all  are jointly ranked. If there are 

ties, the average rank is used. 
Like rank but frequency weights are incorporated when 
calculating the ranks. 

                                    The cumulative distribution function of population k . 

The cumulative distribution function for the standard normal distribution 
such that. 

α The critical value for determining whether to reject the null hypothesis. 
 

One-Sample Tests 

The following one-sample tests are available. 
 

Binomial Test 

For a categorical field with 2 values (or recoded categorical field with more than 2 values or 
recoded continuous field), this tests: 

 
H0: The probability of success is equal to the hypothesized success probability p0. 

HA (if p0=0.5): The probability of success is not equal to the hypothesized success probability 
(use the two-tailed p-value) 
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HA (if p0>0.5): The probability of success is greater than the hypothesized success probability 
(use the one-tailed p-value) 

 
HA (if p0<0.5): The probability of success is less than the hypothesized success probability 
(use the one-tailed p-value) 

 
Let and be the numbers of records in the success and failure categories, incorporating 
the frequency weight. 

 
If , then one-tailed exact probability is 

 

 
where 

 

 
and 

 

 

The two-tailed exact probability is  . 
 

If , a normal approximation is used. Letting 
 

 
and 

 

 
the one-tailed approximate probability is 

 

 
and the two-tailed approximate probability is  . 

 

rejects the two-tailed test if p0 = 0.5; otherwise 𝑝𝑝1 < 𝛼𝛼 rejects the one-tailed test.
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Confidence Interval for Binomial Success Rate 
 

Without loss of generality we assume that or 1 with 1 representing success. We 
want to estimate the success probability    and its confidence interval.  Let 

                       , .  The estimate of the success probability is 
. For confidence interval , we provide the following three ways of calculating it. 

For all three methods, if         and if        . 

 
Clopper-Pearson confidence interval 

 
The Clopper-Pearson confidence interval is an exact confidence interval based on inverting the 
exact equal-tailed binomial test               . The lower and upper confidence limits are found 
by solving 

 

 
 
 
 
 

The solutions to these two equations are (Leemis and Trivedi, 1996) 
 

 

 
where             is the  percentile of the F-distribution . 

 
Note: The Clopper-Pearson confidence interval is conservative (coverage probability is at least 

) because of the discreteness of the binomial distribution. The coverage probability can be 
much larger than unless sample size is very big. 

 
Jeffreys confidence interval 

 
Jeffreys confidence interval is a Bayesian interval based on the posterior probability of p using the 
Jeffreys prior .  The resulting posterior for p is   . Then the 
lower and upper confidence limits of p are the and percentiles of this beta distribution 
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Likelihood ratio confidence interval 

 
The likelihood ratio confidence interval is constructed by inverting the acceptance region of the 
likelihood ratio test which accepts the null hypothesis                if 

 

or 
 

 

is the percentile of the chi-square distribution with 1 degree of freedom, 
are likelihood and log likelihood functions. The log likelihood function is 

 

 
with the convention . 

 
Inverting the likelihood ratio test is to find a range for such that within this range 

or equivalently is satisfied. The function 
is well behaved with  , maximum at 

, increasing for and decreasing for because its first derivative is 
 

 
The two solutions for , one on each side of , correspond to and . To 
obtain the solutions, the Newton-Raphson iterative method is used to solve the equation  . 
Letting  be the solution at iteration step v, the solution  at iteration step v + 1 is updated as 

 

 
The stepping scalar    > 0 is used to make sure  and  . We 
use the step-halving method if either or  is not satisfied.  
Let s be the maximum number of steps in step-halving, the set of values of      is {1/2r:  r = 0, 
…, s−1}. 

 
Iterations start with an initial value   and continue until one of the stopping criteria is reached. 
Only needs to be calculated when         because ; and only needs to be calculated 
when         because .  In fact, a closed form solution exists in these special situations, 

for         , and for         . 

where 
and 
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Initial values.  Any initial value                will lead to a solution for , and any initial value 
               will lead to . Let be the Jeffreys lower and upper confidence limits. We 

will take the following as the initial values for the lower and upper confidence limits 
 

if  
otherwise 

if  
     otherwise 

 
Stopping criteria. Let 𝜖𝜖 = 10−8. The following stopping criteria are checked in the following order. 

1. Absolute argument convergence criterion:    

2. Relative argument convergence criterion: 
 

3. Function convergence criterion: 

4. The maximum number of iterations, default at 50, is reached, or the maximum number of steps in 
step-halving is reached, default at 20. 

 

Chi-Square Test 

For a categorical field, this tests: 
 

H0: The probability of each category i equals the hypothesized probability . 
 

HA: At least one category’s probability does not equal its hypothesized probability. 

The test statistic is 

 
 

where  and  are the observed and expected frequencies of category i. 
 

The one-sided p-value is 
 

 

where   follows a chi-square distribution with degrees of freedom. 

rejects the null hypothesis. 



 
 
 

 

Nonparametric Tests Algorithms 
 

Kolmogorov-Smirnov Test 

For a continuous field, this tests: 
 

H0:   for all x, where is the distribution of the sample and   is the 
hypothesized distribution which can be the uniform, the Poisson, the normal or the exponential 
distribution. 

 
HA:   for some x. 

 
Empirical cumulative distribution function 

 
The observations are sorted into ascending order: , where m is the number 
of distinct values of X. Then the empirical cdf is 

 
 
 

 
 
 
 

Theoretical cumulative distribution function 
 

Uniform 
 

 
where min and max are user-specified (default sample minimum and maximum). 

 
Poisson 
 

 
 

where is user-specified (default sample mean). If , the normal approximation is 
used with and . 

 
Normal 

 

 
where and are user-specified (default sample mean and standard deviation). 

 
Exponential 
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where  is user-specified (default inverse sample mean). 
 

Test statistic and p-value 
 

The test statistic is calculated based on differences between the empirical cumulative distribution 
and the theoretical cumulative distribution. For the uniform, normal and exponential distributions, 
two differences are computed: 

 

 

 
for i=1,...,m.  For the Poisson: 

 
 

 

 
for i=1,...,m. 

 
The test statistic is 

 

 

The two-tailed probability level is estimated using the first three terms of the Smirnov (1948) 
formula. 

 
 
rejects the null hypothesis. 

 
Note: If the distribution is normal and parameters are estimated from the data, then the Lilliefors 
method is used to compute the test statistic and p value instead of the method described in this 
section. For more information, see the topic “Kolmogorov-Smirnov Statistic with Lilliefors’ 
Significance”. 



 
 

where, if 
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Kolmogorov-Smirnov Statistic with Lilliefors’ Significance 

 
In the case that the distribution is normal and parameters are estimated from the data, the 
Lilliefors method (Lilliefors, 1967) is used to compute the test statistic and p value. The Lilliefors 
significance p is calculated based on the formulas and critical value tables from Lilliefors 
(Lilliefors et al., 1967) and Dallal and Wilkinson (Dallal and Wilkinson, 1986). 

 
The test statistic is 

 

Let  . If , the p value is set to the system missing value. 

If , then the Lilliefors significance p is calculated as follows: 
 

Step 1.  Compute the critical value for upper tail probability 0.1: 
 

 

, then , , and 

, then , , and 
 
 

Step 2. If  , then 

If , then 

Otherwise go to step 3  
 

Step 3.  If there is an entry in Table 69-1 for sample size , then go to step 4 to compute the p 
value. Otherwise, linear interpolation is used to calculate the critical values for a sample size of . 

For example, for  , which is between sample sizes and with critical 
values and  respectively, the critical value for upper tail probability 0.2 
is computed as: 

 
 
 

The critical value for upper tail probability 0.15 (for ) is computed in a similar manner. 
 

Step 4.If or , then linear interpolation is used to compute the 
p value, where  and  are the critical values for upper tail probability 0.2 and probability 
0.15 (corresponding to sample size ) respectively. 

and if 
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For example, for , use step 1 to compute the critical value for upper tail probability 
0.1 as                    . If , then  .  The p value can be 
computed as: 
 

 
If , then p is reported as > 0.2. 
Table 69-1 
Upper tail probability and corresponding critical values 

 

Sample size p value 0.2 p value 0.15 
5 0.289 0.303 
6 0.269 0.281 
7 0.252 0.264 
8 0.239 0.250 
9 0.227 0.238 
10 0.217 0.228 
11 0.208 0.218 
12 0.200 0.210 
13 0.193 0.202 
14 0.187 0.196 
15 0.181 0.190 
16 0.176 0.184 
17 0.171 0.179 
18 0.167 0.175 
19 0.163 0.170 
20 0.159 0.166 
25 0.143 0.150 
30 0.131 0.138 
40 0.115 0.120 
100 0.074 0.077 
400 0.037 0.039 
900 0.025 0.026 
Over 900 

 

 
 

 

 
 

 

Runs Test 

For a categorical field with 2 values (or a recoded categorical field with more than 2 values or a 
recoded continuous field), this tests: 

 
H0: The observed order of observations of a field is attributable to chance variation. 
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Number of runs 
 

The number of times that the category changes; that is, where belongs to one category and 
belongs to the other, as well as the number of records in category 1 ( ) and category 2 

( ), are determined. The number of runs, R, is the number of sign changes plus one. 
 

Test statistic and p-value 
 

The sampling distribution of the number of runs is approximately normal with 
 

 

 

The test statistic is 
 

, if , otherwise 
 

if 
if 
if 

 

The one sided p-value is and the two sided p-value is . 
 

rejects the null hypothesis. 
 

Wilcoxon Signed-Rank Test 

For a continuous field, this tests: 
 

H0: median         where is user-specified (default to sample median). 

Let                ,            . The test statistic is the sum of positive ranks incorporating 
the frequency weights: 

 

rank 
 
 

The standardized test statistic is 
 
 

 
 

where 
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where M is the total number of distinct rank values of and  is the number of records 
tied at the jth distinct value, incorporating the frequency weights. 

 
The asymptotic one-sided and two-sided p-values are 

 

 

 
rejects the null hypothesis in favor of median          if and in favor of 

median          if . 
 

Note: The one-sample Wilcoxon signed-rank test is equivalent to the matched-pairs Wilcoxon 
signed-rank test when the second sample replaced by a constant   . 

 
Independent Samples Tests 

The following independent-samples tests are available. 

 
Mann-Whitney Test 

For two independent samples from a continuous field, this tests: 
 

H0:            ; that is, the two samples are from populations with the same distribution 
function 

 
:             

 
:               

 

The first group is defined by the first value of the grouping field in ascending order. 
 

Calculation of Sums of Ranks 
 

The combined data from both specified groups are sorted and ranks assigned to all records, with 
average rank being used in the case of ties. The sum of ranks for each group is 
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                 rank f 
 

 rank f 
 
 

The average rank for each group is 
 

 
where                        . 

If there are tied records, the number of records tied at the jth distinct value incorporating the 
frequency weight,   are counted. 

 
Test statistic and p-value 

 
The Wilcoxon rank sum W statistic is . The Mann-Whiney U statistic for group 1 is 

 
 
 
 
 

If and , the exact significance level is based on 
an algorithm of Dineen and Blakesley (1973), which is given as follows: 

 
Let    be the sampling frequency of the Mann-Whitney statistic for a value of U and with 
sample size i and j. Then the frequency distribution of the Mann-Whiney U statistic can be derived 
by summing two lower order distributions: 

 

 
Each of the lower order distribution is symmetrical about a different value of U and the sum gives 
a result which is also symmetrical. The algorithm starts with known distribution for i=1 (or j=1) 
and then uses the above equation and symmetry properties to derive the full distribution for i=2 
(or j=2). This procedure is repeated until the distribution for the required value for (or 

). 
 

After the complete distribution of U is obtained, the one sided and two sided p-values are 
 

              if 
if 

 

 

where is the floor integer of x. 
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and and 

 

 
 

The test statistic corrected for ties is 
 
 

 
 

where 
 

 
  and and      

 
 

  

  and 
 

 

and M is the total number of distinct rank values. The one sided and two sided p-values are 
respectively 

 

 

 

will reject the null hypothesis and in favor 
reject the null hypothesis in favor of either or 

if T<0 in favor of  if T>0. will 

 

Wald-Wolfowitz Test 

For two independent samples from a continuous field, this tests: 
 

H0:            ; that is, the two samples are from populations with the same distribution 
function 

 

:                    for some x 
 

Calculation of Number of Runs 
 

Then all observations from the two groups G1 and G2 are pooled and sorted into ascending order.  
The number of changes in the group corresponding to the ordered data is counted. The number of  
runs (R) is the number of group changes plus one. If there are ties involving observations from the 
two groups, both the minimum and maximum numbers of runs possible are calculated. 

 
Suppose that m distinct values in groups G1 and G2 are sorted into ascending order: 

 

of 
. 
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Let and be the numbers of records of in G1 and G2 respectively, incorporating the 
frequency weight 

 

 
and 

 

 
Let MinRun and MaxRun be the minimum and maximum number of runs respectively, g1 be the 
group indictors at the last run when computing the maximum number of runs, and g2 be the group 
indicator when computing the minimum number of runs. Then the following algorithm will 
compute the minimum and maximum number of runs. 

1. MinRun=0, MaxRun=0, g1=0, g2=0, d=0, and i=0 

2. i=i+1.  If i>m, stop and output MinRun and MaxRun. 

3. , . If Minim=0, then go to step 6. 

4. , . 

5. If and , then . If , then . . Go 
to step 2. 

6. If or i=1, then .  If , then 
.  g2=d, g1=d.  Go to step 2. 

 
Test statistic and p-value 

 
Let       and     .  The distribution of the number of runs, R, is 
approximately normal with 

 

 

 

The test statistic is 
 

, if . Otherwise 
 

     if 
if 
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The one sided p-value is                or                 , but if 

we use the following exact method to compute the one sided p-value and do not 
use the above approximate normal method even if the test statistic was computed. The one-sided 
exact p-value is calculated from 

 

 

where 
 

 

when r is even and when r is odd 
 

 

The conservative decision is made using the biggest number of runs. will reject the null 
hypothesis. 

 
Kolmogorov-Smirnov Test 

For two independent samples from a continuous field, this tests: 
 

H0:            ; that is, the two samples are from populations with the same distribution 
function 

 

:                    for some x 
 

Calculation of the empirical cumulative distribution functions and differences 

For each of the two groups, distinct values are sorted into ascending order: 

Group 1:                                    , 

where          and is the number of distinct values in . 

Group 2:                             , 

where   and is the number of distinct values in . 
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Then the empirical cumulative distribution functions for Group 1 and Group 2 are computed as: 
 

 
 

where      and     . 

For each , the difference between the two groups is 

If  ,                               . 

If ,                               . 

The maximum positive, negative and absolute differences are also computed. 
 

Test statistic and p-value 
 

The test statistic (Smirnov, 1948) is 
 

The p-value is calculated using the Smirnov approximation described in the K-S one-sample test. 
 

rejects the null hypothesis. 
 

Hodges-Lehmann Estimates 

Here we assume that two samples follow the same distribution except in the location parameters; 
that is, if the first sample follows , the second sample follows . We want to estimate 
and find the confidence interval for   . 

Let                                       . Incorporating the frequency weight  for     and  for,      the 
frequency weight for  is            . Let                    ,  , be the ordered values of 

, and the corresponding frequency weights are . 
 

The Hodges-Lehmann estimator for  is median  . 

The Moses’ confidence interval for is  . 
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where the median, k1 and k2 are calculated by the same formula as that in the Hodges-

Lehmann estimate for paired samples (see “Hodges-Lehmann Estimates”) but with 𝜇𝜇𝑇𝑇 and 
𝜎𝜎𝑇𝑇  replaced by the expected value and standard deviation of the test statistics under null 
hypothesis in Mann-Whitney’s  

 

 
where M is the total number of distinct values among all combined observations, and  is the 
number of occurrences of the ith distinct value, incorporating the frequency weight. 

 
Moses Test of Extreme Reactions 

For two independent samples from a continuous field, this tests: 
 

H0: Extreme values are equally likely in both populations 

: Extreme values are more likely to occur in the population from which the sample with 
the larger range was drawn. 

 
Span computation 

 
Observations from both specified groups are jointly sorted and ranked, with the average rank 
being assigned in the case of ties. The smallest and largest ranks of the control group (the group 
defined by the first value in ascending order) are determined, and the span is computed as 

 
SPAN The largest rank of control group-the smallest rank of control group 1 

 
If SPAN is not an integer, then it will be rounded to its nearest integer. 

 
Significance Level 

 
Let and be the numbers of records in the control group and  experiment group 
respectively, incorporating the frequency weight, and SPAN - .  Then the exact 
one-tailed probability of span s is 

 

  SPAN 



 
 

. 
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where h=0.  The same formula is used below where h is not zero. 

 
Censoring the Range 

 
The previous test is repeated, dropping the h lowest and h highest ranks from the control group, 
where h is a positive user-specified integer (default at the integer part of  or 1, whichever 
is greater). If , then the test will be implemented using the largest integer such  
that  

 
The exact one-tailed probability is calculated by the formula above, and rejects the null 
hypothesis. 

 
Kruskal-Wallis Test 

For k independent samples from a continuous field, this tests: 
 

H0: The distributions of the k samples are the same 

:  At least one sample is different 

Sum of Ranks 
 

Observations from all k nonempty groups are jointly sorted and ranked, with the average rank being 
assigned in the case of ties. The number of records tied at the jth distinct value  is calculated 
incorporating the frequency weight, and the sum of                          is also accumulated. For 
each group the sum of ranks, , as well as the number of observations, , is obtained. 

 
Test statistic and p-value 

 
The test statistic unadjusted for ties is 

 

 
 

where                   . The statistic adjusted for ties is 
 

 

 
 

 
where m is the total number of tied sets. 

 
The one-sided p-value is 𝑝𝑝1 = Pr(𝑥𝑥𝑘𝑘−12 ≥ 𝐻𝐻′) = 1 + Pr(𝑥𝑥𝑘𝑘−12 ≤ 𝐻𝐻′), where 𝑥𝑥𝑘𝑘−12  follows a 
chi-square distribution with 𝑘𝑘 − 1  degrees of freedom. 

         will reject the null hypothesis. 
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Median Test 

For k independent samples from a continuous field, this tests: 
 

H0: ; that is, the k samples are from populations with the same median 

: At least one population median is different 

Table Construction 
 

 is user-specified (default at the sample median of the combined k samples). 
 

The number of records in each of the groups that exceed the median are counted and the follow ing 
table is formed, where  denotes the number of records that are less than or equal to the median,  
and  is the number of records that are greater than the median, in the ith group, incorporating 

the frequency weight.               ,                   and                       . 
 
 

 1 2 ... k Total 
LE median 

 

 
 

 ...  

 
 

 

GT median 
 

 
 

 ...  

 
 

 

Total 
 

 
 

 

 
 

...  

 
 

 

 

 
Test statistic and p-value 

 
The  statistic for all nonempty groups is calculated as 

 
 

 

 

 
 

 

 
 

where               . 

If k=2 and , Yates’ Continuity Correction for the chi-square statistic is applied 
 

 
The one sided p-value is                                  , where   follows a 
chi-square distribution with degrees of freedom, where k is the number of nonempty groups. 

 

rejects the null hypothesis. The results may be questionable if any cell has an expected 
value less than one, or more than 20% of the cells have expected values less than five. 

 
If k=2 and , the two sided p-value is computed using Fisher’s exact test.  For more 
information, see the topic “Significance Levels for Fisher’s Exact Test”. 



 
 
 

 

Nonparametric Tests Algorithms 
 

Jonckheere-Terpstra Test 

For k independent samples from a continuous field, this tests: 
 

H0:                                       ; that is, the k samples are from populations with the 
same distribution function 

 

:                                       or                                       with at least 
one strict inequality. 

 
Under the assumption that all distribution functions are the same except the location parameters; 
that is,                                  , the null and alternative hypotheses become: 

 

 

                                    or with at least one strict inequality. 
 

For the th sample and the th sample, the Mann-Whitney U count is 
 

 

where       and           is the sum of ranks of sample k1 when 
sample k1 and sample k2 are jointly ranked incorporating frequency weight; that is, 

     rank . 

The test statistics is 
 
 

 
 

   
 

The standardized test statistic is 
 
 

 
 

where 
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if 

 

 
 
 

 
 

  
 

 
 

 

 

 
 

 
and M is the total number of distinct values among all combined observations, and   is the 
number of occurrences of the ith distinct value considering the frequency weight. 

 
The one sided and two sided p-values are 

 

 

 
will reject the null hypothesis in favor of                                  if 
and in favor of                                                             . 

 

will reject the null hypothesis in favor of an ordered alternative (either direction of ordering). 
 

Note: When there are only two samples, K = 2, the Jonckheere-Terpstra test reduces to the 
Mann-Whitney test. 

 
One-sided test 

If the direction of the alternative is specified, this becomes a one-sided test. The previously 
defined one-sided p-value is not the p-value for a fixed one-sided test, and cannot be used alone 
to make decision for one-sided test. 

 
If the alternative is                                      , the p-value for the one-sided test is 

 

 
If the alternative is                                       , the p-value for the one-sided test is 

 

 
Note: The one-sided test will be used in multiple comparisons for Jonckheere-Terpstra test. 
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Related Samples Tests 

The following related samples tests are available. 
 

McNemar’s Test 

For two related samples from a categorical field with 2 values (or a recoded categorical field 
with more than 2 values), this tests: 

 
H0: The two samples have the same marginal distribution. 

 
Let be the number of records in which is a success and is a failure, and be the 
number of records in which is a failure and  is a success, incorporating the frequency weights. 

 
If , the two-sided exact probability is 

 

 
 

where . 
 

If , the test statistic is 
 
 
 
 
 

The one sided p-value is 
 

 

where  has a chi-square distribution with 1 degree of freedom. 

will reject the null hypothesis. 

Wilcoxon Signed-Rank Test 

For two related samples from a continuous field, this tests: 
 

H0: = Median(X1−X2) = 0  
 

HA: or 
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Computing Ranked Differences 

For each record, the difference                   is computed, as well as the absolute value. All 
nonzero absolute differences are sorted into ascending order, and ranks are assigned. In the case of 
ties, the average rank is used. Let             , then the sums of the ranks corresponding 
to positive and negative differences are 

 

 
and 

 

 
respectively. Then the average positive rank and average negative rank are 

 

 
and 

 

 
where is the number of records with positive differences and the number with negative 
differences. 

 
Test statistic and p-value 

 
The test statistic is 

 
 

 
 

where 
 

 
 

 

         

 

 
 

  
 

 

 

 

 
 

where l is the total number of distinct rank values and  is the number of records tied at the jth 
distinct value, incorporating the frequency weight. 

 
The one-sided and two-sided p-values are 
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will reject the null hypothesis in favor of if T > 0 and if T < 0. 
 

will reject the null hypothesis in favor of or . 
 

Sign Test 

For two related samples from a continuous field, this tests: 
 

H0: = Median(X1−X2) = 0  

HA: or 
 

Counting Signs 
 

For each record, the difference                    is computed and the number of positive( ) and 
negative( ) differences, incorporating the frequency weight, are counted: 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

 
Cases with are ignored. 

 
Test statistic and p-value 

 
If , then the one-sided exact probability is . 

 
If , then p1 is calculated recursively from the binomial distribution: 

 

 
where 

 

 
and 
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If , the test statistic is 
 

 
The one sided and two sided p-values are 

 

 

 
rejects the null hypothesis in favor of if   and if . 

will reject the null hypothesis in favor of  or . 

Marginal Homogeneity 

For two related samples from an ordinal field, this tests: 
 

H0: The two samples have the same marginal distribution. 

Let be the cell count incorporating the frequency weight for cell ( ) 
 
 

 

 

 

 
 

  
 

 
The test statistic is 

 

 
The standardized test statistics is 

 
 

 
 

where 
 

max 
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is 

 

 
 
 

 

The asymptotic one sided p-value is . 
 

rejects the null hypothesis in favor of              if < 0 or              if 
> 0 with at least one x gives strict inequality. 

 

The asymptotic two sided p-value is  . 
 

Note: Any linear transformation of scores produces the same standardized test statistic and p-value. 
 

Hodges-Lehmann Estimates 

For two related samples from a continuous field, this finds a confidence interval for the median 
difference: letting                  , we assume that   follows a symmetric distribution with 
median   . 

 
Let                      . Incorporating the frequency weight  for and  for , the frequency 
weight for 

 

 

 
The Hodges-Lehmann estimator for is the median of incorporating the frequency 
weights 

 
where                 . 

The Tukey’s confidence interval for is 
 

 

where k1 and k2 are integers such that 
 

with 
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and    and    are the floor and ceiling integers of x, and are the expected value and 
standard deviation of the test statistic T under the null hypothesis in the Wilcoxon signed rank 
test, and is the right tail percentile such that Pr(𝑍𝑍 > 𝑧𝑧𝛼𝛼/2) = 𝛼𝛼/2 where Z is a random 
variate following a standard normal distribution. 

 

Cochran’s Q Test 

For k related samples from a categorical field with 2 values (or recoded categorical field with 
more than 2 values), this tests: 

 
H0: The distributions of these k samples are the same. 

 
For each record, the number of successes across samples is counted. The number of successes for 
record i is 

 

if is success 
 
 

and the total number of successes for sample l, incorporating the frequency weights, is 
 

                         if is success 
 
 

The test statistic is 
 

 

The one-sided p-value is 
 

 
where   follows a chi-square distribution with degrees of freedom. 

rejects the null hypothesis. 
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Friedman’s Test 

For k related samples from a continuous field, this tests: 
 

H0: The distributions of these k samples are the same. 

For each record, the k samples are sorted and ranked, with average rank being assigned in the 
case of ties. For each sample, the sum of ranks over the records is calculated, incorporating 
the frequency weight, as follows: 

 

rank f 
 
 

where                               .  The average rank for each sample is 
 

 
where . 

 
The test statistic is 

 

 
where 

 

 

and       is the total number of distinct rank values of the ith record and   is the number of fields  
tied at the jth distinct value of the ith record, incorporating the frequency weight. The one-s ided 
p-value is 

 

 
where   follows a chi-square distribution with degrees of freedom. 

rejects the null hypothesis. 

Kendall’s Coefficient of Concordance 

For k related samples from a continuous field, this tests: 

H0: The distributions of these k samples are the same. 

The coefficient of concordance (W) is 
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where F is the Friedman   statistic and . 

The test statistic is 

 
 

The one-sided p-value is calculated as 
 

 
 

where   follows a chi-square distribution with degrees of freedom. 

rejects the null hypothesis. 

Multiple Comparisons 

Tests such as Kruskal-Wallis involve more than two samples. They test if all samples are from 
populations with the same characteristics. This characteristic may be the distribution, mean or 
median depending on the hypotheses. Denote the overall null hypothesis as                       . 
When this overall hypothesis is rejected at the user-specified  significance level (using 
two-sided p-values except for the Jonckheere-Terpstra test here), we may want to know where 
the differences are among the populations. Two multiple comparison procedures are considered 
to answer this question: pairwise multiple comparisons and a stepwise stepdown  procedure 
for multiple comparisons. 

 
 

Pairwise Multiple Comparisons 
 

All possible pairwise hypotheses like            for are tested. There are 
of them. In order to control the familywise type I error; that is, the probability of 

rejecting at least one pair hypothesis given all pairwise hypotheses are true, adjusted p-values are 
calculated and used to make the decision for each pair.  For pair (j, k), reject   at level if 

. The adjusted p-values are calculated the following way. 
 

Calculate the p-value, for each of the pairwise hypotheses. 

Calculate the adjusted p-value as . 
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Notes 

 If the adjusted p-value is bigger than 1, it is set to 1. The calculation of the p-value in step 1 
depends on the specific method used to do the overall test. The details are listed below; in the 
following, two-sided p-values are used except for the Jonckheere-Terpstra test. 

 The Kruskal-Wallis, Friedman and Kendall, and Cochran tests use the procedure proposed 
by Dunn (1964) (originally designed for the Kruskal-Wallis test). The procedure uses ranks 
(or successes for the Cochran test) based on considering all samples rather than just the two 
involved in a given comparison. 

 
Kruskal-Wallis test 

 
Let     rank be the sum of ranks for sample j, incorporating frequency 
weights. 

 
For testing           , the test statistic is                        . 

 
The standardized test statistic is             where 

 

 

 
and M is the total number of distinct values among all observations, and   is the number of 
occurrences of the ith distinct value incorporating the frequency weight. 

 
The two-sided p-value is 

 

 

K-sample median test 
 

For            , perform the median test using data only consisting of sample j and sample k  
as if other samples don’t exist. In this test the median of the two samples is found, and the number 
above and below that median is used in the test. 

 
Jonckheere-Terpstra test for ordered alternatives 

 
For pair (j, k), j<k, the null and alternative hypotheses are                 vs            if 
the overall alternative hypotheses                         is specified or favored (it is favored  if 

where is the standardized test statistic in the overall Jonckheere-Terpstra test), or 
vs             if                 is specified or favored (it is favored if ). Use 
Mann-Whitney’s U test on each pair of hypotheses to calculate the p-value for the one-sided test. 



 
 

 

 
 

Friedman’s test and Kendall’s Coefficient of Concordance 
 

For treatment j, let                  rank row  of  be the sum of ranks for sample j. 

For testing           , the test statistic is                      . 

The standardized test statistic is             where                . 
 

The two-sided p-value is . 
 

Cochran’s Q Test 
 

Using to represent success and to represent failure, let                      be the 
total number of successes for sample j incorporating frequency weights, and be the 
total number of successes for record i. 

 
The test statistic for             is                     . 

The standardized test statistic is             where 

 
 

The two-sided p-value is . 
 
Stepwise Stepdown Multiple Comparisons 

The procedure described in this section is an extension of the ad hoc procedure developed by 
Campbell and Skillings (1985). This procedure starts with the overall hypothesis involving all K 
populations, and if the hypothesis is rejected, then it considers the sub-hypotheses involving K−1 
populations, continuing until the hypothesis only involves two populations or no hypotheses are 
rejected. If all sub-hypotheses are considered, it may be computationally too expensive when K is 
big, so a shortcut is used on the sorted samples. This procedure returns a sequence of subsets of 
populations with homogeneous characteristics. 

 
Sort the samples 

 
The K samples are sorted from the smallest to largest by test-specific criteria. Let (1), ..., (K) 
index the sorted samples. 

 Kruskal-Wallis: average treatment rank, where rank is the joint rank of all the observations. 
Use the treatment median to break ties. 

 Median:  treatment median 
 Jonckheere-Terpstra test: given by the user-specified alternative hypothesis order. 

 Friedman: average treatment rank (same as using treatment rank sum) where rank is the joint 
within row/block ranking. 
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 Kendall’s coefficient of concordance: same as Friedman 
 Cochran’s Q: average treatment mean, which is the same as using the treatment sum. 

 
Find the homogeneous subsets 

 
Starting with sample (1), sequentially test        , then              , and so 
on, until the null hypothesis is rejected when sample (j) is added. Samples (1) through (j−1) 
are considered homogenous. The process repeats starting with sample (j) and continues until 
sample (K). 
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If a WEIGHT variable is specified, it is used to replicate a case as many times as indicated by  
the weight value rounded to the nearest integer. If the workspace requirements are exceeded and 
sampling has been selected, a random sample of cases is chosen for analysis using the algorithm 
described in SAMPLE. For the RUNS test, if sampling is specified, it is ignored. The tests are 
described in (Siegel, 1956). 

 
One-Sample Chi-Square Test 

Cell Specification 
 

If the (lo, hi) specification is used, each integer value in the lo to hi range is designated a cell. 
Otherwise, each distinct value encountered is considered a cell. 

 
Observed Frequencies 

 
If (lo, hi) has been selected, every observed value is truncated to an integer and, if it is in the lo to 
hi range, it is included in the frequency count for the corresponding cell. Otherwise, a count of  
the frequency of occurrence of the distinct values is obtained. 

 
Expected Frequencies 

 
If none or EQUAL is specified, 

 

 
When the expected values are specified either as counts, percentages, or proportions, 

 

 

If there are cells with expected values less than 5, the number of such cells and the minimum 
expected value are printed. 

 
If the number of user-supplied expected frequencies is not equal to the number of cells generated, 
or if an expected value is less than or equal to zero, the test terminates with an error message. 

 
Chi-Square and Its Degrees of Freedom 

 

 
 

  

number of observations [in range] 
number of cells 
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The significance level is from the chi-square distribution with degrees of freedom. 
 
Kolmogorov-Smirnov  One-Sample  Test 

 
Calculation of Empirical Cumulative Distribution Function 

The observations are sorted into ascending order  to  . The empirical cdf, , is 

 

Estimation of Parameters for Theoretical Distribution 

It is possible to test that the underlying distribution is either uniform, normal, or Poisson. If the 
parameters are not specified, they are estimated from the data. 

 
Uniform 

minimum 
maximum 

 
Normal 

 

mean  
 

standard deviation  
 
 

Poisson 
 

mean  
 
 

The test is not done if, for the uniform, all data are not within the user-specified range or, for the 
Poisson, the data are not non-negative integers.  If the variance of the normal or the mean of   
the Poisson is zero, the test is also not done. 

 
Calculation of Theoretical Cumulative Distribution Functions 

For Uniform 
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For Poisson 
 
 
 
 
 

If , the normal approximation is used. 

For Normal 

 

  
 

 

where the generation of F0,1(Z) is described in “Significance Level of a Standard Normal Deviate”. 

 
Calculation of Differences 

For the Uniform and Normal, two differences are computed: 
 
 
 
 

For the Poisson: 
 

 

The maximum positive, negative, and absolute differences are printed. 

 
Test Statistic and Significance 

The test statistic is 
 

The two-tailed probability level is estimated using the first three terms of the Smirnov (1948) 
formula. 

if  
if                                                       

 

where                      . 
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if                                              
 

where       . 
 

if  
 

Note: If the distribution is normal and parameters are estimated from the data, then the Lilliefors 
method is used to compute the test statistic and p value instead of the method described in this 
section. For more information, see the topic “Kolmogorov-Smirnov Statistic with Lilliefors’ 
Significance”. 

 
Runs Test 

Computation of Cutting Point 
 

The cutting point which is used to dichotomize the data can be specified as a particular number, or 
the value of a statistic which is to be calculated. The possible statistics are 

 
where the data are sorted in ascending order from  , the smallest, to  , the largest. 

Mode = most frequently occurring value 

If there are multiple modes, the one largest in value is selected and a warning printed. 

Number of Runs 

For each of the data points, in the sequence in the file, the difference 
 

             CUTPOINT 
 

is computed.  If        , the difference is considered positive, otherwise negative. The number 
of times the sign changes, that is,         and        , or         and        , as well as 
the number of positive  and  signs, are determined. The number of runs  is the 
number of sign changes plus one. 

 
Significance Level 

 
The sampling distribution of the number of runs is approximately normal with 
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The two-sided significance level is based on 
 
 

 
 

unless ; then 
 

 
 

Binomial Test 
Table 70-1 
Notation 
Notation Description 

Number of observations in the first (test) category 

Number of observations in the second category 

Test probability 

 

 

                        if , if 
 
 

When the test probability is equal to 0.5, a two-tailed test is performed. The two-tailed probability 
is 

 

 

When the test probability is not equal to 0.5, a one-tailed test is performed. The one-tailed 
probability is 

 
 
 
 
 

McNemar’s Test 
Table Construction 
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The data values are searched to determine the two unique response categories. If the variables 
and take on more than two values, or only one value, a message is printed and the test is not 

done. The number of cases that have                  or                are counted. 

Test Statistic and Significance Level 

If  , the exact probability of r or fewer “successes” occurring in trials when 
and  is calculated recursively from the binomial. 

 

 
 

The two-tailed probability level is obtained by doubling the computed value. If , a 
 approximation with a correction for continuity is used. 

 

 
Sign Test 

Count of Signs 
 

For each case, the difference 
 

 
is computed and the number of positive  and negative   differences counted. Cases in 
which         are ignored. 

 
Test Statistic and Significance Level 

 
If  , the exact probability of r or fewer “successes” occurring in trials, when 

and  , is calculated recursively from the binomial 
 

 
 

If , the significance level is based on the normal approximation 
 

A two-tailed significance level is printed. 
 
Wilcoxon Matched-Pairs Signed-Rank Test 

Computation of Ranked Differences 
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For each case, the difference 
 

 
is computed, as well as the absolute value of . All nonzero absolute differences are then sorted 
into ascending order, and ranks are assigned. In the case of ties, the average rank is used. The 
sums of the ranks corresponding to positive differences  and negative differences  are 
calculated.  The average positive rank is 

 

 
and the average negative rank is 

 

 
where is the number of cases with positive differences and the number with negative 
differences. 

 
Test Statistic and Significance Level 

The test statistic is 

 
 

 
 

where 
Table 70-2 
Notation 
Notation  Description 
n Number of cases with non-zero differences 
l Number of ties 

              Number of elements in the j-th tie, 
 
 

For large sample sizes the distribution of Z is approximately standard normal. A two-tailed 
probability level is printed. 

 
Cochran’s Q Test 

Computation of Basic Statistics 
 

For each of the N cases, the k variables specified may take on only one of two possible values. If  
more than two values, or only one, are encountered, a message is printed and the test is not done.  
The first value encountered is designated a “success” and for each case the number of variables 
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that are “successes” are counted. The number of “successes” for case   will be designated  and 
the total number of “successes” for variable l will be designated . 

 
Test Statistic and Level of Significance 

Cochran’s Q is calculated as 

 

 

   
 

 
 
 
 

The significance level of Q is from the  distribution with degrees of freedom. 
 
Friedman’s Test 

Sum of Ranks 
 

For each of the N cases, the k variables are sorted and ranked, with average rank being assigned in 
the case of ties. For each of the k variables, the sum of ranks over the cases is calculated. This  
will be denoted as .  The average rank for each variable is 

 

 
Test Statistic and Significance Level 

The test statistic is 

 
 

 

 
 

 

where is the same as in Kendall’s coefficient of concordance. See (Lehmann, 1985) p. 265. 

The significance level is from the  distribution with degrees of freedom. 

Kendall’s Coefficient of Concordance 

N, k, and l are the same as in Friedman, in the previous section. 

Coefficient of Concordance (W) 
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where Friedman statistic. 
 
 

 
 

 
 

 

 
 

with t = number of variables tied at each tied rank for each case. 

Test Statistic and Significance Level 

 

 
 

  
 

The significance level is from the  distribution with degrees of freedom. 
 
The Two-Sample Median Test 

Table Construction 
 

If the median value is not specified by the user, the combined data from both samples are sorted 
and the median calculated. 

 

if is even 
otherwise 

 
where   is the largest value and   the smallest. The number of cases in each of the two 
groups which exceed the median are counted.  These will be denoted as and , and the 
corresponding sample sizes as and . 

 
Test Statistic and Significance Level 
 If , the significance level is from Fisher’s exact test. (See Appendix 5.) 
 If , the test statistic is 

 

 
which is distributed as a   with 1 degree of freedom. 

 
Mann-Whitney U Test 

Calculation of Sums of Ranks 
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The combined data from both groups are sorted and ranks assigned to all cases, with average rank 
being used in the case of ties. The sum of ranks for each of the groups (S1 and S2) is calculated, as 
well as, for tied observations,          , where t is the number of observations tied for rank . 
The average rank for each group is 

 

 
where is the sample size in group  . 

Test Statistic and Significance Level 

The U statistic for group 1 is 

 
   

 

 
 

 If , the statistic used is 
 

 If and the exact significance level is based on an 
algorithm of Dineen and Blakesley (1973). 

 The test statistic corrected for ties is 
 

 
which is distributed approximately as a standard normal. A two-tailed significance level is printed. 

Wilcoxon Rank Sum W Statistic 

If , then W=S1; otherwise W=S2. 
 
Kolmogorov-Smirnov Two-Sample Test 

Calculation of the Empirical Cumulative Distribution Functions and Differences 
 

For each of the two groups separately the data sorted into ascending order, from   to  , and 
the empirical cdf for group   is computed as 
 

 
 
For all of the values in the two groups, the difference between the two groups is 
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where is the cdf for the group with the larger sample size.  The maximum positive, 
negative, and absolute differences are also computed. 

 
Test Statistic and Level of Significance 

The test statistic (Smirnov, 1948) is 

 
and the significance level is calculated using the Smirnov approximation described in the K-S 
one sample test. 

 
Wald-Wolfowitz Runs Test 

Calculation of Number of Runs 
 

All observations from the two samples are pooled and sorted into ascending order. The number of 
changes in the group numbers corresponding to the ordered data are counted. The number of runs 
(R) is the number of group changes plus one. 

 
If there are ties involving observations from the two groups, both the minimum and maximum 
number of runs possible are calculated. 

 
Significance Level 

 
If , the total sample size, is less than or equal to 30, the one-sided  significance level 
is exactly calculated from 

 

 
 

when R is even.  When R is odd 
 

 
 

where 
 

. 
 

For sample sizes greater than 30, the normal approximation is used (see “Runs Test”). 
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Moses Test of Extreme Reaction 

Span Computation 
 

Observation from both groups are jointly sorted and ranked, with the average rank being assigned 
in the case of ties. The ranks corresponding to the smallest and largest control group (first group) 
members are determined, and the span is computed as 

 
SPAN = Rank(Largest Control Value) – Rank(Smallest Control Value) + 1 

 
rounded to the nearest integer. 

Significance Level 

The exact one-tailed probability level is computed from 
 
 

 

SPAN  
 
 
 
 

where , is the number of cases in the control group, and is the number of cases in the 
experimental group. The same formula is used in the next section where h is not zero. 

 
Censoring of Range 

 
The previous test is repeated, dropping the h lowest and h highest ranks from the control group. If 
not specified by the user, h is taken to be the integer part of  or 1, whichever is greater. If 
h is user specified, the integer value is used unless it is less than one. The significance level is 
determined as in the previous section. 

 
K-S ample Median Test 

Table Construction 
 

If the median value is not specified by the user, the combined data from all groups are sorted 
and the median is calculated. 
 

 

where is the largest value  and 𝑋𝑋[1] the smallest.
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The number of cases in each of the groups that exceed the median are counted and the following 
table is formed. 

 

 Group 1 Group 2 Group 3 ... Group k 

LE Md 

GT Md 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

... 

... 

 

  

 
  

 
 

 

 
 

 
 

 ... N 

 
Test Statistic and Level of Significance 

 
The  statistic for all nonempty groups is calculated as 

 
 

 

 

 
 

 

 
 

where 
 

. 
 

The significance level is from the  distribution with degrees of freedom, where k is the 
number of nonempty groups. A message is printed if any cell has an expected value less than one, 
or more than 20% of the cells have expected values less than five. 

 
Kruskal-Wallis One-Way Analysis of Variance 

Computation of Sums of Ranks 
 

Observations from all k nonempty groups are jointly sorted and ranked, with the average rank 
being assigned in the case of ties. The number of tied scores in a set of ties,  , is also found, 
and the sum of          is accumulated.  For each group the sum of ranks, , as well as 
the number of observations, , is obtained. 

 
Test Statistic and Level of Significance 

The test statistic unadjusted for ties is 

 

 
 

 

 
  

 
 

where N is the total number of observations. 
Adjusted for ties, the statistic is 
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where m is the total number of tied sets. 

 
The significance level is based on the  distribution, with degrees of freedom. 
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ONEWAY Algorithms 
For post hoc range tests and pairwise multiple comparisons, see Post Hoc Tests. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 71-1 
Notation 
Notation Description 

              Value of the jth observation in group l 

Weight for the jth observation in group l 

             Sum of weights of the first j cases in group l 

Sum of weights of all cases in group l 

k i Number of groups, determined as maximum group values minus minimum plus one 
                 Number of nonempty groups 

Number of cases in group l 

W Sum of weights of cases in all groups 
 
 

Group Statistics 
The following group statistics are available. 

 
Computation of Group Statistics 

A weighted version of the Young-Cramer (1971) algorithm is used to compute recursively the 
corrected sum of squares for each group. 

 

 
The initial value is 0; the value for each group after the last observation has been processed is the 
corrected sum of squares. 

 

 
The sum and mean for each group are 
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The variance is 

 

 
The grand sum is 

 
 

 
 

 
 

Group Statistics from Summary Statistics 

With matrix data input, the user supplies sum of weights in each group , means  , and 
standard deviations .  From these, 

 

 

 
 

 
 

 
 

If the user supplies the pooled variance  and its degrees of freedom  instead of the individual 
, and , the program will reset it to 

 
 

 
 

 

 

 
 

The within-group sum of squares is 
 

 
The ANOVA Table 

Table 71-2 
ANOVA table 
Source of 
Variation 
Between (BSS) 

SS df 
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Mean squares are calculated by dividing each sum of squares by its degree of freedom.  The 
F ratio for testing equality of group means is 

Mean Square Between 
Mean Square Within  

 
The significance level is obtained from the F distribution with numerator and denominator 
degrees of freedom. 

 
Basic Statistics 

The following basic statistics are available. 
 

Descriptive Statistics 

Sample size  

Mean  

Standard deviation  

Standard error 

95% Confidence Interval for the Mean 
 

 
where       is the upper 2.5% critical value for the t distribution with         degrees of freedom. 

 
Variance Estimates and Confidence Interval for Mean 

Computation depends upon whether a fixed-effects or random-effects model is fit. 

Source of 
Variation 
Within (WSS) 

SS df 

for matrix input 
Total (TSS) 
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Fixed-Effects Model 

Fixed-effects factors are generally thought of as variables whose values of interest are all 
represented in the data file. 

 
Pooled Standard Deviation 

 

 
Standard Error 

 
Standard error  

 
95% Confidence Interval for the Mean 

 

 

where   is the upper 2.5% critical value for the t distribution with  degrees of freedom. 
 

Random-Effects Model 

Random-effects factors are variables whose values in the data file can be considered a random 
sample from a larger population of values. They are useful for explaining excess variability  
in the dependent variable. 

 
Between-Groups Component of Variance (Snedecor and Cochran 1967) 

 

 
Standard Error of the Mean (Brownlee 1965) 

 

 

If ,  and a warning is printed that the variance component 
estimate is negative. 
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95% Confidence Interval for the Mean 
 

 

where       is the upper 2.5% critical value for the t distribution with         degrees of freedom 
 
Levene Test for Homogeneity of Variances 

 

 

 
 

 

where 
 

 

 
 

 
 

 
 
User-Supplied Contrasts 

Let   through  be the coefficients for a particular contrast. If the sum of the coefficients  is  
not 0, a warning is printed and the contrast number is starred. For each contrast the follow ing 
are printed. 

 
Value of the Contrast 

 

 

 
 

 
 

Pooled Variance Statistics 

The following statistics are computed. 
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Standard Error 
 

 

t Value 
 

 
Degrees of Freedom 

 

 
And a two-tailed significance level based on the t distribution with W – k’ degrees of freedom. 

 
Separate Variance Statistics 

The following statistics are computed. 

Standard Error 

 
 

 
 

t Value 
 

 
Degrees of Freedom (Brownlee 1965) 

 

 
And a two-tailed significance level based on the t distribution with df degrees of freedom 

 
Polynomial Contrasts (Speed 1976) 

If the specified degree of the polynomial (NP) is less than or equal to 0, or greater than 5, a 
message is printed and the procedure is terminated. If the degree of the polynomial specified is 
greater than the number of nonempty groups, it is set to        . If the sums of the weights in each 
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group are equal, only the WEIGHTED contrasts will be generated. For unequal sample sizes with 
equal spacing between groups, both WEIGHTED and UNWEIGHTED contrasts are computed. 
For unequal sample sizes and unequal spacing, only WEIGHTED contrasts are computed. The 
metric for the polynomial is the group code. 

 

UNWEIGHTED Contrasts and Statistics 

The coefficients for the orthogonal polynomial are calculated recursively from the following 
relations: 

 
 

for 
 

 

 
 

with the initial values 
 
 

 
 

and 
 
 

 

 

 
 

 

 
 

 
                               for q 2 

for q 1 
 
 

The F statistic for the qth degree contrast is computed as 
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where WSSM is the mean square within. The significance level is obtained from the F distribution 
with 1 and degrees of freedom. 

 
WEIGHTED Contrasts and Statistics (Emerson 1968; Robson 1959) 

The contrast for the qth degree polynomial component is computed from the following recursive 
relations: 

 

 
for 

 

 

with initial values 

 
 
The test for the contribution of the qth degree orthogonal polynomial component is based on 
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where 
 

 

 
 

The significance level is computed from the F distribution with degrees of freedom 1 and  . 
 

The test for deviation from the qth degree polynomial is based on 
 

 
where 

 

 

The significance level is computed from the F distribution with degrees of freedom                and 
. The highest degree printed will be the minimum of              and 5. 

Multiple Comparisons (Winer 1971) 
 
Generation of Ranges 

The Student-Newman-Keuls (SNK), TUKEY, and TUKEYB procedures are all based on the 
studentized range, , where r is the number of steps between means and f is the degrees  of  
freedom for the within-groups mean square. For the above tests, only can be used. 

 
The appropriate range of values for the tests are 

 
SNK. , 

 
TUKEY. 

 
TUKEYB.  

 

For the DUNCAN procedure, alphas of 0.01, 0.05, and 0.10 can be used. The ranges are 
generated using the algorithm of Gebhardt (1966). 

 
DUNCAN. ,  
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The Scheffé, LSD, and modified LSD procedures all use critical points from the F distribution. 
Any can be used. 

 
SCHEFFE. 

LSD. 

MODLSD. 
 

where 
 
 

 
 

 
 

Compute the multiplier of the ranges for the difference of means i and j. 
 

                                               default 
 
 

harmonic mean for all groups 

 

Establishment of Homogeneous Subsets 
If the sample sizes in all groups are equal, or the harmonic mean for all groups has been selected,  
or the multiple comparison procedure is SNK or DUNCAN, homogeneous subsets are established 
as follows: 

 
The means are sorted into ascending order from   to          . Values of i and q such that 

 

are systematically searched for and 
 

 

is considered a homogeneous subset. The search procedure is as follows: 
 

At each step t, the value of i is incremented by 1 (the starting value is 1), and  . The value of 
q is then decremented by one until  is true. Call this value . If and  is true, 

 

 
is considered homogeneous. Otherwise i is incremented and the next step is done. The procedure 
terminates when or . 
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In all other situations, all nonredundant pairs of groups are compared using the criteria of . 
A table containing all pairs of groups is printed with symbols indicating group means that are 
significantly different. 

 
Welch Test 

In Welch (1947,1951), he derived the an approximate test for equality of means without the 
homogeneous variance assumption.  The statistic is given by 

 
 

 

 

 
 
 

where , , and                     . 
 

The Welch statistic has an approximate F distribution with k-1 and f degrees of freedom, where 
 

 

Since the weight used in Welch statistic is , one cannot compute the statistic if any 
one group has zero standard deviation. Moreover, sample sizes of all groups have to be greater  
than or equal to zero. 

 
Brown-Forsythe  Test 

In (Brown and Forsythe, 1974a) and (Brown and Forsythe, 1974b), a test statistic for equal means 
was proposed.  The statistic has the following form, 

 
 

 

 
 

 

 
 

  
 

 

The statistic has an approximate F distribution with (k-1) and f degrees of freedom, where 
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and 

 

 

 
 

  
 

 

When we look at the denominator of , we can see that it tries to estimate the ‘pooled variance’ 
by 

 
 

 

 

 
 

where 
 

 
The Brown & Forsythe statistic cannot be computed if all groups have zero standard deviation or 
any group has sample size less than or equal to 1. In the situation that some groups have zero 
standard deviations, the statistic can be computed but the approximation may not work. 
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Effect Size for One-way ANOVA

Effect size constitutes one of the major findings in a quantitative research study [Sullivan and Feinn, 2012]. It
could be measured by the magnitude of group difference, strength of association, corrected estimates, or risk
estimates [Ferguson, 2009]. In this document, we focus on the squared association indices, and present the
methods to estimate the effect size in one-way ANOVA. The following sections cover both point and interval
estimation of the eta-squared (η2), epsilon-squared (ε2), and omega-squared (ω2). Furthermore, we desire
to add a novel feature to the One-Way ANOVA procedure which automates the effect size computation.

Effect Size for Overall Test

Notations

The following notations will be used in Section and unless otherwise stated.

i: Iteration index used in recursively computing and updating the sum of squares.

j: Case index.

k: Number of groups.

k′: Number of nonempty groups.

l: Group index.

xlj : Observed value of variable X for the j -th case in group l.

wlj : Frequency weight for the j -th case in group l.

Wl: Sum of weights of all cases in group l.

Wi,j : Sum of weights of the first j cases in group l.

nl: Number of cases in group l.

W : Sum of weights of cases in all groups W =
∑k

l=1

∑nl

j=1 wlj .

α: The significance level to reflect the type I error. Note that the /CRITERIA = CILEVEL(value)
in the syntax design (See section ?? for details) resets the value of the confidence interval. Here,
α = 1− value, where value = 0.95 by default in the syntax.

The following statistics should have already been computed by the existing ONEWAY algorithm for the
one-way ANOVA procedure.

Corrected sum of squares for each group:

SSQl,i = SSQl,i +
wli

(
xliWl,i−1 −

∑i−1
j=1 wljxlj

)2

Wl,i−1Wli
, (0.0.1)

where SSQl,0 = 0, and SSQl,i is updated for each i = 1, 2, · · · , nl. The corrected sum of squares for
each group is the value after the last observation has been processed, or

SSl = SSQl,nl
. (0.0.2)

Sum for each group:

Tl =

nl∑
j=1

wljxlj . (0.0.3)

Mean for each group:

T̄l =
Tl
Wl

. (0.0.4)

Variance for each group:
S2
l = SSl/(Wl − 1) . (0.0.5)
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Grand sum:

G =

k∑
l=1

Tl . (0.0.6)

Between-group sum of squares:

BSS =

k∑
l=1

T 2
l

nl
− G2

W
. (0.0.7)

Within-group sum of squares:

WSS =

k∑
l=1

SSl . (0.0.8)

Total sum of squares:
TSS = BSS + WSS . (0.0.9)

Mean square between groups:

BSSM =
BSS
k′ − 1

. (0.0.10)

Mean square within groups:

WSSM =
WSS
W − k′

. (0.0.11)

The F statistic:

F =
BSSM
WSSM

. (0.0.12)

Point Estimation

To facilitate the following presentation, we let

dfeffect = k′ − 1 , dfwithin = W − k′ , and dftotal = W − 1 , (0.0.13)

denote the degrees of freedom used in the one-way ANOVA. Note that these quantities should already be
available in the ONEWAY algorithm.

Assuming the fixed-effect design, η2 is estimated by

η̂2 =
BSS
TSS

, (0.0.14)

where BSS and TSS are estimated by Equation (0.0.7) and (0.0.9), respectively. It should be noted that η̂2,
an uncorected effect size estimator, may not be appropriate in comparing different study designs with the
total sum of squares varying [Lakens, 2013].

Assuming the fixed-effect design, ε2 is estimated by

ε̂2 =
BSS− dfeffect WSSM

TSS
, (0.0.15)

where BSS, TSS, and WSSN are estimated by Equation (0.0.7), (0.0.9), and (0.0.11), respectively, and dfeffect

and dftotal are defined by Equation (0.0.13). Actually, ε̂2 is an adjusted and less biased estimator which is
applicable to measure the proportion of the variance in population [Smithson, 2001].

The more popular ω2 is estimated by

ω̂2 =


BSS− dfeffect WSSM

TSS + WSSM
for the fixed-effect design

BSSM−WSSM
BSSM + dftotal WSSM

for the random-effect design

, (0.0.16)
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where BSS, TSS, and WSSN are estimated by Equation (0.0.7), (0.0.9), and (0.0.11), respectively, and
dfeffect and dftotal are defined by Equation (0.0.13) [Snyder and Lawson, 1993]. For the fixed-effect design,
ω̂2 is always less than ε̂2, and both ω̂2 and ε̂2 are conserved estimators recommended for ANOVA designs
[Ferguson, 2009].

Particularly, since ε̂2 and ω̂2 are adjusted estimators, they may become negative under some rare scenarios
in which BSS < dfeffect WSSM. In this case, we simply output the negative estimates.

Interval Estimation

The interval estimation is based on the noncentral F -distribution [Steiger, 2004]. We let λ denote the
noncentrality parameter. Note that the lower and upper confidence limit of λ are1

λ̂l = FindNCParamF(funArg = F,df1 = dfeffect,df2 = dfwithin,prob = 1− α/2) and

λ̂u = FindNCParamF(funArg = F,df1 = dfeffect,df2 = dfwithin,prob = α/2) , (0.0.17)

respectively, where F is estimated by Equation (0.0.12), and dfeffect and dfwithin are defined by Equation
(0.0.13). Thus, the lower and upper confidence limit for η2 are

η̂2
l =

λ̂l

λ̂l + dfeffect + dfwithin + 1
and η̂2

u =
λ̂u

λ̂u + dfeffect + dfwithin + 1
, (0.0.18)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.18), and dfeffect and dfwithin are defined by
Equation (0.0.13).

Note that Equation (0.0.15) can be rewritten as

ε̂2 =
BSS− dfeffect WSSM

TSS
= η̂2 − dfeffect

dfwithin
(1− η̂2) , (0.0.19)

where η̂2 is estimated by Equation (0.0.14). Equation (0.0.19) is a monotonic strictly increasing function
with respect to η̂2 in the domain η̂2 ∈ [0, 1] given dfeffect and dfwithin, and therefore the lower and upper
confidence limit for ε2 are

ε̂2l = η̂2
l −

dfeffect

dfwithin
(1− η̂2

l ) and ε̂2u = η̂2
u −

dfeffect

dfwithin
(1− η̂2

u) , (0.0.20)

where η̂l and η̂u are computed by Equation (0.0.18), and dfeffect and dfwithin are defined by Equation (0.0.13).
Similarly, ω̂2 for the fixed-effect design in Equation (0.0.16) can be rewritten as

ω̂2 =
BSS− dfeffect WSSM

TSS + WSSM
=
dftotal η̂

2 − dfeffect

−η̂2 + dfwithin + 1
, (0.0.21)

where η̂2 is estimated by Equation (0.0.14). Equation (0.0.21) is a monotonic strictly increasing function
with respect to η̂2 in the domain η̂2 ∈ [0, 1] given dfeffect and dfwithin, and therefore the lower and upper
confidence limit for ω2 are

ω̂2
l =

dftotal η̂
2
l − dfeffect

−η̂2
l + dfwithin + 1

and ω̂2
u =

dftotal η̂
2
u − dfeffect

−η̂2
u + dfwithin + 1

, (0.0.22)

where η̂l and η̂u are computed by Equation (0.0.18), dfeffect, dfwithin, and dftotal are defined by Equation
(0.0.13).

The same strategy can be applied to ω̂2 for the random-effect design in Equation (0.0.16) by rewriting

ω̂2 =
BSSM−WSSM

BSSM + dftotal WSSM
=

dftotal η̂
2 − dfeffect

(dfwithin − dftotal dfeffect) η̂2 + dftotal dfeffect
. (0.0.23)

1 FindNCParamF finds the noncentrality parameter NC from the equation NonCentralCdfF(funArg, df1, df2, NC) = prob,
where NonCentralCdfF is cumulative F -distribution function; funArg is the function argument; df1 is the numerator degrees of
freedom; df2 is the denominator degrees of freedom; and prob is the probability. Source code link: https://github.ibm.com/

SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h

https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
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The lower and upper confidence limit for ω2 are

ω̂2
l =

dftotal η̂
2
l − dfeffect

(dfwithin − dftotal dfeffect) η̂2
l + dftotal dfeffect

and ω̂2
u =

dftotal η̂
2
u − dfeffect

(dfwithin − dftotal dfeffect) η̂2
u + dftotal dfeffect

,

(0.0.24)
where η̂l and η̂u are computed by Equation (0.0.18), and dfeffect, dfwithin, and dftotal are defined by Equation
(0.0.13).

Similar to the point estimation, the confidence limits for ε2 and ω2 could be negative. Still, the negative
estimates would directly be outputted with no further manipulations.

Effect Size for Contrast Test

Let c = (C1, C2, . . . , Ck) denote the user-supplied coefficients to formulate a contrast in the procedure.

Theoretically, a valid contrast should satisfy that
∑k

l=1 Cl = 0. However, in estimating the effect size for
the contrast, we simply ignore this restriction, and treat all user-supplied contrasts valid. The following
statistics should have already been computed by the existing ONEWAY algorithm for the one-way ANOVA
procedure.

Value of the user-supplied contrast:

V =

k∑
l=1

T̄lCl . (0.0.25)

Pooled standard deviation for fixed-effect model:

Sp =
√
WSSM . (0.0.26)

Standard error of the user-supplied contrast:

Se =

√√√√S2
p

k∑
l=1

C2
l /Wl . (0.0.27)

The t statistic of the user-supplied contrast:

tc =
V

Se
. (0.0.28)

Point Estimation

Depending on how to compute the standardizer, there are multiple ways to estimate the effect size for a
contrast test [Olejnik and Algina, 2000]. We discuss two popular methods, and support both of them in the
design. To facilitate the following presentation, we define J(a), a factor proposed by [Hedges, 1981],

J(a) =
Γ(a/2)√

a/2 Γ((a− 1)/2)
, (0.0.29)

where a > 1, and Γ(·) denotes the gamma function. To estimate J(a) in practice, we may first evaluate

log J(a) = log Γ
(a

2

)
− 0.5 log

a

2
− log Γ

(
a− 1

2

)
, (0.0.30)

and then exponentiate it to obtain J(a).
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Computing Standardizer Using All Groups

If the evidence supports that the equality of variance assumption is met, it should be preferred to use the
pooled standard deviation for all groups as the standardizer. For a particular user-supplied contrast, the
Cohen’s d is estimated by

d =
V

Sp
, (0.0.31)

where V and Sp are estimated by Equation (0.0.25) and (0.0.26), respectively. Note that for a different
contrast, V must be recalculated, but Sp remains the same. The Hedges’ g is estimated by

g = d ∗ J(W − k′) , (0.0.32)

where d is estimated by Equation (0.0.31), and J(W − k′) is Equation (0.0.29) evaluated at a = W − k′.

Computing Standardizer Using the Groups Involved in the Constrast

An alternative way is to only consider the sample sizes and variances for the groups included in the contrast.
For a particular user-supplied contrast c = (C1, C2, . . . , Ck), we first estimate the contrast-specific pooled
standard deviation

Sc =

[∑k
l=1 S

2
l (Wl − 1) I(Cl 6=0)

dfc

]1/2

, (0.0.33)

where

dfc =

k∑
l=1

(Wl − 1) I(Cl 6=0) ; (0.0.34)

S2
l is estimated by Equation (0.0.5); Wl is the sum of weights of all cases in group l; and I(Cl 6=0) is the

indicator function which takes 1 if Cl 6= 0, and 0, otherwise. The Cohen’s d is estimated by

d =
V

Sc
, (0.0.35)

where V and Sc are estimated by Equation (0.0.25) and (0.0.33), respectively. Note that for a different
contrast, both V and Sc must be recalculated. The Hedges’ g is estimated by

g = d ∗ J(dfc) , (0.0.36)

where dfc and d are estimated by Equation (0.0.34) and (0.0.35), respectively, and J(dfc) is Equation (0.0.29)
evaluated at a = dfc.

Interval Estimation

Similar to the point estimation, we discuss the interval estimation in two different scenarios.

Computing Standardizer Using All Groups

Note that the Cohen’s d follows a noncentral t-distribution with the noncentrality parameter estimated by

λ̂ = d
√
W̃ , (0.0.37)

where

W̃ =

(
k∑

l=1

C2
l /Wl

)−1

, (0.0.38)
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where Cl is the user-supplied coefficient for group l to formulate a contrast, and Wl is the sum of weights of
all cases in group l. The lower and upper confidence limit of λ are2

λ̂l = FindNCParamT(funArg = |tc|,df = W − k′,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |tc|,df = W − k′,prob = α/2) , (0.0.39)

respectively, where tc is estimated by Equation (0.0.28) for a particular user-supplied contrast. Thus, the
lower and upper confidence limit for the Cohen’s d are

dl =

λ̂l/
√
W̃ if tc ≥ 0

−λ̂u/
√
W̃ otherwise

and du =

λ̂u/
√
W̃ if tc ≥ 0

−λ̂l/
√
W̃ otherwise

, (0.0.40)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.39), W̃ is defined by Equation (0.0.38), and tc
is estimated by Equation (0.0.28). Correspondingly, the lower and upper confidence limit for the Hedges’ g
are

gl = dl ∗ J(W − k′) and gu = du ∗ J(W − k′) , (0.0.41)

respectively, where dl and du are computed by Equation (0.0.40), and J(W−k′) is Equation (0.0.29) evaluated
at a = W − k′.

Computing Standardizer Using the Groups Involved in the Contrast

Still considering the noncentral t-distribution, we reevaluate the lower and upper confidence limit of λ by

λ̂l = FindNCParamT(funArg = |t′c|,df = dfc,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |t′c|,df = dfc,prob = α/2) , (0.0.42)

respectively, where, for a particular user-supplied contrast, dfc is estimated by Equation (0.0.34), and

t′c =
V

Sc

√∑k
l=1 C

2
l /Wl

, (0.0.43)

where V is estimated by Equation (0.0.25); Sc is estimated by Equation (0.0.33); Cl is the user-supplied
coefficient for group l to formulate a contrast; Wl is the sum of weights of all cases in group l; and I(Cl 6=0) is
the indicator function which takes 1 if Cl 6= 0, and 0, otherwise. Thus, the lower and upper confidence limit
for the Cohen’s d are

dl =

λ̂l/
√
W̃ if t′c ≥ 0

−λ̂u/
√
W̃ otherwise

and du =

λ̂u/
√
W̃ if t′c ≥ 0

−λ̂l/
√
W̃ otherwise

, (0.0.44)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.42). Correspondingly, the lower and upper
confidence limit for the Hedges’ g are

gl = dl ∗ J(dfc) and gu = du ∗ J(dfc) , (0.0.45)

respectively, where dl and du are computed by Equation (0.0.44); dfc is estimated by Equation (0.0.34); and
J(dfc) is Equation (0.0.29) evaluated at a = dfc.

2 FindNCParamT finds the noncentrality parameter NC from the equation NonCentralCdfT(funArg, df, NC) = prob, where
NonCentralCdfT is cumulative t-distribution function; funArg is the function argument; df is the degrees of freedom; and prob
is the probability. Source code link: https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/
shared/cpp/src/mcmath/mcdistfun.h

https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
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One-way ANOVA contrasts confidence intervals

Introduction

This document discusses the estimation of the confidence intervals for the one-way ANOVA contrasts. The
newly-design output will be integrated to the Contrast Tests table in the ONEWAY procedure.

Notations

The following notations will be used in Section unless otherwise stated.

i: Iteration index used in recursively computing and updating the sum of squares.

j: Case index.

k: Number of groups.

k′: Number of nonempty groups.

l: Group index.

xlj : Observed value of variable X for the j -th case in group l.

wlj : Frequency weight for the j -th case in group l.

Wl: Sum of weights of all cases in group l.

Wi,j : Sum of weights of the first j cases in group l.

nl: Number of cases in group l.

W : Sum of weights of cases in all groups W =
∑k

l=1

∑nl

j=1 wlj . Note that wij ’s are rounded to the nearest

integer to calculate W . W =
∑k

l=1 nl if no weights are present.

α: The significance level to reflect the type I error.

Let c = (C1, C2, . . . , Ck) denote the coefficients of a user-supplied contrast. The following statistics should
have already been computed by the existing ONEWAY algorithm for the one-way ANOVA procedure.

Corrected sum of squares for each group:

SSQl,i = SSQl,i +
wli

(
xliWl,i−1 −

∑i−1
j=1 wljxlj

)2
Wl,i−1Wli

, (0.0.1)

where SSQl,0 = 0, and SSQl,i is updated for each i = 1, 2, · · · , nl. The corrected sum of squares for
each group is the value after the last observation has been processed, or

SSl = SSQl,nl
. (0.0.2)

Sum for each group:

Tl =

nl∑
j=1

wljxlj . (0.0.3)

Mean for each group:

T̄l =
Tl
Wl

. (0.0.4)

Variance for each group:
S2
l = SSl/(Wl − 1) . (0.0.5)

Within-group sum of squares:

WSS =

k∑
l=1

SSl . (0.0.6)
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Mean square within groups:

WSSM =
WSS
W − k′

. (0.0.7)

Value of the user-supplied contrast:

V =

k∑
l=1

T̄lCl . (0.0.8)

Pooled standard deviation for fixed-effect model:

Sp =
√
WSSM . (0.0.9)

Standard error of the user-supplied contrast assuming equal variances:

Se = Sp

√√√√ k∑
l=1

C2
l /Wl . (0.0.10)

Degrees of freedom assuming equal variances:

df = W − k′ . (0.0.11)

Standard error of the user-supplied contrast not assuming equal variances:

S′e =

√√√√ k∑
l=1

C2
l (S2

l /Wl) . (0.0.12)

Degrees of freedom not assuming equal variances:

df ′ =

(
k∑

l=1

C2
l S

2
l /Wl

)2

k∑
l=1

(C2
l S

2
l /Wl)

2
/(Wl − 1)

. (0.0.13)

Estimate Confidence Interval Limits

For each user-supplied contrast c, if assuming equal variances, we estimate the lower and upper limit of the
100(1− α)% confidence interval

cl = V − IDF.T(1− α/2, df) ∗ Se and cu = V + IDF.T(1− α/2, df) ∗ Se , (0.0.14)

respectively, where V is estimated by Equation (0.0.8), Se is estimated by (0.0.10), and df is estimated
Equation (0.0.11). If not assuming equal variances, we estimate the lower and upper limit of the 100(1−α)%
confidence interval

c′l = V − IDF.T(1− α/2, df ′) ∗ S′e and c′u = V + IDF.T(1− α/2, df ′) ∗ S′e , (0.0.15)

respectively, where V is estimated by Equation (0.0.8), S′e is estimated by (0.0.12), and df ′ is estimated
Equation (0.0.13).
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OPTIMAL  BINNING Algorithms 
The Optimal Binning procedure performs MDLP (minimal description length principle) 
discretization of scale variables. This method divides a scale variable into a small number of 
intervals, or bins, where each bin is mapped to a separate category of the discretized variable. 

MDLP is a univariate, supervised discretization method. Without loss of generality, the 
algorithm described in this document only considers one continuous attribute in relation to a 
categorical guide variable — the discretization is “optimal” with respect to the categorical guide. 
Therefore, the input data matrix S contains two columns, the scale variable A and categorical 
guide C. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

S The input data matrix, containing a column of the scale variable A and a 
column of the categorical guide C. Each row is a separate observation, or 
instance. 

A A scale variable, also called a continuous attribute. 
S(i) The value of A for the ith instance in S. 
N The number of instances in S. 
D A set of all distinct values in S. 
Si A subset of S. 
C The categorical guide, or class attribute; it is assumed to have k 

categories, or classes. 
T A cut point that defines the boundary between two bins. 
TA A set of cut points. 
Ent(S) The class entropy of S. 
E(A, T, S) The class entropy of partition induced by T on A. 
Gain(A, T, S) The information gain of the cut point T on A. 
n A parameter denoting the number of cut points for the equal frequency 

method. 
W  A weight attribute denoting the frequency of each instance. If the weight 

values are not integer, they are rounded to the nearest whole numbers before 
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2.  Instances 
with missing weights or weights less than 0.5 are not used. 

 
 
Simple MDLP 

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani 
(1993). 

 

Class Entropy 

Let there be k classes C1, ..., Ck and let P(Ci, S) be the proportion of instances in S that have 
class Ci.  The class entropy Ent(S) is defined as 
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Class Information Entropy 

For an instance set S, a continuous attribute A, and a cut point T, let S1 ⊂ S be the subset of  
instances in S with the values of A ≤ T, and S2 = S−S1. The class information entropy of  the 
partition induced by T, E(A, T; S), is defined as 

 

 
Information Gain 

Given a set of instances S, a continuous attribute A, and a cut point T on A, the information 
gain of a cut point T is 

 

 

MDLP Acceptance Criterion 

The partition induced by a cut point T for a set S of N instances is accepted if and only if 
 

 
and it is rejected otherwise. 

 
Here                                                                                             in which ki is the 
number of classes in the subset Si of S. 

Note: While the MDLP acceptance criterion uses the association between A and C to determine 
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in 
which a high association between A and C will result in no cut points. For example, consider the 
following data: 

 
D Class 

2 3 
1 1 0 
2 0 6 

 
Then the potential cut point is T = 1.  In this case: 
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Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear 
relationship between A and C. 

 
Algorithm: BinaryDiscretization 

1. Calculate E(A, di; S) for each distinct value di ∈ D for which di and di+1 do not belong to the same 
class. A distinct value belongs to a class if all instances of this value have the same class. 

2. Select a cut point T for which E(A, T; S) is minimum among all the candidate cut points, that is, 
 

 

Algorithm: MDLPCut 

1. BinaryDiscretization(A, T; D, S). 

2. Calculate Gain(A, T; S). 

3. If then 

a)              . 

b) Split D into D1 and D2, and S into S1 and S2. 

c) MDLPCut(A, TA; D1, S1). 

d) MDLPCut(A, TA; D2, S2). where S1 ⊂ S be the subset of instances in S with A-values ≤ T, and 
S2 = S−S1. D1 and D2 are the sets of all distinct values in S1 and S2, respectively. 

Also presented is the iterative version of MDLPCut(A, TA; D, S). The iterative implementation 
requires a stack to store the D and S remaining to be cut. 

 
First push D and S into stack.  Then, while ( stack≠∅ )  do 

1. Obtain D and S by popping stack. 

2. BinaryDiscretization(A, T; D, S). 

3. Calculate Gain(A, T; S). 

4. If then 

i)              . 

ii) Split D into D1 and D2, and S into S1 and S2. 

iii) Push D1 and S1 into stack. 

iv)  Push D2 and S2 into stack. 
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Note: In practice, all operations within the algorithm are based on a global matrix M. Its element, 
mij, denotes the total number of instances that have value di ∈ D and belong to the jth class in S.  
In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack,  
but only two integer numbers, which denote the bounds of D, into stack. 

 

Algorithm: SimpleMDLP 

1. Sort the set S with N instances by the value A in ascending order. 

2. Find a set of all distinct values, D, in S. 

3.    TA  = ∅. 

4. MDLPCut(A, TA; D, S) 

5. Sort the set TA in ascending order, and output TA. 
 
Hybrid MDLP 

When the set D of distinct values in S is large, the computational cost to calculate E(A, di; S)  
for each di ∈ D is large. In order to reduce the computational cost, the unsupervised equal 
frequency binning method is used to reduce the size of D and obtain a subset Def ∈ D. Then the 
MDLPCut(A, TA; Ds, S) algorithm is applied to obtain the final cut point set TA. 

 
Algorithm: EqualFrequency 

It divides a continuous attribute A into n bins where each bin contains N/n instances. n is a 
user-specified parameter, where 1 < n < N. 

1. Sort the set S with N instances by the value A in ascending order. 

2. Def = ∅.   

3.  j=1. 

4.   Use the aempirical percentile method to generate the dp,i which  denote the  th 
percentiles. 

5.                          ; i=i+1 

6. If i≤n, then go to step 4. 

7. Delete the duplicate values in the set Def. 

Note: If, for example, there are many occurrences of a single value of A, the equal frequency 
criterion may not be met.  In this case, no cut points are produced. 

 
Algorithm: HybridMDLP 

1.   D = ∅; 
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2.   EqualFrequency(A, n, D; S). 

3.    TA = ∅. 

4. MDLPCut(A, TA; D, S). 

5. Output TA. 
 
Model Entropy 

The model entropy is a measure of the predictive accuracy of an attribute A binned on the class 
variable C. Given a set of instances S, suppose that A is discretized into I bins given C, where 
the ith bin has the value Ai.  Letting Si ⊂ S be the subset of instances in S with the value Ai, the 
model entropy is defined as: 

 

 
 

where  and . 
 
Merging Sparsely Populated Bins 

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes 
these pseudo cut points: 

► For a given variable, suppose that the algorithm found nfinal cut points, and thus nfinal+1 bins. For 
bins i = 2, ..., nfinal (the second lowest-valued bin through the second highest-valued bin), compute 

 

where sizeof(bin) is the number of cases in the bin. 

► When this value is less than a user-specified merging threshold,  is considered sparsely 
populated and is merged with   or  , whichever has the lower class information entropy. For 
more information, see the topic “Class Information Entropy”. 

 
The procedure makes a single pass through the bins. 

 
Example 

The following example shows the process of simple MDLP using an artificial data set S with 250 
instances. S is not shown here, but can be reconstructed (sorted in ascending order of values of A)  
from the matrix M below. 

 
First, sort S by the value of A in ascending order. Then find a set, D, of all distinct values in S. 

 
|D| = 46. 
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D = {-2.6, -2.4, -2.1, -2, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1, -0.9, -0.8, -0.7, -0.6, 
-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4,  1.5, 
1.6, 1.7, 1.8, 1.9, 2, 2.1,  2.3} 

 
Compute the frequencies of instances with respect to each class for each distinct value di ∈ D and 
construct a matrix M. Its element, mij, denotes the total number of instances that have value di  
and belong to the jth class. 
Table 72-1 
2-Dimensional matrix M 
D Class D Class 

0 1 2 3 0 1 2 3 
-2.6 0 1 0 0 0 0 0 0 14 
-2.4 0 1 0 0 0.1 0 0 0 6 
-2.1 0 2 0 0 0.2 0 0 0 10 
-2 0 0 2 0 0.3 0 0 0 14 
-1.9 0 0 2 0 0.4 0 0 0 12 
-1.8 0 0 3 0 0.5 0 0 0 4 
-1.7 0 0 2 0 0.6 0 0 0 9 
-1.6 0 0 3 0 0.7 0 0 0 5 
-1.5 0 0 3 0 0.8 0 0 0 3 
-1.4 0 0 2 0 0.9 0 0 0 10 
-1.3 0 0 4 0 1 3 0 0 0 
-1.2 0 0 3 0 1.1 8 0 0 0 
-1.1 0 0 3 0 1.2 5 0 0 0 
-1 0 0 8 0 1.3 7 0 0 0 
-0.9 0 0 6 0 1.4 2 0 0 0 
-0.8 0 0 7 0 1.5 2 0 0 0 
-0.7 0 0 13 0 1.6 3 0 0 0 
-0.6 0 0 8 0 1.7 3 0 0 0 
-0.5 0 0 4 0 1.8 4 0 0 0 
-0.4 0 0 6 0 1.9 4 0 0 0 
-0.3 0 0 7 0 2 2 0 0 0 
-0.2 0 0 13 0 2.1 2 0 0 0 
-0.1 0 0 14 0 2.3 1 0 0 0 

 
MDLPCut(A, TA; D, S) 

Calculate E(A, di; S) for each di ∈ D for which di and di+1 do not belong to the same class. 
 

di -2.1 -0.1 0.9 
E(A, di; D, S) 1.4742 0.5955 0.9038 
TA = {-0.1} 

D1 = {-2.6, -2.4, -2.1, -2, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1, -0.9, -0.8, -0.7, -0.6, 
-0.5, -0.4, -0.3, -0.2, -0.1} 

 
S1 = {all instances with A-values ≤ -0.1} 
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D2 = { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,   1.9, 
2, 2.1, 2.3} 

 
S2 = {all instances with A-values > -0.1} 

Calculate E(A, di; S1) for each di ∈ D1 for which di and di+1 do not belong to the same class. 
 

di -2.1 
E(A, di; D1, S1) 0.0 
TA = {-0.1, -2.1} 

 
D1,1 = {-2.6, -2.4, -2.1} 

S1,1 = {all instances with A-values between -2.6 and -2.1} 

D1,2 = { -2, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1, -1, -0.9, -0.8, -0.7, -0.6, -0.5,  -0.4, 
-0.3, -0.2, -0.1} 

 
S1,2 = {all instances with A-values between -2 and -0.1} 

All instances in S1,1 belong to the same class, thus S1,1 can’t be split further. 

All instances in S1,2 belong to the same class, thus S1,2 can’t be split further. 

Calculate E(A, di; S2) for each di ∈ D2 for which di and di+1 do not belong to the same class. 
 

di 0.9 
E(A, di; D2, S2) 0.0 
TA = {-0.1, -2.1, 0.9} 

 
D2,1 = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,  0.9} 

S2,1 = {all instances with A-values between 0 and 0.9} 

D2,2 = {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.3} 

S2,2 = {all instances with A-values between 1 and 2.3} 

All instances in S2,1 belong to the same class, thus S2,1 can’t be split further. 

All instances in S2,2 belong to the same class, thus S2,2 can’t be split further. 
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ORTHOPLAN Algorithms 
This procedure generates an orthogonal main-effects design. It will find the smallest orthogonal 
plan to fit the factors having at least as many combinations as requested. 

 
Selecting the Plan 

From a library of prepared plans, select the shortest plan that can be adapted to the design and that 
satisfies the minimum size requirement provided by the user. If no plan exists that satisfies the 
minimum size requirement, pick the largest plan that can be adapted. 

 
Adapting the Prepared Plans 

Generating Multiple Factors from One Column 
 

A four-level factor can be transformed into three two-level factors using the rule in the following 
table. 
Table 73-1 
Converting a four-level factor to three two-level factors 
Original Code A B C 
0 0 0 0 
1 0 1 1 
2 1 0 1 
3 1 1 0 

 
An eight-level factor can be transformed into seven two-level factors using the rule in the 
following table. 
Table 73-2 
Converting an eight-level factor to seven two-level factors 

Original 
Code 

A B C D E F G 

0 0 0 0 0 0 0 0 
1 1 0 0 1 1 0 1 
2 0 1 0 1 0 1 1 
3 1 1 0 0 1 1 0 
4 0 0 1 0 1 1 1 
5 1 0 1 1 0 1 0 
6 0 1 1 1 1 0 0 
7 1 1 1 0 0 0 1 

 
A nine-level factor can be transformed into four three-level factors using the rule in the following 
table. 
Table 73-3 
Converting a nine-level factor to four three-level factors 
Original Code A B C D 
0 0 0 0 0 
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Original Code A B C D 
1 0 1 1 2 
2 0 2 2 1 
3 1 0 1 1 
4 1 1 2 0 
5 1 2 0 2 
6 2 0 2 2 
7 2 1 0 1 
8 2 2 1 0 

 

Changing the Number of Levels in a Column 
 

Any factor of m levels can be transformed into a factor of n<m levels by many-to-one mappings 
without changing its orthogonality. Any mapping can be used; i mod n is used here. 

 
Library of Prepared Plans 

This section describes previously developed plans. 

 
Plackett-Burman Plans 

Plackett and Burman (1946) describe a series of plans that can be generated from a single column 
by rotation. The general algorithm for generating any of these plans is: 
 Let L be the number of levels for which the plan is designed. No factor in the specific design 

can have more than L levels. 

 Let N be the number of rows (combinations) finally to be generated. Note that N=F+1 where 
F is defined below. 

 Starting with a given column of N−1 level codes, rotate one position to generate each new 
column. 

 Finally, add a row of zeroes. 
 

orthogonal columns can be generated in this fashion. 
 

The Plackett-Burman plans used here are designated PBL.F, where L is the maximum number of 
levels and F is the number of factors: 

 
Label Generating Column 
PB 2.7 11101 00 
PB 2.11 11011 10001 0 
PB 2.15 11110 10110 01000 
PB 2.19 11001 11101 01000 0110 
PB 2.23 11111 01011 0110 01010 000 
PB 2.31 00001 01011 10110 00111 11001 10100 1 
PB 2.35 01011 10001 11110 111 00 10000 10101 10010 
PB 2.43 11001 01001 11011 11100 01011 10000 01000 11010 110 
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Label Generating Column 
PB 2.47 11111 01111 00101 01110 01001 10110 00101 01100 00100 00 
PB 2.59 11011 10101 00100 11101 11100 11111 00000 11000 01000 11011 01010 
 0010 
PB 3.4 01220 211 
PB 3.13 00101 21120 11100 20212 21022 2 
PB 3.40 01111 20121 12120 20221 10201 10012 22021 00200 02222 10212 21210 
 10112 20102 20021 11012 00100 
PB 5.6 04112 10322 42014 43402 3313 
PB 7.8 01262 21605 32335 20413 11430 65155 61024 54425 03646 634 

 
 
Addelman Plans 

Addelman (1961) described general methods for generating orthogonal main effects plans. That 
paper included a number of such designs, and using those methods, the authors generated more. 
Table 73-4 
18 rows, 7 columns of 3 levels each 

 

0000000 0021011 
0112111 0100122 
0221222 0212200 
1011120 1002221 
1120201 1111002 
1202012 1220110 
2022102 2010212 
2101210 2122020 
2210021 2201101 

 
Table 73-5 
8 rows, 1 column of 4 levels plus 4 columns of 2 levels 

 

0 0000 
0 1111 
1 0011 
1 1100 
2 0101 
2 1010 
3 0110 
3 1001 

Table 73-6 
16 rows, 5 columns of 4 levels each 

 

00000 02231 
10111 12320 
20222 22013 
30333 32102 
01123 03312 
11032 13203 
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21301 23130 
31210 33021 

 
Table 73-7 
32 rows, 9 columns of 4 levels each 

 

000000000 002130213 
011231111 013301302 
022312222 020222031 
033123333 031013120 
101111032 103021221 
110320123 112210330 
123203210 121333003 
132032301 130102112 
202223102 200313311 
213012013 211122200 
220131320 222001133 
231300231 233230022 
303332130 301202323 
312103021 310033232 
321020312 323110101 
330211203 332321010 

 
Table 73-8 
64 rows, 21 columns of 4 levels each 

 

000000000000000000000 000222233331111022220 
111111111111111100000 111333322220000122220 
222222222222222200000 222000011113333222220 
333333333333333300000 333111100002222322220 
123012301230123012301 123230132101032030121 
032103210321032112301 032321023010123130121 
301230123012301212301 301012310323210230121 
210321032103210312301 210103201232301330121 
231023102310231023102 231201331021320001322 
320132013201320123102 320310220130231101322 
013201320132013223102 013023113203102201322 
102310231023102323102 102132002312013301322 
312031203120312031203 312213030211203013023 
203120312031203131203 203302121300312113023 
130213021302130231203 130031212033021213023 
021302130213021331203 021120303122130313023 
000111122223333011110 000333311112222033330 
111000033332222111110 111222200003333133330 
222333300001111211110 222111133330000233330 
333222211110000311110 333000022221111333330 
123103223013210003211 123321010322301021031 
032012332102301103211 032230101233210121031 
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301321001231032203211 301103232100123221031 
 

210230110320123303211 210012323011032321031  
231132020133102032012 231310213202013010232  
320023131022013132012 320201302313102110232  
013310202311320232012 013132031020231210232  
102201313200231332012 102023120131320310232  
312120321303021020313 312302112032130002133  
203031230212130120313 203213003123021102133  
130302103121203220313 130120330210312202133  
021213012030312320313 021031221301203302133  

 

Table 73-9 
16 rows, 1 column of 8 levels plus 8 columns of 2 levels 

 

0 00000000 0 11111111 
1 01010101 1               10101010 
2 00001111 2 11110000 
3 01011010 3 10100101 
4 00111100 4 11000011 
5 01101001 5 10010110 
6 00110011 6 11001100 
7 01100110 7 10011001 

 
Table 73-10 
31 rows, 1 column of 8 levels plus 8 columns of 4 levels 

 

0 00000000 0 22222222 
1 01230123 1 23012301 
2 02021313 2 20203131 
3 03211230 3 21033012 
4 00113322 4 22331100 
5 01323201 5 23101023 
6 02132031 6 20310213 
7 03302112 7 21120330 
0 11111111 0 33333333 
1 10321032 1 32103210 
2 13130202 2 31312020 
3 12300321 3 30122103 
4 11002233 4 33220011 
5 10232310 5 32010132 
6 13023120 6 31201302 
7 12213003 7 30031221 

 
Table 73-11 
64 rows, 9 columns of 8 levels each 

 

000000000 202222222 404444444 606666666 
011234567 213016745 415670123 617452301 
022456713 220647531 426021357 624203175 
033651274 231473056 437215630 635037412 
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044517326 246735104 440153762 642371540 
055723641 257501463 451367205 653145927 
066172435 264350617 462536071 660714253 
077346152 275164370 473702516 671520734 
101111111 303333333 505555555 707777777 
110325476 312107654 514761032 7165432210 
123574602 321756420 527130246 725312064 
132140365 330562147 536304721 734126503 
145406237 347624015 541042673 743260451 
154632750 356410572 550276314 752054136 
167063524 356241706 563427160 761605342 
176257043 374075261 572613407 770481625 

 
Table 73-12 
27 rows, 1 column of 9 levels plus 9 columns of 3 levels 

 

0 000000000 3 011001111 6 022002222 
0 112121212 3 120122020 6 101120101 
0 221212121 3 202210202 6 210211010 
1 000111122 4 011112200 7 022110011 
1 112202001 4 120200112 7 101201220 
1 221020210 4 202021021 7 210022102 
2 000222211 5 011220022 8 022221100 
2 112010120 5 120011201 8 101012012 
2 221101002 5 202102110 8 210100221 

 
Table 73-13 
81 rows, 10 columns of 9 levels each 

 

0000000000 0336258147 0663174285 
1011111111 1347036258 1674285063 
2022222222 2358147036 2685063174 
3033333333 3360582471 3606417528 
4044444444 4371360582 4617528306 
5055555555 5382471360 5628306417 
6066666666 6303825714 6630741852 
7077777777 7314603825 7641852630 
8088888888 8325714603 8652630741 
0112345678 0448561723 0775426831 
1120453786 1456372804 1783507642 
2101534867 2437480615 2764318750 
3145678012 3472804156 3718750264 
4153786120 4480615237 4726831075 
5134867201 5461723048 5707642183 
6178012345 6415237480 6742183507 
7186120453 7423048561 7750264318 
8167201534 8404156372 8731075426 
0221687354 0557813462 0884732516 



 
 

 
 
 
 
 
 
 
 
Decision Rules 
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Each value of L (the maximum number of levels in the design) has a distinct decision rule. In their 
descriptions, the following notation is used: 

M The user-supplied minimum number of rows desired in the plan 
F The number of factors in the design 

 
 

L = 2  
 

If all factors have two levels, simply select the smallest two-level Plackett-Burman plan for which 
                            . 

 
L = 3  

 
Let P = the number of factors with more than two levels, and let K=F+2P. 

 
If M<9 and F<6 and P<2, base the plan on Table 73-5 “8 rows, 1 column of 4 levels plus 4 
columns of 2 levels”. 

 
If M<10 and F<5, base the plan on PB 3.4. 

 
Otherwise, if M<17 and K<16, base it on Table 73-6 “16 rows, 5 columns of 4 levels each”. 

Otherwise, if M<19 and K<8, base it on Table 73-4 “18 rows, 7 columns of 3 levels each”. 

Otherwise, if M<28 and K<14, base it on PB 3.13. 

Otherwise, if M<65 and K<22, use the rules for L=4. 

Otherwise, if F<41, base the plan on PB 3.40. 

If F>40, there are too many factors. 
 

L = 4  
 

Let P = the number of factors with more than two levels, and let K=F+2P. 

1202768435 1538624570 1865840327 
2210876543 2546705381 2873651408 
3254021687 3581246705 3827165840 
4235102768 4562057813 4808273651 
5243210876 5570138624 5816084732 
6287354021 6524570138 6851408273 
7268435102 7505381246 7832516084 
8276543210 8513462057 8840327165 
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If M<9 and F<6 and P<2, base the plan on Table 73-5 “8 rows, 1 column of 4 levels plus 4 
columns of 2 levels”. 

 
Otherwise, if M<17 and K<15, base it on Table 73-6 “16 rows, 5 columns of 4 levels each”. 

Otherwise, if M<26 and K<19, base it on PB 5.6. 

Otherwise, if M<33 and K<28, base it on Table 73-7 “32 rows, 9 columns of 4 levels each”. 

Otherwise, if M<49 and K<23, use the rules for L=7. 

Otherwise, if K<64, base the plan on Table 73-8 “64 rows, 21 columns of 4 levels each”. 

Otherwise, there are too many factors. 

A four-level factor can be transformed into three two-level factors using the rule in Table 
73-1 “Converting a four-level factor to three two-level factors”. 

 
L = 5  

 
Create a plan based on the L=7 rules. 

 
If that plan has 26 or more rows and M<26 and F<7, base the plan on PB 5.6. 

Otherwise, use the plan generated in step 1. 

L = 6  
 

Treat this case as L=7. 
 

L = 7  
 

Generate the best plan based on L=8. 
 

If that plan has more than 49 rows and M<50 and F<9, base the plan on PB 7.8. 

Otherwise, use the plan generated in step 1. 

L = 8  
 

Let P be the number of factors with more than two levels, and Q be the number of factors with 
more than four levels. 

 
If M<17 and F<10 and P<2, then base the plan on Table 73-9 “16 rows, 1 column of 8 levels 
plus 8 columns of 2 levels”. 

 
Otherwise, if M<28 and F<11 and only one factor has more than three levels, base the plan 
on the L=9 rules. 
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Otherwise, if M<33 and Q<2 and F+2P+4Q<32, base the plan on Table 73-10 “31 rows, 1 column 
of 8 levels plus 8 columns of 4 levels”. 

 
Otherwise, if M<65 and F+6P<64, base it on Table 73-11 “64 rows, 9 columns of 8 levels each”. 

Otherwise, base the plan on the L=9 rules. 

An eight-level factor can be transformed into seven two-level factors using the rule in Table 
73-2 “Converting an eight-level factor to seven two-level factors”.. 

 
L = 9  

 
Let P be the number of factors with more than three levels, and K=F+3P. 

 
If M<28 and F<11 and P<2, then base the plan on Table 73-12 “27 rows, 1 column of 9 levels 
plus 9 columns of 3 levels”. 

 
Otherwise, if K<41, base it on Table 73-13 “81 rows, 10 columns of 9 levels each”. 

Otherwise, there are too many factors. 

A nine-level factor can be transformed into four three-level factors using the rule in Table 
73-3 “Converting a nine-level factor to four three-level factors”. 

 

Randomization 

After a basic plan has been selected, columns are selected at random (if possible) to fit the given 
design. If the basic plan is asymmetric; that is, one column has more levels than the others, then 
the factor in the plan with many levels must be assigned to the factor in the design with many 
levels, and the remaining plan factors must be assigned randomly to the remaining design factors. 

If factors are to be transformed into multiple factors (for example, eight-level factors 
transformed into two-level factors), you can randomly assign columns from the plan to design 
factors with many levels first, then transform the remaining columns, and then select from the 
transformed columns at random the columns needed. 
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OVERALS Algorithms 
The OVERALS algorithm was first described in Gifi (1981) and Van der Burg, De Leeuw and 
Verdegaal (1984); also see Verdegaal (1986), Van de Geer(1987), Van der Burg, De Leeuw and 
Verdegaal (1988), and Van der Burg (1988). Characteristic features of OVERALS, conceived by 
De Leeuw (1973), are the partitioning of the variables into K sets and the ability to specify any 
of a number of measurement levels for each variable separately. Analogously to the situation in 
multiple regression and canonical correlation analysis, OVERALS focuses on the relationships 
between sets; any particular variable contributes to the results only inasmuch as it provides 
information that is independent of the other variables in the same set. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of cases (objects) 
m Number of variables 
p Number of dimensions 
K Number of sets 

 

For variable j; 
 

 
 

 

 
 

Number of valid categories (distinct values) of variable j 

Indicator matrix for variable j, of order 
 

when the  th object is in the   th category of variable 
when the  th object is not in the   th category of variable 

 

                                         Diagonal matrix, containing the univariate marginals; that is, the column 
sums of 

 

For set k; 

J(k) Index set of the variables that belong to set k (so that you can write ) 
Number of variables in set k (number of elements in J(k)) 

                                        Binary diagonal n×n matrix, with diagonal elements defined as 
 

when the  th observation is within the range  for all 
when the  th observation outside the range for all 

The quantification matrices and parameter vectors are: 

X  Object scores, of order n×p 
                                         Auxiliary matrix of order n×p, with corrected object scores when fitting 

variable j 
                                         Category quantifications for multiple variables, of order  

Category quantifications for single variables, of order   
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Variable weights for single variables, of order p 

                                         Quantified variables of the kth set, of order with columns  

                                            Collection of multiple and single category quantifications across variables 
and sets. 

 
Note: The matrices , , , and   are exclusively notational devices; they  are stored 
in reduced form, and the program fully profits from their sparseness by replacing matrix 
multiplications with selective accumulation. 

 

Objective Function Optimization 

The OVERALS objective is to find object scores X and a set of   (for j=1,...,m) — the 
underlining indicates that they may be restricted in various ways — so that the function 

 

 

is minimal, under the normalization restriction where and I is the 

p×p identity matrix. The inclusion of   in provides the following mechanism for 
weighting the loss: whenever any of the data values for object i in set k falls outside its particular 
range , a circumstance that may indicate either genuine missing values or simulated missing 
values for the sake of analysis, all other data values for object i in set k are disregarded (listwise 
deletion per set). The diagonal of contains the number of “active” sets for each object. The 
object scores are also centered; that is, they satisfy  with u denoting an n-vector 
with ones. 

 

Optimal Scaling Levels 
 

The following optimal scaling levels are distinguished in OVERALS: 
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For each variable, these levels can be chosen independently. The general requirement for all 
options is that equal category indicators receive equal quantifications. The general requirement 
for the non-multiple options is ; that is,  is of rank one; for identification purposes, 

is always normalized so that . 
 
Optimization 

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Loop across sets and variables 

3. Eliminate contributions of other variables 

4. Update category quantifications 

5. Update object scores 

6. Orthonormalization 

7. Convergence test: repeat (2) through (6) or continue 

8. Rotation 
 

Steps (1) through (8) are explained below. 
 

Initialization 
 

I. Random 
 

The object scores X are initialized with random numbers.  Then X is normalized so that    
and , yielding .  For multiple variables, the initial category 

quantifications are set equal to 0. For single variables, the initial category quantifications   are 
defined as the first   successive integers normalized in such a  way that and 

, and the initial variable weights are set equal to 0. 
 

II. Nested 
 

In this case, the above iteration scheme is executed twice. In the first cycle, (initialized with 
initialization I) all single variables are temporarily treated as single numerical, so that for the 
second, proper cycle, all relevant quantities can be copies from the results of the first one. 

 
Loop across sets and variables 

 
The next two steps are repeated for k=1,...,K and all . During the updating of variable j, 
all parameters of the remaining variables are fixed at their current values. 

 
Eliminate contributions of other variables 

 
For quantifying variable j in set k, define the auxiliary matrix 
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which accumulates the contributions of the other variables in set k; then in , the 
contributions of the other variables are eliminated from the object scores. This device enables 
you to write the loss as a function of X and   only: 

 
constant tr 

 
With fixed current values  the unconstrained minimum over  is attained for the matrix 

 

which forms the basis of the further computations. When switching to another variable l in the 
same set, the matrix   is not computed from scratch, but updated: 

 

 
Update category quantifications 

 
For multiple nominal variables, the new category quantifications are simply 

 

For single variables one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for 
computing the rank-one decomposition of , with restrictions on the left-hand vector. This cycle 
starts from the previous category quantification   with 

 

When the current variable is numerical, we are ready; otherwise we compute 
 

. 
 

Now, when the current variable is single nominal, you can simply obtain    by normalizing 
  in the way indicated below; otherwise the variable must be ordinal, and you have to insert 

the weighted monotonic regression process 
 

← WMON( )  .  
 

The notation WMON( ) is used to denote the weighted monotonic regression process, which 
makes   monotonically increasing. The weights used are the diagonal elements of   and the 
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964; 
Barlow et al., 1972).  The result is normalized: 

 

 

Finally, we set . 
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Update object scores 
 

First the auxiliary score matrix W is computed as 
 

and centered with respect to : 
 

These two steps yield locally the best updates when there would be no orthogonality constraints. 
 

Orthonormalization 
 

The problem is to find an -orthonormal that is closest to in the -weighted least 
squares sense.  In OVERALS, this is done by setting 

 
PROCRU  

The notation PROCRU( ) is used to denote the Procrustes orthonormalization process. If  
the singular value decomposition of the input matrix is denoted by , with 

, and Λ diagonal, then the output matrix satisfies 
orthonormality in the metric . The calculation of L and Λ is based on tridiagonalization with 
Householder transformations followed by the implicit QL algorithm (Wilkinson, 1965). 

 
Convergence test 

 
The difference between consecutive values of   is compared with the user-specified 
convergence criterion ε - a small positive number. After convergence, the badness-of-fit values is 
also given. Steps (2) through (6) are repeated as long as the loss difference exceeds ε. 

 
Rotation 

 
The OVERALS loss function is invariant under simultaneous rotations of X and . It 
can be shown that the solution is related to the principal axes of the average projection operator 

 

In order to achieve principal axes orientation, which is useful for purposes of interpretation and 
comparison, it is sufficient to find a rotation matrix that makes the cross-products of the matrix 

 diagonal - a matrix identical to the one used in the Procrustes orthonormalization in step 
(6). In the terminology of that section, we rotate the matrices , and the vectors with the 
matrix L. The rotation matrix L is taken from the last PROCRU operation as described in step (6). 

 
Diagnostics 

The following diagnostics are available. 
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Maximum Rank 

The maximum rank indicates the maximum number of dimensions that can be computed for 
any dataset (if exceeded, OVERALS adjusts the number of dimensions if possible and issues a 
message).  In general, 

if 
if 

 
where the quantities are defined as 

 

 

Here is the number of multiple variables with no missing values in set is the number 
of single variables in set k, and  is an index set recording which variables are multiple in set 
k. Furthermore, OVERALS stops when any one of the following conditions is not satisfied: 

1. 

2. 

3.          
 
 

Here denotes the number of nonmissing objects in set k, and denotes the maximum 
across all of . 

 
Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing values (that is, 
values that are regarded as out of range for the current analysis) for each variable. These are 
computed as the column sums of   and the total sum of  for . 

 
Fit and Loss Measures 

In the Summary of Analysis, loss and fit measures are reported. 
 

Loss Per Set 
 

This is K times , partitioned with respect to sets and dimensions; the means per dimension 
are also given. 

 
Eigenvalue 

 
The values listed here are 1 minus the means per dimension defined above, forming a partitioning 
of FIT, which is when convergence is reached. These quantities are the eigenvalues 
of   defined in section (8). 
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Multiple Fit 

This measure is computed as the diagonal of the matrix , computed for all variables 
(rows) with dimensions given in the columns. 

 
Single Fit 

This table gives the squared weights, computed only for variables that are single. The sum of 
squares of the weights: . 

 
Single Loss 

Single loss is equal to multiple fit minus single fit for single variables only. It is the loss incurred 
by the imposition of the rank-one measurement level restrictions. 

 
Component Loadings (for Single Variables) 

Loadings are the lengths of the projections of the quantified (single) variables onto the object 
space: . When there are no missing data, the loadings are equal to the correlations between 
the quantified variables and the object scores (the principal components). 

 
Category Quantifications 

Single Coordinates. For single variables only:        . 

Multiple  Coordinates.  These are   defined previously; that is, the unconstrained minimizers of 
the loss function, for multiple variables equal to the category quantifications. 

 
Category Centroids 

The centroids of all objects that share the same category, .  Note that they are not 
necessarily equal to the multiple coordinates. 

 
Projected Category Centroids 

For single variables only, . These are the points on a line in the direction given by the 
loadings   that result from projection of the category centroids with weights . 

 
References 

Barlow, R. E., D. J. Bartholomew, D. J. Bremner, and H. D. Brunk. 1972. Statistical inference 
under order restrictions. New York:  John Wiley and Sons. 

 
Cliff, N. 1966. Orthogonal rotation to congruence. Psychometrika, 31, 33–42. 

 
De Leeuw, J. 1984. Canonical analysis of categorical data, 2nd ed. Leiden: DSWO Press. 



 
 
 

 

OVERALS Algorithms 

 
De Leeuw, J., F. W. Young, and Y. Takane. 1976. Additive structure in qualitative data: An 
alternating least squares method with optimal scaling features. Psychometrika, 41, 471–503. 

 
Gifi, A. 1990. Nonlinear multivariate analysis. Chichester: John Wiley and Sons. 

 
Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 
29, 115–129. 

 
Van de Geer, J. P. 1987. Algebra and geometry of OVERALS: Internal Report RR-87–13. Leiden: 
Department of Data Theory, University of Leiden. 

 
Van der Burg, E. 1988. Nonlinear canonical correlation and some related techniques. Leiden: 
DSWO Press. 

 
Van der Burg, E., J. De Leeuw, and R. Verdegaal. 1984. Non-linear canonical correlation 
analysis: Internal Report RR-84–12. Leiden: Department of Data Theory, University of Leiden. 

 
Van der Burg, E., J. De Leeuw, and R. Verdegaal. 1988. Homogeneity analysis with k sets of 
variables: An alternating least squares method with optimal scaling features. Psychometrika, 53, 
177–197. 

 
Verdegaal, R. 1986. OVERALS: Internal Report UG-86–01. Leiden: Department of Data Theory, 
University of Leiden. 

 
Wilkinson, J. H. 1965. The algebraic eigenvalue problem. Oxford: Clarendon Press. 



 

 

PARTIAL  CORR Algorithms 
PARTIAL CORR produces partial correlation coefficients that describe the relationship between 
two variables while adjusting for the effects of one or more additional variables. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 75-1 
Notation 
Notation Description 
N Number of cases 

Value of variable k for case l 

Weight for case l 

                    Sum of the weights of cases used in computation of statistics for variable i and j 

Sum of the weights of cases used in computation of statistics for variable i 
 
 
Statistics 

Zero-Order Correlations 
 

Noncomputable coefficients are set to system missing. The significance level for is based on 
 

which, under the null hypothesis, is distributed as a t with         degrees of freedom. By default, 
one-tailed significance levels are printed. 

 
Means and Standard Deviations 
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If pairwise deletion is selected, means and standard deviations are based on all nonmissing cases. 
For listwise deletion, only cases with no missing values on any specified variables are included. 

 

Partial Correlations 

Partial correlations are calculated recursively from the lower-order coefficients using 
 

  (first order) 
 
 
 

  (second order) 
 
 
 

and similarly for higher orders ((Morrison, 1976) p. 94). 
 

If the denominator is less than , or if any of the lower-order coefficients necessary for 
calculations are system missing, the coefficient is set to system missing. If a coefficient in absolute 
value is greater than 1, it is set to system missing. (This may occur with pairwise deletion.) 

 

Significance Level 

The significance level is based on 
 

 

The degrees of freedom are 
 

 
where is the order of the coefficient and M is the minimum sum of weights from which the 
zero-order coefficients involved in the computations were calculated. Thus, for 

 

 
where  is the sum of weights of the cases used to calculated . If listwise deletion of missing 
values (default) was used, all  are equal. By default, the significance level is one-tailed. 
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PLS Algorithms 
Partial least squares (PLS) regression fits a model for one or more dependent variables based upon 
one or more predictors. It is especially useful when the predictors exhibit multicollinearity, or 
there are more predictors than cases. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 76-1 
Notation 
Notation Description 
X N × n design matrix of independent variables, centered and perhaps standardized. 

Note that there is no intercept term. 
Y N × m matrix of dependent variables, centered and perhaps standardized 
c m × 1 column vector of weights 
u N × 1 column vector of Y scores 
w n × 1 column vector of weights 
t N × 1 column vector of X scores 
d number of PLS factors to extract 
p n × 1 loading vector 
q m × 1 loading vector 
P n × d loading matrix 
Q m × d loading matrix 
T N × d score matrix, 
U N × d score matrix 
W  n × d matrix of X-weights 

n × d matrix of X-weights in original coordinates; these weights can be directly 
applied to X, 

C m × d matrix of Y-weights; these weights can be directly applied to Y. 
B n × m matrix of regression parameters, 
E N × n matrix of residuals, E = X – TP’ 
F N × m matrix of residuals, F = Y – UQ’ = Y – XB 
DModX N × 1 vector of distances of X variables to the model 
DModY N × 1 vector of distances of Y variables to the model 
VIP n × d matrix of Variable Importance in the Projection 

 

Preprocessing 

The following steps are performed before the estimation algorithm commences. 
 

Design Matrix 

The design matrix X is constructed from the independent variables as in GLM models without an 
intercept. 
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Categorical Variable Encoding 

The procedure temporarily recodes categorical dependent variables using one-of-c coding for the 
duration of the procedure.  If there are c categories of a variable, then the variable is stored as 
c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the 
final category (0,0,...,0,1). 

 
Categorical dependent variables are represented using dummy coding; that is, simply omit the 
indicator corresponding to the reference category. In particular, when there is a single dependent 
variable with exactly two levels, there will be a single indicator, and convergence will occur in  
a single NIPALS iteration. 

 

Missing Values 

Cases with user- or system-missing values are handled as follows: 
 

Listwise Deletion.  Only cases with complete values for all X and Y variables will be used. 
 

Center and Standardize Variables 

Given a matrix of independent variables X and of dependent variables Y (with the design 
matrix, categorical variable encoding, and missing values), compute the mean and standard 
deviation of each variable, and replace X with the centered and standardized variates  

𝐗𝐗 ≔ (𝐗𝐗− 𝜇𝜇𝐗𝐗)𝚺𝚺−1
𝐗𝐗  where 𝚺𝚺𝐗𝐗 is a diagonal matrix of standard deviations and 𝜇𝜇𝐗𝐗 is the vector 

of means; similarly for 𝐘𝐘� ≔ 𝐘𝐘𝚺𝚺−1
𝐘𝐘 + 𝜇𝜇𝐘𝐘. This change of coordinates must be reversed after all 

components have been extracted; 𝐘𝐘� ≔ 𝐘𝐘𝚺𝚺−1
𝐘𝐘 + 𝜇𝜇𝐘𝐘. 

 
Estimation 

When there is only one dependent variable (m=1), use the NIPALS algorithm. Only one iteration 
will be required. When there is more than one dependent variable (m>1), solve the equivalent 
eigenproblem, solving for the vector with the smallest dimension. Use the resulting eigenvector 
as the input to NIPALS, checking the vector with the greatest length for convergence. (This 
check may turn out to be unneeded, in which case one iteration of NIPALS will still be needed  
to obtain all the required vectors.) 

 
This diagram illustrates the relationship between the vectors and matrices used in the NIPALS 
algorithm, where the vectors should be taken as determined only up to scalar multiples: 

 
 

 

       
 

   
  

  



 
 

 

NonLinear Iterative Partial Least Squares (NIPALS) Algorithm 
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The classical NIPALS algorithm explicitly takes c and w to have unit norm. In particular, note that 
if there is only one dependent variable Y, then c is a 1×1 unit vector so c = 1, and this will be the 
most useful starting point: initialize u = Y; otherwise, initialize u or any of the vectors to some 
random starting value. Also, when c = 1, then NIPALS converges in only one iteration. 

 
The following loop may be entered at any point which is most convenient, most especially when 
m = 1, c = 1, begin at step 1 with u =  Y: 

 
Repeat until convergence: 

1.   w = X’u/(u’u) 

2.   w := w/||w|| 

3.   t = Xw 

4.   c = Y’t/(t’t) 

5.   c := c/||c|| 

6.   u = Yc 
 

Although the NIPALS algorithm will in practice be replaced with the solution of an eigenproblem 
(see “NIPALS-Equivalent Eigenproblem”) the relationships defined in the sequence above will be 
used to obtain all the matrices and vectors required. 

 
Regress X on t and Y on u: 

1.   p = X’t/(t’t) 

2.   q = Y’u/(u’u) 
 

Deflate X and Y matrices: 

1. X := X – tp’ 

2. Y := Y – tc’ (use c from step 4, not step 5,  above) 
 

Note that the deflated matrices are the errors E, F at that stage. 
 

Repeat d times, assembling the t, p, u, q vectors into matrices to obtain the desired factorizations 
into scores T, U, loadings P, Q, weights W, C, and residuals E, F: 
 X = TP’ + E 
 Y = UQ’ + F 

 
Since the matrices X, Y are centered, note that is the normal equation for a regression 

of Y on t, likewise regresses X on u.  Thus the NIPALS algorithm alternates 
between regression and projection. If vectors are considered to be determined only up to length, 
there is no longer any distinction between the two. 
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The matrix of regression coefficients for predicting Y from X is given by either any of the 
following expressions, and is independent of the scalings of T and U: 

 

 
  

 

  

 
W and C are obtained by assembling the w and c vectors into n× d and m× d matrices. This 
solves the PLS Regression equation: 

 
Y = XB + F 

 
Until now the X and Y matrices have been assumed to be centered, and (optionally) standardized. 
The parameters B and residuals E and F must be restored to their original   coordinates 

, , with the final regression equation in the original coordinates given 
by  . Also, the residuals F left over after deflating the Y matrix should 
not be used, but are recalculated from the predictions in the centered and rescaled coordinates as F 
= Y – XB;   in the original coordinates. 

 
NIPALS-Equivalent Eigenproblem 

Regarding the vectors as determined only up to length allows the NIPALS loop to be replaced by 
an eigenproblem. One can choose to solve any of the following; typically selecting the matrix 
with the smallest dimension, which will often be the first equation: 

 

 

Once c (or any of the others) are determined, the rest of the vectors can be determined; at this 
point it is important to keep track of the lengths. 

 
The eigenproblem can be solved by the Power Method. 

 
Power Method 

 

 

 
Initialize a vector , say to the vector 1, normalize to unit length, then iterate until convergence. 
The sequence of iterates is guaranteed to converge to the eigenvector associated to the dominant 
(that is, the largest) eigenvalue. Moreover the dominant eigenvalue is guaranteed to be unique. 

 
Rather than continue to iterate using the power method, switch to Rayleigh Quotient Iteration 
(RQI). 
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Rayleigh Quotient Iteration 

Begin with initial estimates of and   obtained from one or two iterations of  the Power 
Method.  Then repeat until convergence: 

                                   (solve for w) 
 

 
 

 
The conjugate gradient method may be used to solve for w. 

 
The eigenproblem is considered solved when the difference between two iterations is small 
enough. However, the eigenproblem is typically solved for c, but the vector of interest is t. One 
iteration of NIPALS is used to obtain the vectors (c, u, w, t). 

 
Output Statistics 

The following output statistics are available. 
 

Proportion of Variance Explained 

The proportion of variance explained by the extraction of factor k is given by computing: 
 

 

 

 
 

 

The cumulative proportion of variance explained is 
 
 

 

 

 
 

Here   and are the column vectors obtained after k factors have been extracted; that is, the 
kth columns of T and C. Note that is taken from step 4 of the NIPALS algorithm, and is not 
rescaled to unit length as in step 5. 

 
The proportion of variance explained in X is similar: 
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Variable Importance in the Projection (VIP) 

The VIP statistic is computed for each variable and latent factor as 
 
 
 

VIP 
 
 
 

Here and ;  is the jth element of  , where   is the kth column of W. 

 
Distance to the Model 

Distance to the model, sometimes denoted DModX and DModY, is given by: 
 

 

for each row of E and  of F. This may be normalized to: 
 
 
 
 
 
 

PRESS Statistic 

The PRESS residuals are , that is,   before any normalizations are carried out. The 
PRESS statistic is simply 

 

PRESS 
 
 

“Jackknifed”, or more correctly, leave-one-out PRESS residuals are calculated   as 
                   where is the ith row of Y,  is the predicted value for that row, and is the ith 

diagonal element of the “hat” matrix .  Leave-one-out PRESS residuals are not 
available when there are more variables than cases, or when X’X is not invertible for any other 
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reason. The Jackknifed PRESS statistic for model selection is the sum of the squared norm 
of the Jackknifed PRESS residuals: 
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PLUM Algorithms 
The purpose of the PLUM procedure is to model the dependence of an ordinal categorical 
response variable on a set of categorical and scale independent variables. 

Since the choice and the number of response categories can be quite arbitrary, it is essential to 
model the dependence such that the choice of the response categories does not affect the conclusion 
of the inference. That is, the final conclusion should be the same if any two or more adjacent 
categories of the old scale are combined. Such considerations lead to modeling the dependence of 
the response on the independent variables by means of the cumulative response probability. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Table 77-1 
Notation 

Notation Description 
Y The response variable, which takes integer values from 1 to J. 
J The number of categories of the ordinal response. 
m  The number of subpopulations. 

                                                     matrix with vector-element , the observed values at the ith 
subpopulation, determined by the independent variables specified in the 
command. 

X            matrix with vector-element , the observed values of the location 
model’s independent variables at the ith subpopulation. 

Z  matrix with vector-element , the observed values of the scale 
model’s independent variables at the ith subpopulation. 

                                        The frequency weight for the sth observation which belongs to the cell 
corresponding to Y=j at subpopulation i. 
The sum of frequency weights of the observations that belong to the cell 
corresponding to Y=j at subpopulation i. 
The cumulative total up to and including Y=j at subpopulation i. 

The marginal frequency of subpopulation i. 

n The sum of all frequency weights. 
The cell probability corresponding to Y=j at subpopulation i. 

The cumulative response probability up to and including Y=j at 
subpopulation i. 

θ (J−1)×1 vector of threshold parameters in the location part of the model. 
β p×1 vector of location parameters in the location part of the model. 
τ q×1 vector of scale parameters in the scale part of the model. 
B=(θT,βT,τT)T The {(J−1) + p + q}×1 vector of unknown parameters in the general model. 

T T    T  T The {(J−1) + p + q}×1 vector of maximum likelihood estimates of the 
                                   parameters in the general model. 

T  T The {(J−1) + p}×1 vector of maximum likelihood estimates  of the 
parameters in the location-only model. 

                                         The cumulative response probability estimate based on the maximum 
likelihood estimate  in the general model. 
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Notation Description 

                                         The cumulative response probability estimate based on the maximum 
likelihood estimate  in the location-only model. 

                                         The cell response probability estimate based on the maximum likelihood 
estimate   in the general model. 

                                         The cell response probability estimate based on the maximum likelihood 
estimate   in the location-only model. 
Number of non-redundant parameters in the general model. If all parameters 
are non-redundant,    = (J−1) + p + q. 
Number of non-redundant parameters in the location-only model. If all 
parameters are non-redundant,    = (J−1) + p. 

 
 

Data Aggregation 
Observations with negative or missing frequency weights are discarded. Observations 
are aggregated by the definition of subpopulations.  Subpopulations are defined by  the 
cross-classifications of either the set of independent variables specified in the command or the set 
of independent variables specified in the subpopulation command. 

 
Let ni be the marginal count of subpopulation i, 

 

If there is no observation for the cell of Y=j at subpopulation i, it is assumed that , provided 
that         . A non-negative scalar may be added to any zero cell (i.e., cell with ) 
if its marginal count      is nonzero. The value of    is zero by default. 

 
Data Assumptions 

Let T be the  vector of counts for the categories of Y at subpopulation. It is 
assumed that each T is independently multinomial distributed with probability vector 

T of dimension and fixed total ni. 
 

Model  
 

Let               be the cumulative response probability for Y; that is, 
 

for j = 1, …, J−1. Note that , hence only the first J−1 γ’s are needed in the model. 
 

General Model 

The general model is given by 



 
 

 
 
 

= 
 

where 
 

= link( 
 

Possible link functions are 

 
 
 
 
 
 
 
 
 

PLUM A

The numerator in the right hand side of the general model specifies the location of the model, 
bT    . In the location part of the model, θ is the vector of thresholds. Values of the thresholds 

are subject to a monotonicity property                 . β is the vector of location  

parameters. The denominator is the scale part of the model, 𝜎𝜎(𝑧𝑧). Possible forms are: 

if unity scale is assumed 
T      if non-constant scale is assumed 

τ is the vector of scale parameters. 
 
Location-Only Model 

If unity scale is assumed, then the general model is said to reduce to the location-only model. The 
parameter B reduces to B=(θT,βT)T. 

 
Log-likelihood  Function 

The log-likelihood of the model is 
 

where 
 

and 
 

and 
 

log exp log 

bT 
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Note: a constant term which is independent of the unknown 
parameters has been excluded here. Thus, l is in fact the kernel of the true log-likelihood function. 

 
Derivatives of the Log-likelihood Function 

The derivatives of the log-likelihood function are used in the iterative parameter estimation 
algorithm. 

 
First Derivative 

The first derivative of l with respect to              , is 
 

where 
 

 

and 
 

where 

 

Second Derivative 

The second derivative is 
 



 
 

E 

E 
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for s, k = 1, …, (J – 1) + p + q.  The first term of the equation is 
 

The second term is 
 

To calculate the third term, notice that 
 

where 
 

 
and . Moreover, 

 

 

and .    has the following form: 

 

The third term can be calculated by applying these equations. 

 
Expectation of the Second Derivative 

 
For s, k = 1, …, (J – 1) + p + q. 

E 

 

 
 
 
 

Parameter  Estimation 
Further details of parameter estimation are described here. 

and 
and 
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Maximum Likelihood Estimate 

To obtain the maximum likelihood estimate of B, a Fisher Scoring iterative estimation method or 
Newton-Raphson iterative estimation method can be used. Let   be the parameter vector at 
iteration t and   be a vector of the first derivatives of l evaluated at  . Moreover, 
let   be a {(J−1)+p+q}×{(J−1)+p+q} matrix such that 

 

Newton-Raphson approach 

Fisher Scoring approach 

For a location-only model, the corresponding formulas use the first (J−1)+p elements of 
  and the upper {(J−1)+p}×{(J−1)+p} submatrix of  . 

 
The parameter vector B at iteration is updated by   where 

 

 

and is a stepping scalar such that . 
 

Stepping 
 

Use the step-halving method if  . Let V be the maximum number of steps 
in step-halving; then the set of values of is {1/2v: v = 0, …, V−1}. 

 
Starting Values of the Parameters 

Location-Only Model 

If a location-only model is specified, set q T T  T 
where 

 
 
 

link 
 
 
 

for j = 1, …, J−1. 

General Model 

If a general model is specified, first ignore the scale part; that is, by assuming that τ = 0 and 

treating the model as if it is a location-only model, and use q T T  T 
as the starting 

value to obtain the maximum likelihood estimate .  After  is obtained, find the maximum 

likelihood estimate of the general model by starting at T T T  T
. 

E 
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The above practice is essentially the same as taking q T T T  T. The advantage is 
that the maximum likelihood estimate  can be obtained in the process of finding . 

 
Ordinal Adjustments for the Threshold Parameters 

If the monotonicity property                  is not preserved at the end of any iteration, an ad 
hoc adjustment will be taken before the next iteration starts. If         for some j, then both 

  and  are set to                               before the next iteration.  This value is then compared  
with and so on. 

 

Convergence Criteria 

Given convergence criteria and , the iteration is considered to be converged if one of 
the following criteria are satisfied: 

 

 

 
Statistics 

The following statistics are available. 
 

Model Information 

The model information is the –2 log-likelihood of the model, computed for a given vector of 
parameter estimates. 

 
Final Model, General 

 
The value of –2 log-likelihood of the model is given by 

 

 
where      is the value of the log-likelihood evaluated at . 

Final Model, Location-Only 
 

If unity scale is assumed, the general model reduces to the location-only model. The value of –2 
log-likelihood of the model is given by 
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Initial Model, Intercept-Only 

In the initial model, when the intercepts are the only parameters in the model, the parameter vector 

is q(0) T T T  T. The value of the –2 log-likelihood  is 
 

Model Chi-Square 

The value of the Model Chi-square statistic is given by the difference between any two nesting 
models of interest. 

 
General Model versus Intercept-Only Model 

The following statistic is available when a general model is specified. The Model Chi-square 
statistic is given by 

 

Under that null hypothesis that     b and t , the Model Chi-square is asymptotically 
chi-squared distributed with – (J – 1) degrees of freedoms. 

 
Location-Only Model versus Intercept-Only Model 

The following statistic is available when a location-only model is specified. The Model Chi-square 
statistic is given by 

 

Under that null hypothesis that     b , the Model Chi-square is asymptotically chi-squared 
distributed with – (J – 1) degrees of freedoms. 

 
General Model versus Location-Only Model 

The following statistic is available when a general model is specified. The Model Chi-square 
statistic is given by 

 

Under that null hypothesis that     t , the Model Chi-square is asymptotically chi-squared 
distributed with – degrees of freedoms. 

 
Likelihood Ratio Test for Equal Slopes Assumption 

For location-only model, a likelihood ratio test of parallel lines in the location is performed. If the 
regression lines are not parallel, the location can be specified as 
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b 
 

for j = 1, …, J−1.  That is, the location parameters b  (or slopes) vary with the levels  
of the response.  The parameter for the above “non-parallel” location-only model is 

qT bT bT T 
which is of dimension {(J−1)+(J−1)p}×1. The first derivative of 

the log-likelihood is the same as in the “parallel” model, except that                      is 
replaced by the following: 

 

Similarly, the expected value of the second derivative is the same as in the parallel model, except 
that the   is replaced by the above equation. 

 
To test the null hypothesis of parallelism     b b      , find the maximum likelihood 
estimate of the parallel location-only model and the maximum likelihood estimate  of the 
non-parallel model. The Model Chi-square statistic is given by 

 

Under the null hypothesis, the Model Chi-square statistic is asymptotically chi-squared distributed 
with (k−2)p degrees of freedoms. 

 
Pseudo R-Squares 

Replace  by  for a location-only model in the equations below. 
 

Cox and Snell’s R-Square 
 
 

CS 
 

Nagelkerke’s R-Square 
 

  CS  
N 

 
McFadden’s R-Square 

 
M 

 

Predicted Cell Counts 

The estimated cell response probability based on the maximum likelihood estimate for the 
general model is 
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At each subpopulation i, the predicted count for response category Y=j is 

 

The (raw) residual is and the standardized residual is                                 .          

.Replace   by  ,   by  , and   by   for a location-only model. 

Predicted Cumulative Totals 

The predicted cumulative total up to and including Y=j is 
 

The (raw) residual is and the standardized residual is                                .         

.Replace   by   and   by   for a location-only model. 

Goodness of Fit Measures 

These are chi-square statistics used to test whether the model adequately fits the data. 
 

Pearson Goodness of Fit Measure 

The Pearson goodness of fit measure for a general model is 
 

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – degrees of freedom. 

 
Replace   by   and by for a location-only model. 

 
Deviance Goodness of Fit Measure 

The Deviance goodness of fit measure for a general model is 
 

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – degrees of freedom. 

 
Replace by and by for a location-only model. 



 
 

   T 

 

Covariance and Correlation Matrices 

The estimate of the covariance matrix of  is 
 

Newton-Raphson method 

PLUM Algorithms 

Cov 
Fisher Scoring method 

 
Let be the {(J−1)+p+q}×1 vector of the square roots of the diagonal elements in   . The 
estimate of the correlation matrix of  is 

 
Replace  by  and by (a {(J−1)+p}×1 vector) for a location-only model. 

 

Parameter Statistics 

An estimate of the standard deviation of  is . The Wald statistic for  is 

Wald  

Under the null hypothesis that              ,Wald   is asymptotically chi-squared distributed 
with 1 degree of freedom. 

 
Based on the asymptotic normality of the parameter estimate, a 100(1−α) % Wald confidence 
interval for   is 

 

 
where is the upper (1−α /2)100th percentile of the standard normal distribution. 

Replace   by  and   by   for a location-only  model. 

Linear Hypothesis Testing 

For a general model, let L be a matrix of coefficients for the linear hypotheses 
 

where c is a k×1 vector of constants.  The Wald statistic for  is 

Wald               Cov     T      

Under the null hypothesis, Wald is asymptotically chi-squared distributed with l degrees of 
freedom, where l is the rank of L. 

 
Replace  by  for a location-only model. 

 
  E 
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Introduction

The power of a hypothesis test to detect a correct alternative hypothesis is the probability that the test will
reject the test hypothesis. Since the probability of a type II error is the probability of accepting the null
hypothesis when the alternative hypothesis is true, the power can be expressed as (1-probability of a type
II error), which is the probability of rejecting the null hypothesis when the alternative hypothesis is true.

Power analysis plays a pivotal role in a study plan, design, and conduction. The calculation of power is
usually before any sample data have been collected, except possibly from a small pilot study. The precise
estimation of the power may tell investigators how likely it is that a statistically significant difference will be
detected based on a finite sample size under a true alternative hypothesis. If the power is too low, there is
little chance of detecting a significant difference, and nonsignificant results are likely even if real differences
truly exist. In light of the concerns of power, a well-designed feature or function may make a positive
contribution to its estimation and then the a research study proposal.

In this document, we focus on the t-tests and statistical inference about population means. We present
different power estimation formulas under various conditions, and further describe the features that are
offered in SPSS Statistics.

Independent-sample Analysis

In this section, the observed data contain two independent samples. We assume that the data in each sample
independently and identically follow a normal distribution with a fixed mean and variance, and would like
to draw statistical inference about the difference of the two means. The following notations are used in this
section.

k: The group index, k = 1, 2.

µk: The population mean of group k for comparison in a t-test, and µk ∈ (−∞,+∞).

µd: The population mean difference of the two groups for comparison in a t-test, µd = µ1 − µ2, and
µd ∈ (−∞,+∞).

σk: The population standard deviation of group k, and σk > 0.

nk: The sample size for group k, and nk > 1, which is an integer. Note that nk is required to be double-
precision in the following calculation unless otherwise stated.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

We further define the ratio of the sample size

r =
n2
n1

, (0.0.1)

and rewrite n2 = rn1.

Two-sample Test for Mean Difference with Equal Group Variances

In this section, we assume that the two independent groups for comparison share the common variance, or
σ1 = σ2 = σ. Users are required to specify the values for µd (or µk), σ, n1, n2, and α. The default setting
is α = 0.05.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : µ1 = µ2 versus H1 : µ1 6= µ2.
Under the null hypothesis H0, the test statistic follows a Student’s t-distribution with the degrees of freedom,

ν = n1 + n2 − 2 = (1 + r)n1 − 2 . (0.0.2)
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The critical value is therefore
t∗ = IDF.T

(
1− α

2
, ν
)
. (0.0.3)

Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom ν in Equation (0.0.2), and the noncentrality parameter computed as

λ =
µd√

σ2/n1 + σ2/n2
=

µ1 − µ2√
σ2/n1 + σ2/n2

= δ

√
n1n2√
n1 + n2

= δ

√
n1r√
r + 1

, (0.0.4)

where

δ =
µd

σ
=
µ1 − µ2

σ
. (0.0.5)

Note that the effect size of the nondirectional test is defined as the absolute value of Equation (0.0.5). The
power for an independent-sample nondirectional t-test with equal group variances is therefore

Ω = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ) , (0.0.6)

where t∗, ν and λ are defined by Equations (0.0.3), (0.0.2) and (0.0.4), respectively.

Directional or one-sided testing hypothesis

For a directional test, we formulate one-sided testing hypotheses H0 : µ1 = µ2 versus H1 : µ1 > µ2 (or
H1 : µ1 < µ2). The power is computed as

Ω = 1−NCDF.T(t∗, ν, λ) , (0.0.7)

where
t∗ = IDF.T(1− α, ν) , (0.0.8)

ν is defined by Equation (0.0.2), and

λ =
|µd|√

σ2/n1 + σ2/n2
=

|µ1 − µ2|√
σ2/n1 + σ2/n2

= |δ|
√
n1r√
r + 1

, (0.0.9)

respectively.

Two-sample Test for Mean Difference with Unequal Group Variances

In this section, we assume that the two independent groups for comparison do not have equal variances, or
σ1 6= σ2. Users are required to specify the values for µd (or µk), σk, n1, n2, and α.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : µ1 = µ2 versus H1 : µ1 6= µ2.
Under the null hypothesis H0, the test statistic follows a Student’s t-distribution with the degrees of freedom,

ν =
(σ2

1/n1 + σ2
2/n2)2

(σ2
1/n1)2/(n1 − 1) + (σ2

2/n2)2/(n2 − 1)
=

(rσ2
1 + σ2

2)2

(rσ2
1)2/(n1 − 1) + (σ2

2)2/(n1r − 1)
. (0.0.10)

The critical value is therefore
t∗ = IDF.T

(
1− α

2
, ν
)
. (0.0.11)

Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom ν in Equation (0.0.10), and the noncentrality parameter computed as1

λ =
µd√

σ2
1/n1 + σ2

2/n2
=

µ1 − µ2√
σ2
1/n1 + σ2

2/n2
=

(µ1 − µ2)
√
rn1√

rσ2
1 + σ2

2

. (0.0.12)

The power for an independent-sample nondirectional t-test with unequal group variances is therefore

Ω = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ) , (0.0.13)

where t∗, ν and λ are defined by Equations (0.0.11), (0.0.10) and (0.0.12), respectively.
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Directional or one-sided testing hypothesis

For a directional test, we formulate one-sided testing hypotheses H0 : µ1 = µ2 versus H1 : µ1 > µ2 (or
H1 : µ1 < µ2). The power is computed as

Ω = 1−NCDF.T(t∗, ν, λ) , (0.0.14)

where
t∗ = IDF.T(1− α, ν) , (0.0.15)

ν is defined by Equation (0.0.10), and

λ =
|µd|√

σ2
1/n1 + σ2

2/n2
=

|µ1 − µ2|√
σ2
1/n1 + σ2

2/n2
=
|µ1 − µ2|

√
rn1√

rσ2
1 + σ2

2

, (0.0.16)

respectively.

3Remarks: To estimate the power for two-sample test for mean difference with unequal group variances, it is generally not 
straightforward to define the effect size δ independent of the sample size unless n1 = n2 or σ1 = σ2, the latter of which actually 
assumes the equal group variances. Although Cohen’s standardized mean difference may be the most popular effect size, the 
metric relies on the sample size, and is more often calculated in the post-hoc power estimation. In light of this, we would like to 
consider the difference between µ1 and µ2 as a factor to predict the power, and plot the estimated power Ω versus the difference 
between µ1 and µ2 to illustrate the relationship between them.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0. For the related-sample analysis, N0 denotes the
group pairs. For the independent-sample analysis, N0 denotes the sample size estimated for group 1.

N ′0: The sample size estimated for group 2 in the independent-sample analysis.

r0: The ratio of the group sample sizes in the independent-sample analysis discussed later in section ,
which is defined by r0 = N ′0/N0. To avoid extreme unbalanced situations, we let 0.01 ≤ r0 ≤ 100, and
the default setting is r0 = 1.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

Independent-sample Analysis

.0.1 Two-sample test for mean difference with equal group variances

Users are required to specify the values for µd (or µk), σ, ω0, r0, and α. The default setting is r0 = 1 and
α = 0.05.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.6)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ)− ω0 , (.0.17)

and feed it to Algorithm (1) to solve for n1 = rtb. Note that the sample estimated for group 2 is

N ′0 = max {drtb ∗ r0e, 2} . (.0.18)

We then set N0 = drtbe, and follow Equation (0.0.2)-(0.0.6) by replacing n1 and n2 with N0 and N ′0,
respectively, to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.7)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ)− ω0 , (.0.19)

and feed it to Algorithm (1) to solve for n1 = rtb. We calculate N ′0 by using Equation (.0.18), set N0 = drtbe,
and then follow Equation (0.0.7)-(0.0.9) by replacing n1 and n2 with N0 and N ′0, respectively, to solve for
Ω0.
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Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 2, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

Power Analysis Table

Actual Test Assumptions

N1 N2 Powerb Power Std. Devc Effect Size Sig.

Test for Mean Differencea 24 48 .804 .800 14 .714 .05

a. Two-sided test

b. Based on noncentral t-distribution.

c. Group variances are assumed to be equal.

Table 1: Estimate Sample Size of Independent-sample t-Test with Equal Group Variances

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction in Section .0.1
and .0.1, N1 is estimated by N0; N2 is estimated by N ′0; and Actual Power is estimated by Ω0. Power is ω0
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specified by users. All the other table settings are the same as Table ??.

Two-sample test for mean difference with unequal group variances

Users are required to specify the values for µd (or µk), σk, ω0, r0, and α. The default setting is r0 = 1 and
α = 0.05.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.13)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ)− ω0 , (.0.20)

and feed it to Algorithm (1) to solve for n1 = rtb. We calculate N ′0 by using Equation (.0.18), set N0 = drtbe,
and then follow Equation (0.0.10)-(0.0.13) by replacing n1 and n2 with N0 and N ′0, respectively, to solve for
Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.14)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ)− ω0 , (.0.21)

and feed it to Algorithm (1) to solve for n1 = rtb. We calculate N ′0 by using Equation (.0.18), set N0 = drtbe,
and then follow Equation (0.0.14)-(0.0.16) by replacing n1 and n2 with N0 and N ′0, respectively, to solve for
Ω0.

Power Analysis Table

When ω0 is specified, we output Table 2 instead of Table ??. Depending on the test direction in Section .0.1

Power Analysis Table

Actual Test Assumptions

N1 N2 Powerb Power Std. Dev 1 Std. Dev 2 Mean Difference Sig.

Test for Mean Differencea 45 90 .803 .800 14 27 10 .05

a. Two-sided test

b. Based on noncentral t-distribution.

Table 2: Estimate Sample Size of Independent-sample t-Test with Unequal Group Variances

and .0.1, N1 is estimated by N0; N2 is estimated by N ′0; and Actual Power is estimated by Ω0. Power is ω0

specified by users. All the other table settings are the same as Table ??.
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Introduction

The power of a hypothesis test to detect a correct alternative hypothesis is the probability that the test will
reject the test hypothesis. Since the probability of a type II error is the probability of accepting the null
hypothesis when the alternative hypothesis is true, the power can be expressed as (1-probability of a type
II error), which is the probability of rejecting the null hypothesis when the alternative hypothesis is true.

Power analysis plays a pivotal role in a study plan, design, and conduction. The calculation of power is
usually before any sample data have been collected, except possibly from a small pilot study. The precise
estimation of the power may tell investigators how likely it is that a statistically significant difference will be
detected based on a finite sample size under a true alternative hypothesis. If the power is too low, there is
little chance of detecting a significant difference, and nonsignificant results are likely even if real differences
truly exist. In light of the concerns of power, a well-designed feature or function may make a positive
contribution to its estimation and then the a research study proposal.

In this document, we focus on the t-tests and statistical inference about population means. We present
different power estimation formulas under various conditions, and further describe the features that are
offered in SPSS Statistics.

One-sample Analysis

In this section, the observed data are collected as a single random sample. We assume that the sample data
independently and identically follow a normal distribution with a fixed mean and variance, and would like
to draw statistical inference about the mean parameter. The following notations are used in this section.

µ: The population mean for testing in a t-test, and µ ∈ (−∞,+∞).

c0: The null hypothesis value to be tested, and c0 ∈ (−∞,+∞).

σ: The population standard deviation, and σ > 0.

N : The sample size, and N > 1, which is an integer. Note that N is required to be double-precision in
the following calculation unless otherwise stated.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

One-sample Test of Mean

Users are required to specify the values for µ, c0, σ, N , and α. The default setting is c0 = 0 and α = 0.05.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : µ = c0 versus H1 : µ 6= c0. Under
the null hypothesis H0, the test statistic follows a Student’s t-distribution with the degrees of freedom

ν = N − 1 . (0.0.1)

The critical value is therefore1

t∗ = IDF.T
(

1− α

2
, ν

)
. (0.0.2)

Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom ν in Equation (0.0.1), and the noncentrality parameter is computed as

λ =
µ− c0
σ/
√
N

= δ
√
N , (0.0.3)

where

δ =
µ− c0
σ

. (0.0.4)
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Note that the effect size of the nondirectional test is defined as the absolute value of Equation (0.0.4). The
power for a one-sample nondirectional t-test is therefore2

Ω = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ) , (0.0.5)

where t∗, ν, and λ are defined by Equations (0.0.2), (0.0.1), and (0.0.3), respectively.

Directional or one-sided testing hypothesis

For a directional test with one-sided testing hypotheses H0 : µ = c0 versus H1 : µ > c0 (or H1 : µ < c0), the
power is computed as

Ω = 1−NCDF.T(t∗, ν, λ) , (0.0.6)

where
t∗ = IDF.T(1− α, ν) (0.0.7)

ν is defined by Equation (0.0.1), and

λ =
|µ− c0|
σ/
√
N

= |δ|
√
N , (0.0.8)

respectively.

1IDF.T(prob, df ) returns the value from the Student’s t-distribution, with specified degrees of freedom df, for which the
cumulative probability is prob.

2NCDF.T(quant, df, λ) returns the cumulative probability such that a value from the noncentral Student’s t-distribution,
with the specified degrees of freedom df and noncentrality λ, will be less than or equal to quant.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0. For the related-sample analysis, N0 denotes the
group pairs. For the independent-sample analysis, N0 denotes the sample size estimated for group 1.

N ′0: The sample size estimated for group 2 in the independent-sample analysis.

r0: The ratio of the group sample sizes in the independent-sample analysis discussed later in section ??,
which is defined by r0 = N ′0/N0. To avoid extreme unbalanced situations, we let 0.01 ≤ r0 ≤ 100, and
the default setting is r0 = 1.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

One-sample Analysis

Users are required to specify the values for µ, c0, σ, ω0, and α. The default setting is c0 = 0 and α = 0.05.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.5)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ)− ω0 , (.0.9)

and feed it to Algorithm (1) to solve for N = rtb. We then set N0 = drtbe, and follow Equation (0.0.1)-
(0.0.5) by replacing N with N0 to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.6)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ)− ω0 , (.0.10)

and feed it to Algorithm (1) to solve for N = rtb. We then set N0 = drtbe, and follow Equation (0.0.6)-
(0.0.8) by replacing N with N0 to solve for Ω0.

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction in Section
and , N is estimated by N0, and Actual Power is estimated by Ω0. Power is ω0 specified by users. All the
other table settings are the same as Table ??.
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Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 2, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

Power Analysis Table

Actual Test Assumptions

N Powerb Power Std. Dev Effect Size Sig.

Test for Meana 64 .803 .800 14 .357 .05

a. Two-sided test

b. Based on noncentral t-distribution.

Table 1: Estimate Sample Size of One-sample t-Test
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POWER MEANS RELATED Algorithms

Introduction

The power of a hypothesis test to detect a correct alternative hypothesis is the probability that the test will
reject the test hypothesis. Since the probability of a type II error is the probability of accepting the null
hypothesis when the alternative hypothesis is true, the power can be expressed as (1-probability of a type
II error), which is the probability of rejecting the null hypothesis when the alternative hypothesis is true.

Power analysis plays a pivotal role in a study plan, design, and conduction. The calculation of power is
usually before any sample data have been collected, except possibly from a small pilot study. The precise
estimation of the power may tell investigators how likely it is that a statistically significant difference will be
detected based on a finite sample size under a true alternative hypothesis. If the power is too low, there is
little chance of detecting a significant difference, and nonsignificant results are likely even if real differences
truly exist. In light of the concerns of power, a well-designed feature or function may make a positive
contribution to its estimation and then the a research study proposal.

In this document, we focus on the t-tests and statistical inference about population means. We present
different power estimation formulas under various conditions, and further describe the features that will be
offered by the next release of SPSS Statistics.

Related-sample Analysis

In this section, the observed data contain two paired and correlated samples, and each case has two
measurements. We assume that the data in each sample independently and identically follow a normal
distribution with a fixed mean and variance, and would like to draw statistical inference about the difference
of the two means. The following notations are used in this section.

k: The group index, k = 1, 2.

µk: The population mean of group k for comparison in a t-test, and µk ∈ (−∞,+∞).

µd: The population mean difference of the two groups for comparison in a t-test, µd = µ1 − µ2, and
µd ∈ (−∞,+∞).

σd: The population standard deviation of the group mean difference, and σd > 0.

σk: The population standard deviation of group k, and σk > 0.

ρ: The Pearson product-moment correlation coefficient between the two groups, and ρ ∈ [−1, 0) ∪ (0, 1].
In case that σ1 = σ2 is specified, ρ = 1 is not allowed.

N : The number of group pairs, and N > 1, which is an integer. Note that N is required to be double-
precision in the following calculation unless otherwise stated.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

Two-sample Test for Mean Difference with Paired Groups

Users are required to specify the values for µd (or µk), σd (or σk and ρ), N , and α. The default setting is
ρ = 0.5 and α = 0.05.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : µd = 0 versus H1 : µd 6= 0. Under
the null hypothesis H0, the test statistic follows a Student’s t-distribution with the degrees of freedom

ν = N − 1 . (0.0.1)

The critical value is therefore

t∗ = IDF.T
(

1− α

2
, ν

)
. (0.0.2)
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Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom ν in Equation (??), and the noncentrality parameter computed as

λ =
µd

σd/
√
N

=
µ1 − µ2

σd/
√
N

= δ
√
N , (0.0.3)

where
σd = (σ2

1 + σ2
2 − 2ρσ1σ2)1/2 , (0.0.4)

if σk and ρ are specified instead of σd, and

δ =
µd

σd
. (0.0.5)

Note that the effect size of the nondirectional test is defined as the absolute value of Equation (??). The
power for a related-sample nondirectional t-test is therefore

Ω = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ) , (0.0.6)

where t∗, ν, and λ are defined by Equations (??), (??), and (??), respectively.

Directional or one-sided testing hypothesis

For a directional test with one-sided testing hypotheses H0 : µd = 0 versus H1 : µd > 0 (or H1 : µd < 0), the
power is computed as

Ω = 1−NCDF.T(t∗, ν, λ) , (0.0.7)

where
t∗ = IDF.T(1− α, ν) (0.0.8)

ν is defined by Equation (??), and

λ =
|µd|

σd/
√
N

=
|µ1 − µ2|
σd/
√
N

= |δ|
√
N , (0.0.9)

respectively. Note that σd in Equation (??) is computed by Equation (??), if σk and ρ are specified instead
of σd.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0. For the related-sample analysis, N0 denotes the
group pairs. For the independent-sample analysis, N0 denotes the sample size estimated for group 1.

N ′0: The sample size estimated for group 2 in the independent-sample analysis.

r0: The ratio of the group sample sizes in the independent-sample analysis discussed later in section ??,
which is defined by r0 = N ′0/N0. To avoid extreme unbalanced situations, we let 0.01 ≤ r0 ≤ 100, and
the default setting is r0 = 1.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (??), to a given power
function under certain conditions. Here we give some implementation notes.

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

Related-sample Analysis

Users are required to specify the values for µd (or µk), σd (or σk and ρ), ω0, and α. The default setting is
ρ = 0.5 and α = 0.05.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section ??, we construct ∗function
based on Equation (??)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ)− ω0 , (.0.10)

and feed it to Algorithm (??) to solve for N = rtb. We then set N0 = drtbe, and follow Equation (??)-(??)
by replacing N with N0 to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section ??, we construct ∗function
based on Equation (??)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ)− ω0 , (.0.11)

and feed it to Algorithm (??) to solve for N = rtb. We then N0 = drtbe, and follow Equation (??)-(??) by 
replacing N with N0 to solve for Ω0.

Power Analysis Table

Depending on the test direction, N is estimated by N0 and Actual Power is estimated by Ω0. Power is ω0 
specified by users.
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Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 2, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

Power Analysis Table

Actual Test Assumptions

Nb Powerc Power Std. Devd Effect Size Sig.

Test for Mean Differencea 245 .800 .800 27.812 .180 .05

a. Two-sided test

b. Number of group pairs.

c. Based on noncentral t-distribution.

d. Standard deviation of the mean difference.

Table 1: Estimate Sample Size of Related-sample t-Test
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Introduction

Analysis of variance (ANOVA) is a statistical method of estimating the means of several populations which
are often assumed to be normally distributed. The One-way ANOVA, a common type of ANOVA, is an
extension of the two-sample t-test. In this document, we present the approaches of estimating the power for
two types of hypothesis to compare the multiple group means, the overall test and the test with specified
contrasts. The over test focuses on the null hypothesis that all group means are equal. The test with
specified contrasts may break down the overall ANOVA hypotheses into smaller but more describable and
useful pieces of the means. More details are discussed in the following sections.

Power Analysis of One-way ANOVA

In this section, the observed data contain two independent samples. We assume that the data in each sample
independently and identically follow a normal distribution with a fixed mean and variance, and would like
to draw statistical inference about the difference of the two means. The following notations are used in this
section.

J : Total number of the independent groups of which we would like to compare the means, and J ≥ 2,
which is an integer.

j: The group index, j = 1, 2, . . . , J .

nj : The sample size for group j, and nj ≥ 2, which is an integer.

N : The total sample size, and N =
∑J

j=1 nj .

µj : The population mean of group j for comparison, and µj ∈ (−∞,+∞).

σ: The population standard deviation, and σ > 0.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

Model Assumptions, Statistical Hypotheses, and Planned Contrasts

At least two random variables Yjk are observed according to the model

Yjk = µj + εjk , (0.0.1)

where µj are unknown parameters, εjk are error random variables, j = 1, 2, . . . , J , and k = 1, 2, . . . , nj . The
classic one-way ANOVA model assumptions are

• E(εjk) = 0. V(εjk) = σ2
j < ∞, for all j, k. C(εjk, εj′k′) = 0 for all j, j′, k and k′, where j 6= j′ and

k 6= k′.

• εjk are independent and normally distributed.

• σ2
j = σ2 for all j.

The classic one-way ANOVA tests the null hypothesis that

H0 : µ1 = µ2 = . . . = µJ (0.0.2)

versus the alternative hypothesis that
H1 : µj 6= µj′ , (0.0.3)

for some j, j′, where j 6= j′. Let c = (c1, c2, . . . , cJ), which denotes the known contrast coefficients. The
one-way ANOVA statistical test can also be written as

H0 :

J∑
j=1

cjµj = 0 for all c ∈ C (0.0.4)
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versus

H1 :

J∑
j=1

cjµj 6= 0 for some c ∈ C , (0.0.5)

where C = {c :
∑J

j=1 cj = 0}. Note that the hypotheses aforementioned are the ones for the ANOVA overall
test. Assigning special values to the components of c will give particular test with specified contrasts. For
instance, to compare the mean of the first group to the average mean of the second and third groups, we
can set c = (1,−0.5,−0.5, 0, . . . , 0, 0), and thus formulating the null hypothesis that

H0 : µ1 =
1

2
(µ2 + µ3) . (0.0.6)

Overall Test

In this section, we focus on the overall hypothesis formulated by Equation (??) and (??). The overall test
is required when running the procedure. Users are required to specify the values for µj , σ, nj , and α. The
default setting is α = 0.05. It must satisfy that

• The number of µj and nj should jibe.

• At least two µj (nj) are required.

The group number J is determine by counting the number of nj (or µj) specified by users. We can also
obtain the following two quantities, the total sample size is computed by

N =

J∑
j=1

nj , (0.0.7)

and the proportion of each group size
rj = nj/N . (0.0.8)

Under the null hypothesis H0, the test statistic follows an F -distribution with the degrees of freedom

df1 = J − 1 (0.0.9)

for the hypothesis (numerator), and
df2 = N − J (0.0.10)

for the error term (denominator). The critical value is therefore1

F ∗ = IDF.F (1− α, df1, df2) . (0.0.11)

Under the alternative hypothesis, the test statistic follows a noncentral F -distribution with the same degrees
of freedom in Equation (??) and (??), and the noncentrality parameter computed as

λ =

∑J
j=1 nj(µj − µ̄)2

σ2
=

∑J
j=1 rj(µj − µ̄)2

σ2/N
, (0.0.12)

where

µ̄ =

J∑
j=1

rjµj , (0.0.13)

and rj is computed by Equation (??). The power for an overall ANOVA test is therefore2

Ω = 1−NCDF.F(F ∗, df1, df2, λ) , (0.0.14)

where F ∗, df1, df2, and λ are defined by Equation (??), (??), (??), and (??), respectively. In addition, for
the overall test, we also compute the root-mean-square standardized effect (RMSSE) as the measure of effect
size by using

δ =

√√√√ 1

J − 1

J∑
j=1

(µj − µ̄)2/σ2 , (0.0.15)
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where µ̄ is computed by Equation (??).

Test with Specified Contrasts

In this section, we focus on the special components of c, and formulate the particular hypotheses such as
described by Equation (??). The test with specified contrasts is optional. To conduct the test, users are
required to specify the values for µj , σ, nj , cj , and α. The default setting is α = 0.05. It must satisfy that

• The number of µj , nj , and cj should jibe.

• At least two µj (nj and cj) are required.

• For the components of c, it must satisfy that
∑J

j=1 cj = 0.

• The components of c cannot all be 0.

In case that
∑J

j=1 cj = 0 is violated, we would assign a warning message, and run the procedure by resetting

the contrast. If the last component is not the only nonzero component, we reset cJ to force that
∑J−1

j=1 cj +
cJ = 0. Otherwise, we reset the second-to-last component cJ−1. Unlike the overall test, the estimation of
power for a test with the specified contrasts depends on whether the alternative hypothesis is formulated in
a nondirectional or directional way which is discussed separately in the following sections.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 :
∑J

j=1 cjµj = 0 versus H1 :∑J
j=1 cjµj 6= 0 for a particular set of contrast coefficients specified by the components in c. Under the null

hypothesis H0, the test statistic follows an F -distribution with the degrees of freedom

df1 = 1 (0.0.16)

for the hypothesis (numerator), and
df2 = N − J (0.0.17)

for the error term (denominator). The critical value is therefore

F ∗ = IDF.F (1− α, df1, df2) . (0.0.18)

Under the alternative hypothesis, the test statistic follows a noncentral F -distribution with the same degrees
of freedom in Equation (??) and (??), and the noncentrality parameter computed as

λ =

(∑J
j=1 cjµj

)2

σ2
∑J

j=1 c
2
j/nj

=
N
(∑J

j=1 cjµj

)2

σ2
∑J

j=1 c
2
j/rj

=
Nδ2∑J

j=1 c
2
j/rj

, (0.0.19)

where rj is computed by Equation (??), and

δ =

∑J
j=1 cjµj

σ
. (0.0.20)

Note that the effect size of the nondirectional test is defined as the absolute value of Equation (??). The
power for a nondirectional ANOVA test with specified contrasts is therefore

Ω = 1−NCDF.F(F ∗, df1, df2, λ) , (0.0.21)

where F ∗, df1, df2, and λ are defined by Equation (??), (??), (??), and (??), respectively.

1IDF.F(prob, df1, df2 ) returns the value from the F -distribution, with specified degrees of freedom df1 and df2, for which
the cumulative probability is prob.

2NCDF.F(quant, df1, df2, λ) returns the cumulative probability such that a value from the noncentral F -distribution, with
the specified degrees of freedom df1 and df2, and noncentrality λ, will be less than quant.
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Directional or one-sided testing hypothesis

For a directional test, we formulate one-sided testing hypothesesH0 :
∑J

j=1 cjµj = 0 versusH1 :
∑J

j=1 cjµj ≥
0 (or H1 :

∑J
j=1 cjµj < 0) for a particular set of contrast coefficients specified by the components in c. Under

the null hypothesis H0, the test statistic follows a Student’s t-distribution with the degrees of freedom

df = N − J . (0.0.22)

The critical value is therefore3

t∗ = IDF.T (1− α, df) . (0.0.23)

Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom in Equation (??), and the noncentrality parameter computed as

λ =

∑J
j=1 cjµj

σ
√∑J

j=1 c
2
j/nj

=

√
N
∑J

j=1 cjµj

σ
√∑J

j=1 c
2
j/rj

=

√
Nδ√∑J

j=1 c
2
j/rj

, (0.0.24)

where rj and δj is computed by Equation (??) and (??), respectively. The power for a directional ANOVA
test with specified contrasts is therefore4

Ω = 1−NCDF.T(t∗, df, |λ|) , (0.0.25)

where t∗, df , and λ are defined by Equation (??), (??), and (??), respectively.

Pairwise differences

Often times there is interest in pairwise differences of means, or µj − µj′ for all j, j′ ∈ {1, 2, . . . , J}, where
j < j′. In this section, we discuss an optional feature to estimate the power for testing such hypotheses that
µj −µj′ = 0 in the one-way ANOVA. Since we are conducting multiple comparisons, we may want to adjust
the significance level in an appropriate way. Here, depending on users’ selection, we support the Bonferroni
correction

α∗ =
2α

J(J − 1)
, (0.0.26)

the Šidák correction
α∗ = 1− (1− α)2/[J(J−1)] , (0.0.27)

and the least significant difference by letting

α∗ = α . (0.0.28)

To test for the pairwise differences, we actually formulate special contrasts, and follow the similar procedure
previously discussed in Section (??). As an illustrative example of testing the hypothesis that µ1−µ2 = 0, we
set c = (1,−1, 0, 0, . . . , 0). Alongside with the user-specified µj , σ, nj , and α, we first convert α to α∗ by using
Equation (??), (??), or (??), and then apply Equation (??). Note that we always assume that testing for the
pairwise differences is nondirectional. In general, this procedure will be repeated for all pairwise differences
of means µj − µj′ for all j, j′ ∈ {1, 2, . . . , J}, where j < j′, by varying c = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0),
where 1 and -1 are the j-th and j′-th component of c, respectively. Analogously, the effect size for each
pairwise difference can be computed by taking the absolute value of Equation (??) and inserting the
corresponding c.

3IDF.T(prob, df ) returns the value from the Student’s t-distribution, with specified degrees of freedom df, for which the
cumulative probability is prob.

4NCDF.T(quant, df, λ) returns the cumulative probability such that a value from the noncentral Student’s t-distribution,
with the specified degrees of freedom df and noncentrality λ, will be less than quant.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-specified power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least overall sample size that is required to reach Ω0.

mj : The sample size estimated for group j.

gj : The group size weight assigned to group j. The default setting is that gj = 1, which assumes that the
group sizes are the same. For each gj , it must satisfy that 1 ≤ gj ≤ 100.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (??), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 2J , x2 = 2J + 400, acc = 10−6. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .
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• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in the later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

• The quantity rtb is the value returned by the routine. It will be rounded up to N0, which is the
smallest integer ≥ rtb , to estimate the overall sample size. In the presence of the contrast, we use
rtb to estimate the group sizes first to ensure that mj ’s are all integers. More details are discussed
in later sections.

Overall Test

Users are required to specify the values for µj , σ, ω0, gj , and α. The default setting is α = 0.05. Given
ω0 as well as the other parameters and statistics as discussed in Section ??, we convert gj to rj as used in
Equation (??) by

rj =
gj∑J
j=1 gj

, (.0.29)

and construct ∗function based on Equation (??)

∗function(N; param) = 1−NCDF.F(F ∗, df1, df2, λ)− ω0 , (.0.30)

and feed it to Algorithm (??) to solve for rtb. The sample size estimated for group j is

mj = max {2, drtb ∗ rje} , (.0.31)

for j = 1, 2, . . . , J , where rj is estimated by Equation (??). The total sample size is estimated by

N0 =

J∑
mj , (.0.32)

j=1

where mj is estimated by Equation (??). We then follow Equation (??)-(??) by replacing N with N0 and 
nj with mj to solve for Ω0.

Power Analysis and Group Sizes: Overall test

N is estimated by N0; Actual Power is estimated by Ω0; and Power is ω0 specified

Power Analysis Table

Actual Test Assumptions

N Powerb Power Std. Dev Effect Sized Sig.

Overall Testa 75 .805 .800 5 .481 .05

a. Tests the null hypothesis that population mean is the same for all groups.

b. Based on noncentral F -distribution.

c. Total sample size across groups.

d. Root-mean-square standardized effect.

Table 1: Estimate Overall Sample Size of ANOVA Overall Test

by users. All the other table settings are the same as Table ??. For Table ??, N for Group j is estimated by
mj in Equation (??), and N for Overall is estimated by N0 in Equation (??).
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Group Size Allocation for Overall Test

N

Group 1 15

Group 2 30

Group 3 20

Group 4 10

Overall 75

Table 2: Estimate Group Sizes of ANOVA Overall Test

Test with Specified Contrasts

In the presence of cj , we will estimate the sample size to reach a given power value for a user-supplied
contrast. Users are required to specify the values for µj , σ, ω0, gj , cj , and α. The default setting is α = 0.05.

Nondirectional or two-sided test

Given ω0 as well as the other parameters and statistics as discussed in Section ??, we convert gj to rj as
used in Equation (??) by Equation (??), and construct ∗function based on Equation (??)

∗function(N; param) = 1−NCDF.F(F ∗, df1, df2, λ)− ω0 , (.0.33)

and feed it to Algorithm (??) to solve for rtb. The sample size estimated for group j is

mj = max {2, drtb ∗ rje} , (.0.34)

for j = 1, 2, . . . , J , where rj is estimated by Equation (??). The total sample size is estimated by

N0 =

J∑
j=1

mj , (.0.35)

where mj is estimated by Equation (??). We then follow Equation (??)-(??) by replacing N with N0 and
nj with mj to solve for Ω0.

Directional or one-sided test

Given ω0 as well as the other parameters and statistics as discussed in Section ??, we convert gj to rj as
used in Equation (??) by Equation (??), and construct ∗function based on Equation (??)

∗function(N; param) = 1−NCDF.T(t∗, df, |λ|)− ω0 , (.0.36)

and feed it to Algorithm (??) to solve for rtb. The sample size estimated for group j is

mj = max {2, drtb ∗ rje} , (.0.37)

for j = 1, 2, . . . , J , where rj is estimated by Equation (??). The total sample size is estimated by

N0 =

J∑
j=1

mj , (.0.38)

where mj is estimated by Equation (??). We then follow Equation (??)-(??) by replacing N with N0 and
nj with mj to solve for Ω0.
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Contrast Test

Actual Test Assumptions

N Powerb Power Std. Dev Effect Size Sig.d

Contrast Testa 75 .813 .800 5 2.50 .05

a. Tests the null hypothesis formulated by the user-specified contrast.

b. Based on noncentral t-distribution.

c. Total sample size across groups.

d. Two-sided test with a nondirectional alternative hypothesis.

Table 3: Estimate Overall Sample Size of ANOVA Contrast Test

Power Analysis and group sizes: User-supplied contrast

Depending on the test direction, N is estimated by N0; Actual Power is estimated by Ω0 and Power is ω0 
specified by users. Depending on the test direction, N for Group j is estimated by mj,

Group Size Allocation for Overall Test

N

Group 1 15

Group 2 30

Group 3 20

Group 4 10

Overall 75

Table 4: Estimate Group Sizes of ANOVA Contrast Test

 and Sample Size for Overall is estimated by N0.

Pairwise differences

If the pairwise comparison is requested by users, we will estimate the sample size to reach a given power value 
for several special contrasts. As an illustrative example of testing the hypothesis that µ1 − µ2 = 0, we set c = 
(1, −1, 0, 0, . . . , 0). Alongside with the user-specified µj , σ, ω0, gj , and α, we first convert α to α∗, depending 
on the user-setting. We then follow the method to estimate mj , N0, and Ω0 for the contrast c = (1, −1, 0, 
0, . . . , 0).

We first convert gj to rj and construct ∗function and feed it to the algorithm to solve for rtb.

(.0.39)∗function(N; param) = 1 − NCDF.F(F ∗, df1, df2, λ) − ω0 ,

The sample size estimated for group j is

mj = max {2, drtb ∗ rje} , (.0.40)

for j = 1, 2, . . . , J , where rj is estimated by Equation (??). The total sample size is estimated by

N0 =
J∑

j=1

mj , (.0.41)
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where mj is estimated by Equation (??). We then follow Equation (??)-(??) by replacing N with N0 
and nj with mj to solve for Ω0. Note that we always assume that testing for the pairwise differences is 
nondirectional.

In general, this procedure will be repeated for all pairwise differences of means µj − µj′ for all j, j′ ∈ 
{1, 2, . . . , J}, where j < j′, by varying c = (0, . . . , 0, 1, 0, . . . , 0, −1, 0, . . . , 0), where 1 and -1 are the j-th and 
j′-th component of c, respectively. Note that when the estimation is repeated, rj ’s remain the same for all 
the pairwise contrasts, and do not have to be reevaluated.

Power Analysis and group sizes: Pairwise comparisons

When ω0 is specified, and the pairwise test is turned on. For each pairwise comparison, N is estimated by N0, 
and Actual Power is estimated by Ω0. Footnote a now annotates the power value ω0 specified by users rather 
than the sample size. For each pairwise comparison, N for Group is estimated by mj, and N for Overall is estimated 
by N0.

Pairwise Differencesa

Actual

Multiple Comparisons N Powerb Effect Size

group 1 – group 2 96 .808 1.000

group 1 – group 3 14 .929 4.500

group 1 – group 4 11 .983 8.500

group 2 – group 3 914 .801 .500

group 2 – group 4 914 .801 .500

group 3 – group 4 13 .952 6.500

a. Power: .800. Pooled standard deviation: 5. Significance: .00833.

Two-sided test with the Bonferroni correction.

b. Based on noncentral t-distribution.

Table 5: Estimate Sample Size of ANOVA Pairwise Differences
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Group Size Allocation for Pairwise Differences

Multiple Comparisons Group N

group 1 – group 2 1 19

2 38

3 26

4 13

Overall 96

group 1 – group 3 1 3

2 5

3 4

4 2

Overall 14

group 1 – group 4 1 2

2 4

3 3

4 2

Overall 11

. . .

group 3 – group 4 1 3

2 5

3 3

4 2

Overall 13

Table 6: Estimate Group Sizes of ANOVA Pairwise Differences
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Introduction

Partial correlation can be explained as the association between two random variables after eliminating the
effect of another or several other variables. It is a useful measurement in the presence of confounding. Similar
to the Pearson correlation coefficient, partial correlation coefficient is also a dimensionless quantity ranging
between -1 and 1. In this document, we present the Fisher’s asymptotic method to estimate the power for
the one-sample partial correlation test. More details are discussed in the following sections.

Notations

The following notations are used in the later sections.

k: The number of variables partialled out, and k ≥ 0, which is a fixed integer.

n: The sample size in pairs, and n > k + 3, which is a fixed positive integer.

ρ: The partial correlation parameter between two continuous variables, and ρ ∈ [−1, 1].

ρ0: The null hypothesis value for the partial correlation parameter, and ρ0 ∈ [−1, 1].

ρ1: The alternative hypothesis value for the partial correlation parameter, and ρ1 ∈ [−1, 1].

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

To estimate the power, users are also required to specify the values for k, n, ρ0, ρ1, α, and whether the test
is nondirectional or directional. The default setting is ρ0 = 0, α = 0.05, and the nondirectional test.

Power for the One-sample Partial Correlation Test

[Fisher, 1921] suggested a z -transformation by using an inverse hyperbolic tangent function

Zρ = tanh-1(ρ̂) =
1

2
log

(
1 + ρ̂

1− ρ̂

)
, (0.0.1)

where ρ̂ is the estimator of ρ. Note that Zρ asymptotically follows a normal distribution with mean

E(Zρ) = tanh-1(ρ) +
ρ

2(n− 1− k)
(0.0.2)

and variance

V(Zρ) =
1

n− 3− k
. (0.0.3)

To facilitate the following presentation, we define

λ = n− 1− k , (0.0.4)

and

dρ = tanh-1(ρ1)− tanh-1(ρ0) . (0.0.5)

Particularly, we allow that

dρ =

{
+∞ if ρ0 = −1 or ρ1 = 1

−∞ if ρ1 = −1 or ρ0 = 1
. (0.0.6)
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Nondirectional or Two-sided Testing Hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : ρ = ρ0 versus H1 : ρ = ρ1 6= ρ0.
By applying the Fisher’s z -transformation using Equation (0.0.1), it is equivalent to test H0 : tanh-1(ρ) =
tanh-1(ρ0). Under the null hypothesis H0, the transformed test statistic approximately follows a standard
normal distribution. The critical value is therefore1

z∗ = PROBIT (1− α/2) . (0.0.7)

Under the alternative hypothesis, the test statistic also follows a normal distribution. The power for the
one-sample nondirectional partial correlation test can be estimated by2

Ω = 1− Φ

(
δ + z∗√

ν

)
+ Φ

(
δ − z∗√

ν

)
, (0.0.8)

where z∗ is computed by Equation (0.0.7),

δ =
1√

V(Zρ)

{
dρ +

ρ1
2λ

[
1 +

5 + ρ21
4λ

+
11 + 2ρ21 + 3ρ41

8λ2

]
− ρ0

2λ

}
, (0.0.9)

and

ν =
1

λV(Zρ)

[
1 +

4− ρ21
2λ

+
22− 6ρ21 − 3ρ41

6λ2

]
, (0.0.10)

where V(Zρ), λ, and dρ are defined by Equation (0.0.3), (0.0.4), and (0.0.5), respectively [Stuard and Ord, 1994].

Directional or One-sided Testing Hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.11)

Suppose the one-sided testing hypotheses are formulated by H0 : ρ = ρ0 versus H1 : ρ = ρ1 ≥ ρ0. By
applying the Fisher’s z -transformation, the power is computed as

Ω = Φ

(
δ − z∗√

ν

)
, (0.0.12)

where δ, ν, and z∗ are computed by Equation (0.0.9), (0.0.10), and (0.0.11), respectively. Suppose the one-
sided testing hypotheses are formulated by H0 : ρ = ρ0 versus H1 : ρ = ρ1 < ρ0. By applying the Fisher’s
z -transformation, the power is computed as

Ω = 1− Φ

(
δ + z∗√

ν

)
, (0.0.13)

where δ, ν, and z∗ are computed by Equation (0.0.9), (0.0.10), and (0.0.11), respectively.

1 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The
argument prob is a probability greater than 0 and less than 1.

2 Φ(zvalue), or CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and
standard deviation 1 would be less than zvalue, which must be numeric.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size in pairs that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = k + 3, x2 = k + 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.
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• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

.1 Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.8)

∗function(N; param) = Φ

(
δ − z∗√

ν

)
− ω0 , (.1.1)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

.2 Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , when the alternative
hypothesis is H1 : ρ = ρ1 > ρ0, we construct ∗function based on Equation (0.0.12)

∗function(N; param) = Φ

(
δ − z∗√

ν

)
− ω0 , (.2.1)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

Given ω0 as well as the other parameters and statistics as discussed in Section , when the alternative
hypothesis is H1 : ρ = ρ1 < ρ0, we construct ∗function based on Equation (0.0.13)

∗function(N; param) = 1− Φ

(
δ + z∗√

ν

)
− ω0 , (.2.2)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

.3 Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction and whether

Power Analysis Table

Actual Test Assumptions

N Powerb Power Partialledc Null Alternative Sig.

Partial Correlationa 50 .459 .450 3 0 0.27 0.05

a. Two-sided test with a nondirectional alternative hypothesis.

b. Based on Fisher’s z -transformation and normal approximation.

c. The number of the variables assumed to be partialled out.

Table 1: Estimate Sample Size of One-sample Partial Correlation Test

the estimation method of the variance in Appendix Section .1 and .2, N is estimated by N0, and Actual
Power is estimated by Ω0. Power is ω0 specified by users. All the other table settings are the same as Table
??.
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Introduction

Pearson product-moment correlation coefficient measures the strength of linear association between two
scale random variables which are assumed to follow a bivariate normal distribution. By convention, it is
a dimensionless quantity and obtained by standardizing the covariance between two continuous variables,
thereby ranging between -1 and 1. In this document, we present the Fisher’s asymptotic method to estimate
the power for the one-sample Pearson correlation test. More details are discussed in the following sections.

Notations

The following notations are used in the later sections.

n: The sample size in pairs, and n > 3, which is a fixed positive integer.

ρ: The Pearson correlation parameter between two continuous variables, and ρ ∈ [−1, 1].

ρ0: The null hypothesis value for the Pearson correlation parameter, and ρ0 ∈ [−1, 1].

ρ1: The alternative hypothesis value for the Pearson correlation parameter, and ρ1 ∈ [−1, 1].

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

To estimate the power, users are also required to specify the values for n, ρ0, ρ1, α, whether the bias
adjustment is used (See section for details), and whether the test is nondirectional or directional. The
default setting is ρ0 = 0, α = 0.05, and the nondirectional test involving the bias adjustment term. Note
that it is not allowed to specify that ρ0 = ρ1.

Power for the One-sample Pearson Correlation Test

[Fisher, 1921] suggested a z -transformation by using an inverse hyperbolic tangent function

Zρ = tanh-1(ρ̂) =
1

2
log

(
1 + ρ̂

1− ρ̂

)
, (0.0.1)

where ρ̂ is the estimator of ρ. Note that Zρ asymptotically follows a normal distribution with mean

E(Zρ) = tanh-1(ρ) + b ≈ tanh-1(ρ) (0.0.2)

and variance

V(Zρ) =
1

n− 3
, (0.0.3)

where b in Equation (0.0.2) denotes a term to adjust the estimation bias, and

b =
ρ

2(n− 1)
. (0.0.4)

It is not uncommon that b is ignored to simplify the computation without loosing too much precision for
a large sample size n. We would consider both scenarios in this procedure, and leave users an option of
involving or ignoring the bias adjustment. To facilitate the following presentation, we define

dρ = tanh-1(ρ1)− tanh-1(ρ0) . (0.0.5)

Particularly, we allow that

dρ =

{
+∞ if ρ0 = −1 or ρ1 = 1

−∞ if ρ1 = −1 or ρ0 = 1
. (0.0.6)
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Nondirectional or Two-sided Testing Hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : ρ = ρ0 versus H1 : ρ = ρ1 6= ρ0.
By applying the Fisher’s z -transformation using Equation (0.0.1), it is equivalent to test H0 : tanh-1(ρ) =
tanh-1(ρ0). Under the null hypothesis H0, the transformed test statistic approximately follows a standard
normal distribution. The critical value is therefore1

z∗ = PROBIT (1− α/2) . (0.0.7)

Under the alternative hypothesis, the test statistic also follows a normal distribution. The power for the
one-sample nondirectional Pearson correlation test can be estimated by2

Ω = 1− Φ

(
δ + z∗√

ν

)
+ Φ

(
δ − z∗√

ν

)
, (0.0.8)

where z∗ is computed by Equation (0.0.7),

δ =


dρ√
V(Zρ)

if b is ignored in Equation (0.0.2)

1√
V(Zρ)

{
dρ +

ρ1
2(n− 1)

[
1 +

5 + ρ21
4(n− 1)

+
11 + 2ρ21 + 3ρ41

8(n− 1)2

]
− ρ0

2(n− 1)

}
otherwise

,

(0.0.9)
and

ν =


1 if b is ignored in Equation (0.0.2)

1

(n− 1)V(Zρ)

[
1 +

4− ρ21
2(n− 1)

+
22− 6ρ21 − 3ρ41

6(n− 1)2

]
otherwise

, (0.0.10)

where V(Zρ) and dρ are defined by Equation (0.0.3) and (0.0.5), respectively [Stuard and Ord, 1994].

Directional or One-sided Testing Hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.11)

Suppose the one-sided testing hypotheses are formulated by H0 : ρ = ρ0 versus H1 : ρ = ρ1 ≥ ρ0. By
applying the Fisher’s z -transformation, the power is computed as

Ω = Φ

(
δ − z∗√

ν

)
, (0.0.12)

where δ, ν, and z∗ are computed by Equation (0.0.9), (0.0.10), and (0.0.11), respectively. Suppose the one-
sided testing hypotheses are formulated by H0 : ρ = ρ0 versus H1 : ρ = ρ1 < ρ0. By applying the Fisher’s
z -transformation, the power is computed as

Ω = 1− Φ

(
δ + z∗√

ν

)
, (0.0.13)

where δ, ν, and z∗ are computed by Equation (0.0.9), (0.0.10), and (0.0.11), respectively.

1 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The
argument prob is a probability greater than 0 and less than 1.

2 Φ(zvalue), or CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and
standard deviation 1 would be less than zvalue, which must be numeric.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size in pairs that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 3, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.
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• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.8)

∗function(N; param) = 1− Φ

(
δ + z∗√

ν

)
+ Φ

(
δ − z∗√

ν

)
− ω0 , (.0.14)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

Directional or one-sided testing hypothesis

Depending on the alternative hypothesis and whether b is ignored, we consider the following four situations:
Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : ρ1 > ρ0 and

b is ignored in Equation (0.0.2), we solve for

rtb =

[
IDF.NORMAL(ω0, 0, 1) + z∗

dρ

]2
+ 3 (.0.15)

analytically without using Algorithm (1). We then set N0 = drtbe, and follow Equation Section by replacing
n with N0 to solve for Ω0.

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : ρ1 < ρ0 and
b is ignored in Equation (0.0.2), we solve for Equation (.0.15) analytically without using Algorithm (1). We
then set N0 = drtbe, and follow Equation Section by replacing n with N0 to solve for Ω0.

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : ρ1 > ρ0 and
b is not ignored in Equation (0.0.2), we construct ∗function based on Equation (0.0.12)

∗function(N; param) = Φ

(
δ − z∗√

ν

)
− ω0 , (.0.16)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : ρ1 < ρ0 and
b is not ignored in Equation (0.0.2), we construct ∗function based on Equation (0.0.13)

∗function(N; param) = 1− Φ

(
δ + z∗√

ν

)
− ω0 , (.0.17)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction and whether
the bias term b is ignored or not in Appendix Section and , N is estimated by N0, and Actual Power is
estimated by Ω0. Power is ω0 specified by users. All the other table settings are the same as Table ??.
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Power Analysis Table

Actual Test Assumptions

N Powerb Power Null Alternative Sig.

Pearson Correlationa 123 .802 .800 0 0.25 0.05

a. Two-sided test with a nondirectional alternative hypothesis.

b. Based on Fisher’s z -transformation and normal approximation with bias adjustment.

Table 1: Estimate Sample Size of One-sample Pearson Correlation Test
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POWER PROPORTIONS INDEPENDENT Algorithms

Introduction

As one of the most important discrete distributions, the binomial distribution is based on a sequence of
Bernoulli trials. It can be used to model those experiments including a fixed number of total trials which are
assumed to be independent of each other. Each trial leads to a dichotomous result, with the same probability
for a “successful” outcome. In the independent-sample binomial test, we desire to compare two independent
proportion parameters. In this document, we present the methods to estimate the power based on different
statistical tests, and take into account the condition of both a large sample and moderate sample size.

General Notations

In the independent-sample binomial test, the observed data are collected from two independent random
samples indexed by k = 1, 2. For each sample, we assume that the data independently and identically follow
a binomial distribution with a fixed total number of trials nk and a proportion parameter pk, where nk is a
positive integer and pk ∈ (0, 1). The following notations are used in the later sections.

k: The group index, and k = 1, 2.

nk: The total number of trials for group k, and nk is a fixed positive integer. Let n = n1 + n2 and
r = n2/n1.

pk: The proportion parameter for group k for comparison, and pk ∈ (0, 1).

xk: The number of “successes” observed in group k, and xk is an integer ∈ [0, nk].

c: The continuity correction term used for the normal approximation method.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

The corresponding statistical hypotheses may be formulated in terms of the risk difference

p1 − p2 , (0.0.1)

the risk ratio
p1/p2 , (0.0.2)

or the odds ratio
[p1/(1− p1)]/[p2/(1− p2)] . (0.0.3)

There are two different ways to estimate the power which are discussed later in Section and , respectively.
Users may select either of them to do the estimation when n ≤ 500. The default setting is to apply the
large-sample approximation method. When n > 500, we would only consider the large-sample approximation
method.

Power Estimation with Large Sample Size

Under a large sample size assumption, it is valid to use an appropriate continuous distribution to approximate
a binomial distribution. In this section, we present various approximation or asymptotic methods appropriate
to the power estimation based on different test statistics.

Estimation Based on the Pearson’s Chi-squared Test

In this section, the power estimation is based on the Pearson’s chi-squared test1. Users are required to
specify the values for nk, pk, α, whether the test is nondirectional or directional, whether the continuity
correction is applied or not, and whether the estimation of the standard deviation is pooled or unpooled.
The default setting is α = 0.05, the nondirectional test without the continuity correction, and the pooled
standard error.

1Implementation note: This is the default setting for all the large-sample approximation methods discussed in Section .
2 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The

argument prob is a probability greater than 0 and less than 1.
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Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 6= p2.
Under the null hypothesis H0, the test statistic approximately follows a standard normal distribution. The
critical value is therefore2

z∗ = PROBIT (1− α/2) . (0.0.4)

Under the alternative hypothesis, the test statistic also follows a standard normal distribution. The power
can be estimated by3

Ω = 1− CDFNORM

(
p1 − p2 + z∗σ∗

σd

)
+ CDFNORM

(
p1 − p2 − z∗σ∗

σd

)
, (0.0.5a)

without the continuity correction, or

Ω = 1− CDFNORM

(
p1 − p2 + z∗σ∗ + c

σd

)
+ CDFNORM

(
p1 − p2 − z∗σ∗ − c

σd

)
, (0.0.5b)

with the continuity correction taken into consideration, where z∗ is computed by Equation (0.0.4),

σd =

√
p1(1− p1)

n1
+
p2(1− p2)

n2
, (0.0.6)

c = 0.5 (1/n1 + 1/n2) , (0.0.7)

and

σ∗ =

{√
p̄(1− p̄)(1/n1 + 1/n2) for the pooled standard deviation

σd for the unpooled standard deviation
, (0.0.8)

where σd is computed by Equation (0.0.6), and

p̄ =
n1p1 + n2p2

n
. (0.0.9)

A special case should be excluded for Equation (0.0.5): Set Ω = 1 when p1p2 = 0 and p1 + p2 = 1.

Directional or one-sided testing hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.10)

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. Depending
on whether or not the continuity correction is applied, the power is computed as

Ω = CDFNORM

(
p1 − p2 − z∗σ∗

σd

)
, (0.0.11a)

without the continuity correction, or

Ω = CDFNORM

(
p1 − p2 − z∗σ∗ − c

σd

)
, (0.0.11b)

with the continuity correction taken into consideration, where z∗ is computed by Equation (0.0.10). The
other quantities remain the same as discussed in Section . Suppose the one-sided testing hypotheses are

3 CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and standard deviation
1 would be less than zvalue, which must be numeric.
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formulated by H0 : p1 = p2 versus H1 : p1 < p2. Depending on whether or not the continuity correction is
applied, the power is computed as

Ω = 1− CDFNORM

(
p1 − p2 + z∗σ∗

σd

)
, (0.0.12a)

without the continuity correction, or

Ω = 1− CDFNORM

(
p1 − p2 + z∗σ∗ + c

σd

)
, (0.0.12b)

with the continuity correction taken into consideration, where z∗ is computed by Equation (0.0.10). The
other quantities remain the same as discussed in Section .

Estimation Based on the Student’s t-Test

In this section, the power estimation is based on the Student’s t-test [O’Brien and Muller, 1993]. Users are
required to specify the values for nk, pk, α, whether the test is nondirectional or directional, and whether the
estimation of the standard deviation is pooled or unpooled. The default setting is α = 0.05, the nondirectional
test, and the pooled standard error.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 6= p2.
Under the null hypothesis H0, the test statistic approximately follows a Student’s t-distribution with the
degrees of freedom

ν = n1 + n2 − 2 . (0.0.13)

The critical value is therefore4

t∗ = IDF.T (1− α/2, ν) . (0.0.14)

Under the alternative hypothesis, the test statistic follows a noncentral t-distribution with the same degrees
of freedom ν in Equation (0.0.13), and the noncentrality parameter is computed as

λ =


√
n1n2(p1 − p2)√

n1p1(1− p1) + n2p2(1− p2)
for the pooled t-test

√
n1n2(p1 − p2)√

n1p2(1− p2) + n2p1(1− p1)
for the unpooled t-test

. (0.0.15)

The power can be estimated by5

Ω = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ) , (0.0.16)

where t∗, ν, and λ are defined by Equation (0.0.14), (0.0.13), and (0.0.15), respectively.

Directional or one-sided testing hypothesis

For a directional test with one-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 ≥ p2 (or H1 : p1 < p2),
the power is computed as

Ω = 1−NCDF.T(t∗, ν, λ) , (0.0.17)

where
t∗ = IDF.T(1− α, ν) (0.0.18)

4IDF.T(prob, df ) returns the value from the Student’s t-distribution, with specified degrees of freedom df, for which the
cumulative probability is prob.

5NCDF.T(quant, df, λ) returns the cumulative probability such that a value from the noncentral Student’s t-distribution,
with the specified degrees of freedom df and noncentrality λ, will be less than quant.
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ν is defined by Equation (0.0.13), and

λ =


√
n1n2 |p1 − p2|√

n1p1(1− p1) + n2p2(1− p2)
for the pooled t-test

√
n1n2 |p1 − p2|√

n1p2(1− p2) + n2p1(1− p1)
for the unpooled t-test

, (0.0.19)

respectively.

Estimation Based on the Likelihood Ratio Test

In this section, the power estimation is based on the likelihood ratio test statistic test proposed by [Wilks, 1935].
Under the null hypothesis, the test statistic asymptotically follows a Chi-squared distribution with the degrees
of freedom equal to 1. In light of this, we consider the following test statistic

G =

√
2

[
n1p1 log

(
p1
p̄

)
+ n1q1 log

(
q1
q̄

)
+ n2p2 log

(
p2
p̄

)
+ n2q2 log

(
q2
q̄

)]
, (0.0.20)

where qk = 1− pk, p̄ is defined by Equation (0.0.9), and q̄ = 1− p̄. Users are required to specify the values
for nk, pk, α, and whether the test is nondirectional or directional. The default setting is α = 0.05 and the
nondirectional test.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 6= p2.
Under the null hypothesis H0, the test statistic asymptotically follows a Chi-squared distribution with the
degrees of freedom equal to 1, or a standard normal distribution. The critical value is the same as estimated
by Equation (0.0.4). Under the alternative hypothesis, the test statistic also follows a standard normal
distribution. The power can be estimated by

Ω = 1− CDFNORM (G + z∗) + CDFNORM (G − z∗) , (0.0.21)

where G and z∗ are estimated by Equation (0.0.20) and (0.0.4), respectively.

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. The power is
computed as

Ω = CDFNORM (G − z∗) , (0.0.22)

where G and z∗ are estimated by Equation (0.0.20) and (0.0.10), respectively. Suppose the one-sided testing
hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 < p2. The power is computed as

Ω = 1− CDFNORM (−G + z∗) , (0.0.23)

where G and z∗ are estimated by Equation (0.0.20) and (0.0.10), respectively.

Estimation Based on the Fisher’s Exact Test

The method discussed in this section is based on [Walters, 1979], which suggests using the arc sine approximation
to asymptotically estimate the power of the Fisher’s exact test. Note that the method is valid if the following
conditions are met:

• If p1 > p2, it is required that n1 ≥ 0.5/p1 and n2 ≥ 0.5/(1− p2).

• If p2 > p1, it is required that n1 ≥ 0.5/(1− p1) and n2 ≥ 0.5/p2.

Otherwise, Ω is set to be missing if the method is invoked.
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Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 6=
p2. Under the null hypothesis H0, the proposed test statistic asymptotically follows a standard normal
distribution. Under the alternative hypothesis, the test statistic also follows a normal distribution. The
power can be estimated by

Ω = 1− CDFNORM (δ + z∗) + CDFNORM (δ − z∗) , (0.0.24)

where z∗ is estimated by (0.0.4), and δ is estimated by

δ =



2
√
n1n2√
n

(
arcsin

√
p2 +

1

2n2
− arcsin

√
p1 −

1

2n1

)
if p1 > p2

0 if p1 = p2

2
√
n1n2√
n

(
arcsin

√
p2 −

1

2n2
− arcsin

√
p1 +

1

2n1

)
if p1 < p2

. (0.0.25)

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. The power is
computed as

Ω = 1− CDFNORM (δ + z∗) , (0.0.26)

where z∗ is estimated by Equation (0.0.10), and δ is estimated by the first expression in Equation (0.0.25).
Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 < p2. The power is
computed as

Ω = CDFNORM (δ − z∗) , (0.0.27)

where z∗ is estimated by Equation (0.0.10), and δ is estimated by the second expression in Equation (0.0.25).

Power Estimation with Moderate Sample Size

In this section, we discuss the binomial enumeration and the method appropriate to the test with a moderate
sample size with n ≤ 500. In case that the binomial enumeration method is specified when n > 500, the
corresponding large-sample approximation method will otherwise be implemented. In case that the Fisher’s
exact test (as discussed later in Section ) is requested when n > 500, the Pearson’s chi-squared test will
instead be implemented as discussed in Section . For either cases, a warning message will be created as a
reminder. For the following presentation, we define the estimator of pk by

p̂k =
xk
nk

, (0.0.28)

and the estimator of p̄ by

ˆ̄p =
n1p̂1 + n2p̂2

n
, (0.0.29)

where p̂1 and p̂2 are defined by Equation (0.0.28). We also consider the two special cases as follows:

• In case that x1 + x2 = 0, we set x1 = x2 = 0.001 when estimating the test statistics.

• In case that x1 + x2 = n, we set x1 = n1 − 0.001 and x2 = n2 − 0.001 when estimating the test
statistics.

Estimation Based on the Pearson’s Chi-squared Test

In this section, the power estimation is based on the Pearson’s chi-squared test6. Users are required to
specify the values for nk, pk, α, whether the test is nondirectional or directional, and whether the estimation
of the standard deviation is pooled or unpooled. The default setting is α = 0.05, the nondirectional test,
and the pooled standard error.

6Implementation note: This is the default setting for all the moderate-sample methods discussed in Section .
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Nondirectional or two-sided testing hypothesis

For each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φz =
|p̂1 − p̂2|√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.30a)

without the continuity correction, or

φz =
|p̂1 − p̂2| − 0.5(1/n1 + 1/n2)√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.30b)

with the continuity correction taken into consideration, where p̂1, p̂2, and ˆ̄p are estimated by Equation
(0.0.28) and (0.0.29). If φz > z∗ estimated by Equation (0.0.4), we collect the certain pair of (x1, x2) and
store it to a set denoted by A. The power can be estimated by

Ω =


∑

∀(x1,x2)∈A

(
n1
x1

)
px1
1 (1− p1)n1−x1

(
n2
x2

)
px2
2 (1− p2)n2−x2 for a nonempty set A

0 otherwise

. (0.0.31)

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. For each
combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φz =
p̂1 − p̂2√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.32a)

without the continuity correction, or

φz =
p̂1 − p̂2 + 0.5(1/n1 + 1/n2)√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.32b)

with the continuity correction taken into consideration, where p̂1, p̂2, and ˆ̄p are estimated by Equation
(0.0.28) and (0.0.29). If φz > z∗ estimated by Equation (0.0.10), we collect the certain pair of (x1, x2) and
store it to a set denoted by A, and estimate the power Ω by Equation (0.0.31). Suppose the one-sided testing
hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 < p2. For each combination of x1 = 0, 1, 2, . . . , n1

and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φz =
p̂2 − p̂1√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.33a)

without the continuity correction, or

φz =
p̂2 − p̂1 + 0.5(1/n1 + 1/n2)√

ˆ̄p(1− ˆ̄p)(1/n1 + 1/n2)
, (0.0.33b)

with the continuity correction taken into consideration, where p̂1, p̂2, and ˆ̄p are estimated by Equation
(0.0.28) and (0.0.29). If φz > z∗ estimated by Equation (0.0.10), we collect the certain pair of (x1, x2) and
store it to a set denoted by A, and estimate the power Ω by Equation (0.0.31).

Estimation Based on the Student’s t-Test

In this section, the power estimation is based on the Student’s t-test [O’Brien and Muller, 1993]. Users are
required to specify the values for nk, pk, α, whether the test is nondirectional or directional, and whether the
estimation of the standard deviation is pooled or unpooled. The default setting is α = 0.05, the nondirectional
test, and the pooled standard error. Additionally, the Student’s t-test statistic requires that n > 2 satisfy.
If it is violated, we assign an error message, and abort the power estimation procedure.
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Nondirectional or two-sided testing hypothesis

For each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φt =


√
n1n2 |p̂1 − p̂2|√

[n1p̂1(1− p̂1) + n2p̂2(1− p̂2)]n/(n− 2)
for the pooled t-test

√
n1n2 |p̂1 − p̂2|√

[n1p̂2(1− p̂2) + n2p̂1(1− p̂1)]n/(n− 2)
for the unpooled t-test

. (0.0.34)

where p̂1 and p̂2 are estimated by Equation (0.0.28). If φt > t∗ estimated by Equation (0.0.14), we collect the
certain pair of (x1, x2) and store it to a set denoted by A, and estimate the power Ω by Equation (0.0.31).

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. For each
combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φt =


√
n1n2 (p̂1 − p̂2)√

[n1p̂1(1− p̂1) + n2p̂2(1− p̂2)]n/(n− 2)
for the pooled t-test

√
n1n2 (p̂1 − p̂2)√

[n1p̂2(1− p̂2) + n2p̂1(1− p̂1)]n/(n− 2)
for the unpooled t-test

. (0.0.35)

If φl > t∗ estimated by Equation (0.0.18), we collect the certain pair of (x1, x2) and store it to a set denoted by
A, and estimate the power Ω by Equation (0.0.31). Suppose the one-sided testing hypotheses are formulated
by H0 : p1 = p2 versus H1 : p1 < p2. For each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2,
estimate the test statistic defined by

φt =


√
n1n2 (p̂2 − p̂1)√

[n1p̂1(1− p̂1) + n2p̂2(1− p̂2)]n/(n− 2)
for the pooled t-test

√
n1n2 (p̂2 − p̂1)√

[n1p̂2(1− p̂2) + n2p̂1(1− p̂1)]n/(n− 2)
for the unpooled t-test

. (0.0.36)

If φl > t∗ estimated by Equation (0.0.18), we collect the certain pair of (x1, x2) and store it to a set denoted
by A, and estimate the power Ω by Equation (0.0.31).

Estimation Based on the Likelihood Ratio Test

In this section, the power estimation is based on the likelihood ratio test suggested by[Wilks, 1935]. Users
are required to specify the values for nk, pk, α, and whether the test is nondirectional or directional. The
default setting is α = 0.05 and the nondirectional test.

Nondirectional or two-sided testing hypothesis

For each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, estimate the test statistic defined by

φl = 2 [x1 log x1 + x2 log x2 + (n1 − x1) log (n1 − x1) + (n2 − x2) log (n2 − x2) + n log n]

−2 [(x1 + x2) log (x1 + x2) + (n− x1 − x2) log (n− x1 − x2) + n1 log n1 + n2 log n2] . (0.0.37)

Note that we set a log a = 0 if a = 0 in Equation (0.0.37). If
√
φl > z∗ estimated by Equation (0.0.4), we

collect the certain pair of (x1, x2) and store it to a set denoted by A, and estimate the power Ω by Equation
(0.0.31).
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Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. We estimate
φl by Equation (0.0.37) for each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, provided that
p̂1 ≥ p̂2, where p̂k is defined by Equation (0.0.28). If

√
φl > z∗ estimated by Equation (0.0.10), we collect the

certain pair of (x1, x2) and store it to a set denoted by A, and estimate the power Ω by Equation (0.0.31).
Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 < p2. We estimate
φl by Equation (0.0.37) for each combination of x1 = 0, 1, 2, . . . , n1 and x2 = 0, 1, 2, . . . , n2, provided that
p̂1 < p̂2, where p̂k is defined by Equation (0.0.28). If

√
φl > z∗ estimated by Equation (0.0.10), we collect the

certain pair of (x1, x2) and store it to a set denoted by A, and estimate the power Ω by Equation (0.0.31).

Estimation Based on the Fisher’s Exact Test

The method discussed in this section is based on the Fisher’s exact test discussed by [Casagrande et al., 1978].
Users are required to specify the values for nk, pk, α, and whether the test is nondirectional or directional.
The default setting is α = 0.05 and the nondirectional test. Let X1 be the random variable denoting the
number of “successes” observed in group 1. We define the conditional distribution of X1 = x1 as

p(X1 = x1|m, η) =

(
n1
x1

)(
n2

m− x1

)
ηx1

∑
i

(
n1
i

)(
n2

m− i

)
ηi
, (0.0.38)

where m is the total number of “successes” observed in two groups, η is the odds ratio defined by Equation
(0.0.3), and Li ≤ i ≤ Ui, where

Li = max {0,m− n2} and Ui = min {n1,m} . (0.0.39)

Undirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p1 = p2 versus H1 : p1 6= p2.
This is equivalent to test H0 : η = 1 versus H1 : η 6= 1. Under the null hypothesis H0, for each fixed
m = 0, 1, 2, · · · , n, we first find the critical value i∗u by searching i∗u = Ui, Ui− 1, Ui− 2, . . . , Li in descending
order such that both

Ui∑
i=i∗u

p(X1 = i|m, η = 1) ≤ α

2
and

Ui∑
i=i∗u−1

p(X1 = i|m, η = 1) >
α

2
(0.0.40)

satisfy, where p(·) is defined by Equation (0.0.38), and Ui is defined by Equation (0.0.39). Similarly, we then
find the critical value i∗l by searching i∗l = Li, Li + 1, Li + 2, . . . , Ui in ascending order such that both

i∗l∑
i=Li

p(X1 = i|m, η = 1) ≤ α

2
and

i∗l +1∑
i=Li

p(X1 = i|m, η = 1) >
α

2
(0.0.41)

satisfy. The power can be estimated by the summation of

Ω =

n∑
j=0

 Ui∑
i=i∗u

p(X1 = i|m = j, η)P (j)

+

n∑
j=0

 i∗l∑
i=Li

p(X1 = i|m = j, η)P (j)

 , (0.0.42)

where η is defined by Equation (0.0.3) under the alternative hypothesis H1, and

P (j) =

Uj∑
i=Lj

(
n1
i

)
pi1(1− p1)n1−i

(
n2
j − i

)
pj−i2 (1− p2)n2−j+i , (0.0.43)

where
Lj = max (0, j − n2) and Uj = min (n1, j) . (0.0.44)
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Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 ≥ p2. This is
equivalent to test H0 : η = 1 versus H1 : η ≥ 1. Under the null hypothesis H0, for each fixed m =
0, 1, 2, · · · , n, we first find the critical value i∗u by searching i∗u = Ui, Ui−1, Ui−2, . . . , Li in descending order
such that both

Ui∑
i=i∗u

p(X1 = i|m, η = 1) ≤ α and

Ui∑
i=i∗u−1

p(X1 = i|m, η = 1) > α (0.0.45)

satisfy, where p(·) is defined by Equation (0.0.38), and Ui is defined by Equation (0.0.39). The power can
be estimated by the summation of

Ω =

n∑
j=0

 Ui∑
i=i∗u

p(X1 = i|m = j, η)P (j)

 , (0.0.46)

where η is defined by Equation (0.0.3) under the alternative hypothesisH1, and P (j) is estimated by Equation
(0.0.43). Suppose the one-sided testing hypotheses are formulated by H0 : p1 = p2 versus H1 : p1 < p2.
This is equivalent to test H0 : η = 1 versus H1 : η < 1. Under the null hypothesis H0, for each fixed
m = 0, 1, 2, · · · , n, we first find the critical value i∗u by searching i∗l = Li, Li + 1, Li + 2, . . . , Ui in ascending
order such that both

i∗l∑
i=Li

p(X1 = i|m, η = 1) ≤ α and

i∗l +1∑
i=Li

p(X1 = i|m, η = 1) > α (0.0.47)

satisfy, where p(·) is defined by Equation (0.0.38), and Li is defined by Equation (0.0.39). The power can
be estimated by the summation of

Ω =

n∑
j=0

 i∗l∑
i=Li

p(X1 = i|m = j, η)P (j)

 , (0.0.48)

where η is defined by Equation (0.0.3) under the alternative hypothesisH1, and P (j) is estimated by Equation
(0.0.43).
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size for group 1 that is required to reach Ω0.

N ′0: The sample size estimated for group 2.

r0: The ratio of the group sample sizes, which is defined by r0 = N ′0/N0. To avoid extreme unbalanced
situations, we let 0.01 ≤ r0 ≤ 100, and the default setting is r0 = 1.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: if The method presented in Section is used then
2: Input: ∗function(N; param), x1 = L, x2 = L + 400, acc = 10−9. . Use Equation (.0.63) to determine L.
3: else
4: Input: ∗function(N; param), x1 = 2, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
5: end if
6: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
7: if fmid = 0 then
8: return rtb = x2 .
9: end if

10: Evaluate f← ∗function(x1; param) .
11: if f ≥ 0 then
12: return rtb = x1 .
13: end if
14: while f ∗ fmid > 0 do
15: Set x1 ← x2 .
16: Update x2 ← 2x2 .
17: if x2 overflows then . Protect from infinite looping.
18: return rtb = SYSMIS .
19: end if
20: Set f← fmid .
21: Evaluate fmid← ∗function(x2; param) .
22: if fmid = 0 then
23: return rtb = x2 .
24: end if
25: end while
26: Let rtb← x1 .
27: Assign δx ← x2 − x1 .
28: for iteration j = 1, 2, 3, . . . do
29: Update δx ← 0.5 δx .
30: Update xmid← rtb + δx .
31: Evaluate fmid← ∗function(xmid; param) .
32: if fmid ≤ 0 then
33: Set rtb← xmid .
34: end if
35: if |δx| < acc or fmid = 0 then
36: return rtb.
37: end if
38: end for
39: return .
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• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

In the following discussion, users are required to specify the values for ω0, r0, pk, and α. Note that for all
the sample size estimation methods, we replace n2 with n2 = n1r0 such that n1 will be the only unknown
quantity to estimate.

Power Analysis with Large Sample Size

Estimation Based on the Pearson’s Chi-squared Test

In this section, the estimation of sample size is based on the Pearson’s chi-squared test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , depending on the continuity
correction, we construct ∗function based on Equation (0.0.5)

∗function(N; param) = 1− CDFNORM

(
p1 − p2 + z∗σ∗

σd

)
+ CDFNORM

(
p1 − p2 − z∗σ∗

σd

)
− ω0 ,(.0.49a)

or

∗function(N; param) = 1− CDFNORM

(
p1 − p2 + z∗σ∗ + c

σd

)
+ CDFNORM

(
p1 − p2 − z∗σ∗ − c

σd

)
− ω0 ,(.0.49b)

and feed it to Algorithm (1) to solve for n1 = rtb. Note that the sample estimated for group 2 is

N ′0 = max {drtb ∗ r0e, 1} . (.0.50)

We then set N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve
for Ω0.

Directional or owo-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , depending on whether the
standard deviation is pooled or not and whether the continuity correction is applied or not, we estimate the
sample size based on the following situations without applying Algorithm (1).

When the continuity correction is not used and the pooled standard deviation is used in Equation (0.0.8),
regardless of the alternative hypothesis, we solve for

rtb =
1

r0(p1 − p2)2

{
IDF.NORMAL(ω0, 0, 1) ∗

√
A+

z∗
√
B√

1 + r0

}2

, (.0.51)

where

A = r0p1(1− p1) + p2(1− p2) , (.0.52)

and

B = (p1 + r0p2)[1− p1 + r0(1− p2)] . (.0.53)

We then estimate N ′0 by using Equation (.0.50) and N0 = drtbe, and follow either Equation (0.0.11a) or
(0.0.12a), depending on the alternative hypothesis, by replacing n1 and n2 with N0 and N ′0, respectively, to
solve for Ω0.
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When the continuity correction is not used and the unpooled standard deviation is used in Equation
(0.0.8), regardless of the alternative hypothesis, we solve for

rtb =
1

r0(p1 − p2)2
[IDF.NORMAL(ω0, 0, 1) + z∗]

2 ∗A , (.0.54)

where A is estimated by Equation (.0.52). We then estimate N ′0 by using Equation (.0.50) and N0 = drtbe,
and follow either Equation (0.0.11a) or (0.0.12a), depending on the alternative hypothesis, by replacing n1
and n2 with N0 and N ′0, respectively, to solve for Ω0.

When the continuity correction is used and the pooled standard deviation is used in Equation (0.0.8),
regardless of the alternative hypothesis, we solve for

rtb =

C +

√
C2 + 4 |p1 − p2|

(
1 + r0

2r0

)
2(p1 − p2)

, (.0.55)

where

C =
z∗
√
B√

r0(r0 + 1)
+

√
A
√
r0

IDF.NORMAL(ω0, 0, 1) , (.0.56)

and A and B are estimated by Equation (.0.52) and (.0.53), respectively. We then estimate

N ′0 = max {drtb2 ∗ r0e, 1} , (.0.57)

and N0 = drtb2e, and follow either Equation (0.0.11b) or (0.0.12b), depending on the alternative hypothesis,
by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

When the continuity correction is used and the unpooled standard deviation is used in Equation (0.0.8),
regardless of the alternative hypothesis, we solve for

rtb =

√
A
√
r0

[IDF.NORMAL(ω0, 0, 1) + z∗] +

√
A

r0
[IDF.NORMAL(ω0, 0, 1) + z∗]

2
+ 4 |p1 − p2|

(
1 + r0

2r0

)
2(p1 − p2)

,

(.0.58)
where A and B are estimated by Equation (.0.52) and (.0.53), respectively. We then estimate N ′0 by using
Equation (.0.57) and N0 = drtb2e, and follow either Equation (0.0.11b) or (0.0.12b), depending on the
alternative hypothesis, by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Estimation Based on the Student’s t-Test

In this section, the estimation of sample size is based on the Student’s t-test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.16)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ) + NCDF.T(−t∗, ν, λ)− ω0 , (.0.59)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.17)

∗function(N; param) = 1−NCDF.T(t∗, ν, λ)− ω0 , (.0.60)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.
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Estimation Based on the Likelihood Ratio Test

In this section, the estimation of sample size is based on the likelihood ratio test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.21)

∗function(N; param) = 1− CDFNORM (G + z∗) + CDFNORM (G − z∗)− ω0 , (.0.61)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation

∗function(N; param) = CDFNORM (G − z∗)− ω0 , (.0.62)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Estimation Based on the Fisher’s Exact Test

In this section, the estimation of sample size is based on the Fisher’s exact test. To apply Algorithm (1), we
have to determine L by using

L =


max

{
0.5

p1
,

0.5

r0(1− p2)

}
if p1 > p2

max

{
0.5

(1− p1)
,

1

2r0p2

}
otherwise

. (.0.63)

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.24)

∗function(N; param) = 1− CDFNORM (δ + z∗) + CDFNORM (δ − z∗)− ω0 , (.0.64)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , if the alternative hypothesis
is H1 : p1 > p2, we construct ∗function based on Equation (0.0.26)

∗function(N; param) = 1− CDFNORM (δ + z∗)− ω0 , (.0.65)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.

Given ω0 as well as the other parameters and statistics as discussed in Section , if the alternative
hypothesis is H1 : p1 < p2, we construct ∗function based on Equation (0.0.27)

∗function(N; param) = CDFNORM (δ − z∗)− ω0 , (.0.66)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate N ′0 by using Equation (.0.50) and
N0 = drtbe, and follow Section by replacing n1 and n2 with N0 and N ′0, respectively, to solve for Ω0.
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Power Analysis with Moderate Sample Size

To prevent the program running for a long time especially in the presence of the extremely small risk
difference, we design a timer feature for users to specify the maximum number of minutes allowed to estimate
the sample size by using the Binomial enumeration. The timer is turned off completely by default. For any
positive integer minutes, if the time limit is reached, the analysis is terminated with a warning message
displayed. No results are provided.

When the sample size is estimated by using the Binomial enumeration, the bisection method with the
binomial probability mass function embedded may not always find the smallest sample size pair that satisfies
the test assumptions. To resolve the issue, an optimization process is described in Algorithm (2) to check if
there exists a better solution. The quantities N0, N ′0, and Ω0 returned by Algorithm (2) will be outputted
in the power analysis table as illustrated by Table 1.

Algorithm 2 OPTIMIZE Binom Routine: Optimize the sample size in a binomial setting.

1: Input: ∗function(N; param), r0, ω0, and rtb returned by Algorithm (1) .
2: Initiate an empty and numeric set rtbPool to collect all the candidates .
3: Assign drtbe to be the first element of rtbPool .
4: while True do
5: rtbNew← Call Algorithm (1) by passing ∗function(N; param), x1 = 1, x2 = drtbe, acc = 10−9 .
6: Set rtbNew← drtbNewe .
7: if rtbNew in rtbPool then
8: Break the while loop .
9: else

10: Concatenate rtbPool and rtbNew by assigning rtbNew to be the next element of rtbPool .
11: Update rtb← rtbNew .
12: end if
13: end while
14: Assign rtb← min {rtbPool} .
15: Estimate N ′0 ← max {drtb ∗ r0c, 1} . . Round rtb ∗ r0 to the nearest integer.
16: Estimate the actual power Ω0 based on Section , , and by passing n1 = N0 and n2 = N ′0 .
17: while Ω0 < ω0 do
18: Update N0 ← N0 + 1 .
19: Update N ′0 ← max {dN0 ∗ r0c, 1} .
20: Recalculate Ω0 based on Section , , and by passing n1 = N0 and n2 = N ′0 .
21: end while
22: return N0, N ′0, and Ω0.

Estimation Based on the Pearson’s Chi-squared Test

In this section, the estimation of sample size is based on the Pearson’s chi-squared test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.31)

∗function(N; param) =
∑

∀(x1,x2)∈A

(
n1
x1

)
px1
1 (1− p1)n1−x1

(
n1r0
x2

)
px2
2 (1− p2)n1r0−x2 − ω0 , (.0.67)

and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and optimize N0 and N ′0 by using
Algorithm (2), and finally solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
also based on Equation (.0.67), and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and
optimize N0 and N ′0 by using Algorithm (2), and finally solve for Ω0.
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Estimation Based on the Student’s t-Test

In this section, the estimation of sample size is based on the Student’s t-test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (.0.67) and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and optimize
N0 and N ′0 by using Algorithm (2), and finally solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
also based on Equation (.0.67), and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and
optimize N0 and N ′0 by using Algorithm (2), and finally solve for Ω0.

Estimation Based on the Likelihood Ratio Test

In this section, the estimation of sample size is based on the likelihood ratio test.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (.0.67) and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and optimize
N0 and N ′0 by using Algorithm (2), and finally solve for Ω0.

Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
also based on Equation (.0.67), and feed it to Algorithm (1) to solve for n1 = rtb. We then estimate and
optimize N0 and N ′0 by using Algorithm (2), and finally solve for Ω0.

Estimation Based on the Fisher’s Exact Test

In this section, the estimation of sample size is based on the Fisher’s exact test. Due to the high computational
hurdle, we will use the same as method as described in Section with pooled standard deviation and no
continuity correction. A warning message will be created as a remainder.

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction and method

Power Analysis Table

Actual Test Assumptions

N1 N2 Powerb Power Risk Difference Risk Ratio Odds Ratio Sig.

Test for Proportion Differencea 84 168 .802 .800 -.180 .408 .526 0.05

a. Two-sided test using large-sample approximation.

b. Based on the Pearson Chi-Square test, the pooled standard deviation, and continuity correction.

Table 1: Power Analysis of Independent-sample Binomial Test

in Appendix Section and , N1 is estimated by N0, N2 is estimated by N ′0, and Actual Power is estimated by
Ω0. Note that the quantities N0, N ′0, and Ω0 are the values returned by Algorithm (2). Power is ω0 specified
by users. All the other table settings are the same as Table ??.
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POWER PROPORTIONS ONESAMPLE Algorithms

Introduction

As one of the most important discrete distributions, the binomial distribution is based on a sequence of
Bernoulli trials. It can be used to model those experiments including a fixed number of total trials which are
assumed to be independent of each other. Each trial leads to a dichotomous result, with the same probability
for a successful outcome. In the one-sample binomial test, we desire to make statistical inference about the
proportion parameter by comparing it with a hypothesized value. In this document, we present the methods
to estimate the power for such a test by using either the normal approximation or the binomial enumeration.
More details are discussed in the following sections.

Power for the One-sample Binomial Test

In this section, the observed data are collected as a single random sample. We assume that the sample
data independently and identically follow a binomial distribution with a fixed total number of trials n and
a proportion parameter p, where n is a positive integer and p ∈ [0, 1]. We would like to draw statistical
inference about p. The following notations are used in the later sections.

n: The total number of trials, and n is a fixed positive integer.

p: The proportion parameter we are interested in testing.

p0: The null hypothesis value for the proportion parameter, and p0 ∈ [0, 1].

p1: The alternative hypothesis value for the proportion parameter, and p1 ∈ [0, 1].

c: The continuity correction term used for the normal approximation method.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

There are two different ways to estimate the power which are discussed later in Section and , respectively.
Users may select either of them to do the estimation when n ≤ 500. The default setting is to apply the
normal approximation method. When n > 500, we would only consider the normal approximation. For either
method, users are also required to specify the values for n, p0, p1, α, and whether the test is nondirectional
or directional. The default setting is p0 = 0.50, α = 0.05, and the nondirectional test. Note that it is not
allowed to specify p1 = p0.

Normal Approximation

It is not uncommon to use an appropriate normal distribution to approximate a binomial distribution under
a large sample size assumption. Power may also be estimated by the corresponding calculations related to
the normal distribution. Since we are using a continuous distribution to approximate a discrete one, the
continuity correction may be considered. Users may choose to alter the default setting by turning on an
option to include the continuity correction in the power estimation.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : p = p0 versus H1 : p = p1 6= p0.
Under the null hypothesis H0, the test statistic approximately follows a standard normal distribution. The
critical value is therefore1

z∗ = PROBIT (1− α/2) . (0.0.1)

Under the alternative hypothesis, the test statistic also follows a standard normal distribution. The power
for the one-sample nondirectional binomial test can be estimated by2

Ω = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0)√

p1(1− p1)

)
+ Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)√

p1(1− p1)

)
, (0.0.2a)

1 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The
argument prob is a probability greater than 0 and less than 1.

2 Φ(zvalue), or CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and
standard deviation 1 would be less than zvalue, which must be numeric.
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without the continuity correction, or

Ω = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0) + c√

p1(1− p1)

)
+ Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)− c√

p1(1− p1)

)
, (0.0.2b)

with the continuity correction taken into consideration, where z∗ is computed by Equation (0.0.1), and

c =
1

2
√
n
. (0.0.3)

Directional or one-sided testing hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.4)

Suppose the one-sided testing hypotheses are formulated by H0 : p = p0 versus H1 : p = p1 ≥ p0. Depending
on whether or not the continuity correction is applied, the power is computed as

Ω = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0)√

p1(1− p1)

)
, (0.0.5a)

without the continuity correction, or

Ω = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0) + c√

p1(1− p1)

)
, (0.0.5b)

with the continuity correction taken into consideration, where z∗ and c are computed by Equation (0.0.4)
and (0.0.3), respectively. Suppose the one-sided testing hypotheses are formulated by H0 : p = p0 versus
H1 : p = p1 < p0. Depending on whether or not the continuity correction is applied, the power is computed
as

Ω = Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)√

p1(1− p1)

)
, (0.0.6a)

without the continuity correction, or

Ω = Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)− c√

p1(1− p1)

)
, (0.0.6b)

with the continuity correction taken into consideration, where z∗ and c are computed by Equation (0.0.4)
and (0.0.3), respectively.

Binomial Enumeration

Often times when n is small, the normal approximation may not be very precise in estimating the power.
In this section, we discuss the binomial enumeration method to estimate the power by using the binomial
distribution function. Based on the rule of thumb np0(1−p0) > 5, we only apply the method when n ≤ 500.
In case that the binomial enumeration method is specified when n > 500, the normal approximation method
will otherwise be implemented, and a warning message will be created to give a reminder.

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate two-sided testing hypotheses H0 : p = p0 versus H1 : p = p1 6= p0.
Under the null hypothesis H0, we evaluate two critical values b∗l and b∗r . For b∗l , we search b∗l = −1, 0, 1, 2, . . .
in ascending order to find the value such that3

CDF.BINOM (b∗l , n, p0) ≤ α/2 and CDF.BINOM (b∗l + 1, n, p0) > α/2 . (0.0.7)
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For b∗r , we search b∗r = n+ 1, n, n− 1, n− 2, . . . in descending order to find the value such that

CDF.BINOM (b∗r , n, p0) ≥ 1− α/2 and CDF.BINOM (b∗r − 1, n, p0) < 1− α/2 . (0.0.8)

Under the alternative hypothesis, the power for the one-sample nondirectional binomial test can be estimated
by

Ω = CDF.BINOM (b∗l , n, p1) + 1− CDF.BINOM (b∗r , n, p1) . (0.0.9)

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p = p0 versus H1 : p = p1 ≥ p0 (a default
setting for a directional test). We evaluate the critical value b∗ by searching b∗ = n+ 1, n, n− 1, n− 2, . . . in
descending order to find the value such that

CDF.BINOM (b∗, n, p0) ≥ 1− α and CDF.BINOM (b∗ − 1, n, p0) < 1− α . (0.0.10)

Under the alternative hypothesis, the power for the one-sample directional binomial test can be estimated
by

Ω = 1− CDF.BINOM (b∗, n, p1) . (0.0.11)

Suppose the one-sided testing hypotheses are formulated by H0 : p = p0 versus H1 : p = p1 < p0. We
evaluate the critical value b∗ by searching b∗ = −1, 0, 1, 2, . . . in ascending order to find the value such that

CDF.BINOM (b∗, n, p0) ≤ α and CDF.BINOM (b∗ + 1, n, p0) > α . (0.0.12)

Under the alternative hypothesis, the power for the one-sample directional binomial test can be estimated
by

Ω = CDF.BINOM (b∗, n, p1) . (0.0.13)

3CDF.BINOM(quant, n, prob) returns the cumulative probability that the number of successes in n trials, with probability
prob of success in each, will be less than or equal to quant.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under the normal approximation methods. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 1, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.
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• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

Normal Approximation

Users are required to specify the values for p0, p1, ω0, and α. The default setting is p0 = 0.50 and α = 0.05.

.0.1 Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , depending on the continuity
correction, we construct ∗function based on Equation (0.0.2)

∗function = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0)√

p1(1− p1)

)
+ Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)√

p1(1− p1)

)
− ω0 ,(.0.14a)

or

∗function = 1− Φ

(√
n(p0 − p1) + z∗

√
p0(1− p0) + c√

p1(1− p1)

)
+ Φ

(√
n(p0 − p1)− z∗

√
p0(1− p0)− c√

p1(1− p1)

)
− ω0 ,(.0.14b)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Equation (0.0.1)-(0.0.3)
by replacing n with N0 to solve for Ω0.

Directional or one-sided testing hypothesis

In this section, the desired sample size is analytically solved without using Algorithm (1).
Given ω0 as well as the other parameters and statistics as discussed in Section , and the continuity

correction is not applied, regardless of the alternative hypothesis, we solve for

rtb =

[
IDF.NORMAL(1− ω0, 0, 1)

√
p1(1− p1)− z∗

√
p0(1− p0)

p0 − p1

]2
, (.0.15)

and set N0 = drtbe. We then follow Equation (0.0.5a) or (0.0.6a) by replacing n with N0 to solve for Ω0,
depending on the alternative hypothesis.

Given ω0 as well as the other parameters and statistics as discussed in Section , and the continuity
correction is applied, regardless of the alternative hypothesis, we solve for

rtb =

[
b−

√
b2 + 2|a|
2a

]2
, (.0.16)

where a = p0 − p1 and b = IDF.NORMAL(1 − ω0, 0, 1)
√
p1(1− p1) − z∗

√
p0(1− p0), and set N0 = drtbe.

We then follow Equation (0.0.5b) or (0.0.6b) by replacing n with N0 to solve for Ω0, depending on the
alternative hypothesis.

Binomial Enumeration

To prevent the program running for a long time especially in the presence of the extremely small risk
difference, we design a timer feature for users to specify the maximum number of minutes allowed to estimate
the sample size by using the Binomial enumeration. The timer is turned off completely by default. For any
positive integer minutes, if the time limit is reached, the analysis is terminated with a warning message
displayed. No results are provided.

Users are required to specify the values for p0, p1, ω0, and α. The default setting is p0 = 0.50 and
α = 0.05. Since the binomial distribution function can only take an integer as the total number of trials, we
create Algorithm (2) by modifying Algorithm (1) to handle the binomial enumeration. Note that Algorithm
(2) always returns an integer which, however, is not guaranteed to be the smallest sample size to reach the
desired power. This issue will be handled by Algorithm (3) for further optimization.
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Algorithm 2 RTBIS Binom Routine: Using bisection to estimate rtb in a binomial setting.

1: Input: ∗function(N; param), x1 = 1, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Let δint ← bδxc . . Number of trials must be an integer in CDF.BINOM.
27: Update xmid← rtb + δint .
28: Evaluate fmid← ∗function(xmid; param) .
29: if fmid ≤ 0 then
30: Set rtb← xmid .
31: end if
32: if fmid = 0 then
33: return rtb.
34: end if
35: if |δx| < acc then
36: Set rtb← rtb + 1 .
37: return rtb.
38: end if
39: end for
40: return .

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.9)

∗function = CDF.BINOM (b∗l , n, p1) + 1− CDF.BINOM (b∗r , n, p1)− ω0 . (.0.17)

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm
(3) to find the smallest candidate rtb. We follow Equation (0.0.7)-(0.0.9) by replacing n with rtb returned
by Algorithm (3) to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we
output N0 = rtb and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process
to calculate Ω0 until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.
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Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : p1 > p0, we
construct ∗function based on Equation (0.0.11)

∗function = 1− CDF.BINOM (b∗, n, p1)− ω0 . (.0.18)

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm (3)
to find the smallest candidate rtb. We follow Equation (0.0.10)-(0.0.11) by replacing n with rtb returned
by Algorithm (3) to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we
output N0 = rtb and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process
to calculate Ω0 until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : p1 < p0, we
construct ∗function based on Equation (0.0.13)

∗function = CDF.BINOM (b∗, n, p1)− ω0 . (.0.19)

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm (3)
to find the smallest candidate rtb. We follow Equation (0.0.12)-(0.0.13) by replacing n with rtb returned
by Algorithm (3) to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we
output N0 = rtb and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process
to calculate Ω0 until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.

Algorithm 3 OPTIMIZE Binom Routine: Optimize the sample size in a binomial setting.

1: Input: ∗function(N; param) and rtb returned by Algorithm (2) .
2: Initiate an empty and numeric set rtbPool to collect all the candidates .
3: Assign drtbe to be the first element of rtbPool .
4: while True do
5: rtbNew← Call Algorithm (2) by passing ∗function(N; param), x1 = 1, x2 = drtbe, acc = 10−9 .
6: if rtbNew in rtbPool then
7: Break the while loop .
8: else
9: Concatenate rtbPool and rtbNew by assigning rtbNew to be the next element of rtbPool .

10: Update rtb← rtbNew .
11: end if
12: end while
13: Assign rtb← min {rtbPool} .
14: return rtb .

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test method and direction

Power Analysis Table

Actual Test Assumptions

N Powerb Power Null Alternative Sig.

Test for Proportiona 47 .803 .80 .50 .70 .05

a. Two-sided test.

b. Based on normal approximation.

Table 1: Estimate Sample Size of One-sample Binomial Test

in Appendix Section and .0.1, N is estimated by N0, and Actual Power is estimated by Ω0. Power is ω0

specified by users. All the other table settings are the same as Table ??.
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POWER PROPORTIONS RELATED Algorithms

Introduction

As one of the most important discrete distributions, the binomial distribution is based on a sequence of
Bernoulli trials. It can be used to model those experiments including a fixed number of total trials which
are assumed to be independent of each other. Each trial leads to a dichotomous result, with the same
probability for a “successful” outcome. In the related-sample binomial test, we desire to compare two
proportion parameters based on the matched pair subjects sampled from two related binomial populations,
the method of which is commonly known as McNemar’s test [McNemar, 1947]. In this document, we present
the formula to estimate the power of McNemar’s test, and take into account the condition of both a large
sample and moderate sample size.

General Notations

The following notations will be used for the later sections unless otherwise stated:

n: The total number of the matched pairs, and n ≥ 2, which is an integer.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

ρ: The correlation between the matched pairs, and ρ ∈ [−1, 1].

In the McNemar’s test, the observed data are usually summarized in a 2 by 2 contingency table as illustrated
by Table 1, whose contents, including the pair counts or proportions, are defined as follows:

Matched Subjects in Pairs

Test 2

Test 1 Success Failure Total

Success n11 (p11) n10 (p10) n1+ (p1+)

Failure n01 (p01) n00 (p00) n0+ (p0+)

Total n+1 (p+1) n+0 (p+0) n (1)

Table 1: McNemar’s Test through 2 by 2 Contingency Table

n11: The observed number of the pairs whose response denotes a “success” for both test 1 and test 2, and
n11 is nonnegative integer.

n10: The observed number of the pairs whose response denotes a “success” for test 1 and a “failure” for
test 2, and n10 is nonnegative integer.

n01: The observed number of the pairs whose response denotes a “failure” for test 1 and a “success” for
test 2, and n01 is nonnegative integer.

n00: The observed number of the pairs whose response denotes a “failure” for both test 1 and test 2, and
n00 is nonnegative integer.

n1+: The observed marginal total number of the pairs whose response denotes a “success” for test 1, and
n1+ = n11 + n10.

n+1: The observed marginal total number of the pairs whose response denotes a “success” for test 2, and
n+1 = n11 + n01.

n0+: The observed marginal total number of the pairs whose response denotes a “failure” for test 1, and
n0+ = n01 + n00.

n+0: The observed marginal total number of the pairs whose response denotes a “failure” for test 2, and
n+0 = n10 + n00.
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It is obvious that
n = n1+ + n0+ = n+1 + n+0 = n11 + n10 + n01 + n00 . (0.0.1)

It is required that there is at least 1 discordant pair, namely n10 + n01 > 0. Besides the pair counts, the
corresponding proportions can also be tabulated in Table 1 with each element denoting the probability of
observing a specific pair. The following equations should satisfy:

p11 = n11/n, p10 = n10/n, p01 = n01/n, p00 = n00/n , (0.0.2)

p1+ = p11 + p10, p+1 = p11 + p01, p0+ = p01 + p00, p+0 = p10 + p00 , (0.0.3)

and
p11 + p10 + p01 + p00 = 1 . (0.0.4)

Finally, the relationship between the discordant and marginal proportions can be addressed by

p10 = p1+(1− p+1)− ρ
√
p1+(1− p1+)p+1(1− p+1) and p01 = p10 + p+1 − p1+ . (0.0.5)

To estimate the power, users are required to specify the values for n, α, and whether the test is nondirectional
or directional as well as one of the following scenarios:

• Specify the discordant proportions p01 and p10.

• Specify the discordant counts n01 and n10, which are to be converted to p01 and p10, respectively, by
Equation (0.0.2).

• Specify ρ, and the marginal proportions p+1 and p1+, which are to be converted to p01 and p10,
respectively, by Equation (0.0.5).

• Specify ρ, and the marginal counts n+1 and n1+, which are to be first converted to p+1 = n+1/n and
p1+ = n1+/n, respectively, and then p01 and p10, respectively, by Equation (0.0.5).

The default setting is α = 0.05, the nondirectional test, and ρ = 0.5, provided that the marginal quantities
are specified. There are two different approaches to estimate the power of the McNemar’s test which are
discussed later in Section and , respectively. Users may select either of them to do the estimation when
n ≤ 500. The default setting is to apply the normal approximation method. When n > 500, we would only
consider the normal approximation.

Power Estimation

We define the following quantities in terms of the discordant proportions and counts:

pd = p01 − p10 and pt = p01 + p10 , (0.0.6)

the risk difference
p01 − p10 , (0.0.7)

the risk ratio
p01/p10 , (0.0.8)

the odds ratio
[p01/(1− p01)]/[p10/(1− p10)] , (0.0.9)

and the sum of the discordant pairs

m = n01 + n10 = n(p01 + p10) . (0.0.10)

Normal Approximation

The McNemar’s test statistic, under a large sample size and the null hypothesis H0 : p01 = p10, approximately
follows a chi-squared distribution with 1 degree of freedom, the square root of which follows a standard normal
distribution.
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Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p01 = p10 versus H1 : p01 6= p10.
Under the null hypothesis H0, the test statistic approximately follows a standard normal distribution. The
critical value is therefore1

z∗ = PROBIT (1− α/2) . (0.0.11)

Under the alternative hypothesis, the power can be estimated by2

Ω = 1− CDFNORM

(
pd
√
n+ z∗

√
pt√

pt − p2d

)
+ CDFNORM

(
pd
√
n− z∗√pt√
pt − p2d

)
, (0.0.12)

where z∗ is computed by Equation (0.0.11), and pd and pt are defined by Equation (0.0.6).

Directional or one-sided testing hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.13)

Suppose the one-sided testing hypotheses are formulated by H0 : p01 = p10 versus H1 : p01 ≥ p10. The power
is computed as

Ω = CDFNORM

(
pd
√
n− z∗√pt√
pt − p2d

)
, (0.0.14)

where z∗ is computed by Equation (0.0.13), and pd and pt are defined by Equation (0.0.6). Suppose the
one-sided testing hypotheses are formulated by H0 : p01 = p10 versus H1 : p01 < p10. The power is computed
as

Ω = 1− CDFNORM

(
pd
√
n+ z∗

√
pt√

pt − p2d

)
, (0.0.15)

where z∗ is computed by Equation (0.0.13), and pd and pt are defined by Equation (0.0.6).

Conditional Approach

When the total number of pairs is not large, or n ≤ 500, we may adopt the conditional approach based
on the binomial enumeration process. In case that the conditional approach is specified when n > 500, the
normal approximation method will otherwise be implemented, and a warning message will be created as a
reminder. Note that conditional on a fixed m, as defined in Equation (0.0.10), n10 ∼ Binomial(m, p), where

p =
p10

p10 + p01
=
p10
pt

, (0.0.16)

where pt is defined by Equation (0.0.6). Under the conditional approach, m is also a random variable,
denoted by M in the following presentation, where M ∼ Binomial(n, pt) [Sahai and Khurshid, 1996].

Nondirectional or two-sided testing hypothesis

For a nondirectional test, we formulate the two-sided testing hypotheses H0 : p01 = p10 versus H1 : p01 6= p10.
This is equivalent to test H0 : p = 0.5 versus H1 : p 6= 0.5. Under the null hypothesis H0, we evaluate two
critical values k∗l and k∗r . For k∗l , we search k∗l = 0, 1, 2, . . . in ascending order to find the value such that3

CDF.BINOM (k∗l ,M, 0.5) ≤ α/2 and CDF.BINOM (k∗l + 1,M, 0.5) > α/2 . (0.0.17)

1 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The
argument prob is a probability greater than 0 and less than 1.

2 CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and standard deviation
1 would be less than zvalue, which must be numeric.

3CDF.BINOM(quant, n, prob) returns the cumulative probability that the number of successes in n trials, with probability
prob of success in each, will be less than or equal to quant.
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For k∗r , we search k∗r = M,M − 1,M − 2, . . . in descending order to find the value such that

CDF.BINOM (k∗r ,M, 0.5) ≥ 1− α/2 and CDF.BINOM (k∗r − 1,M, 0.5) < 1− α/2 . (0.0.18)

Under the alternative hypothesis, [Schork and Williams, 1980] suggested an exact formula to estimate the
power by averaging the conditional power over the probability distribution of M , that is

Ω =

n∑
M=0

p(M) [P{n10 ≤ k∗l |M,p}+ P{n10 ≥ k∗r + 1|M,p}]

=

n∑
M=0

(
n

M

)
pMt (1− pt)n−M

 k∗
l∑

n10=0

(
M

n10

)
pn10(1− p)M−n10 +

M∑
n10=k∗

r+1

(
M

n10

)
pn10(1− p)M−n10


=

n∑
M=0

(
n

M

)
pMt (1− pt)n−M [CDF.BINOM(k∗l ,M, p) + 1− CDF.BINOM(k∗r ,M, p)] , (0.0.19)

where n is specified by users; pt is defined by Equation (0.0.6) under H1; p is defined by Equation (0.0.16)
under H1; k∗l is determined by Equation (0.0.17); and k∗r is determined by Equation (0.0.18).

Directional or one-sided testing hypothesis

Suppose the one-sided testing hypotheses are formulated by H0 : p01 = p10 versus H1 : p01 ≤ p10. This is
equivalent to test H0 : p = 0.5 versus H1 : p ≥ 0.5. Under the null hypothesis H0, we desire to evaluate the
critical value k∗r by searching k∗r = M,M − 1,M − 2, . . . in descending order to find the value such that

CDF.BINOM(k∗r ,M, 0.5) ≥ 1− α and CDF.BINOM(k∗r − 1,M, 0.5) < 1− α . (0.0.20)

Under the alternative hypothesis, the power is estimated by

Ω =

n∑
M=0

p(M)P{n10 ≥ k∗r + 1|M,p}

=

n∑
M=0

(
n

M

)
pMt (1− pt)n−M

M∑
n10=k∗

r+1

(
M

n10

)
pn10(1− p)M−n10

=

n∑
M=0

(
n

M

)
pMt (1− pt)n−M [1− CDF.BINOM(k∗r ,M, p)] , (0.0.21)

where n is specified by users; pt is defined by Equation (0.0.6) under H1; p is defined by Equation (0.0.16)
under H1; and k∗r is determined by Equation (0.0.20).

Suppose the one-sided testing hypotheses are formulated by H0 : p01 = p10 versus H1 : p01 > p10. This
is equivalent to test H0 : p = 0.5 versus H1 : p < 0.5. Under the null hypothesis H0, we desire to evaluate
the critical value k∗l by searching k∗l = 0, 1, 2, . . . in ascending order to find the value such that

CDF.BINOM(k∗l ,M, 0.5) ≤ α and CDF.BINOM(k∗l + 1,M, 0.5) > α . (0.0.22)

Under the alternative hypothesis, the power is estimated by

Ω =

n∑
M=0

p(M)P{n10 ≤ k∗l |M,p}

=

n∑
M=0

(
n

M

)
pMt (1− pt)n−M

k∗
l∑

n10=0

(
M

n10

)
pn10(1− p)M−n10

=

n∑
M=0

(
n

M

)
pMt (1− pt)n−MCDF.BINOM(k∗l ,M, p) , (0.0.23)

where n is specified by users; pt is defined by Equation (0.0.6) under H1; p is defined by Equation (0.0.16)
under H1; and k∗l is determined by Equation (0.0.22).
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 1, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.
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• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

In the following discussions, users are required to specify the values for ω0 and α, as well as one of the
following scenarios:

• Specify the discordant proportions p01 and p10.

• Specify ρ, and the marginal proportions p+1 and p1+, which are to be converted to p01 and p10,
respectively, by Equation (0.0.5).

We estimate pd and pt, respectively, based on Equation (0.0.6).

.1 Normal Approximation

.1.1 Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , depending on the continuity
correction, we construct ∗function based on Equation (0.0.12)

∗function(N; param) = 1− CDFNORM

(
pd
√
n+ z∗

√
pt√

pt − p2d

)
+ CDFNORM

(
pd
√
n− z∗√pt√
pt − p2d

)
− ω0 , (.1.1)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

.1.2 Directional or one-sided testing hypothesis

In this section, the desired sample size is analytically solved without using Algorithm (1). Given ω0 as well
as the other parameters and statistics as discussed in Section , we solve for

rtb =

[
IDF.NORMAL(ω0, 0, 1)

√
pt − p2d + z∗

√
pt

pd

]2
, (.1.2)

and set N0 = drtbe. We then follow Equation Section by replacing n with N0 to solve for Ω0.

.2 Conditional Approach

To prevent the program running for a long time especially in the presence of the extremely small risk
difference, we design a timer feature for users to specify the maximum number of minutes allowed to estimate
the sample size by using the Binomial enumeration. The timer is turned off completely by default. For any
positive integer minutes, if the time limit is reached, the analysis is terminated with a warning message
displayed. No results are provided.

We estimate p based on Equation (0.0.16) using specified p01 and p10. Since the binomial distribution
function can only take an integer as the total number of trials, we create Algorithm (2) by modifying
Algorithm (1) to handle the binomial enumeration. Note that Algorithm (2) always returns an integer
which, however, is not guaranteed to be the smallest sample size to reach the desired power. This issue will
be handled by Algorithm (3) for further optimization.

.2.1 Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.19)

∗function(N; param) =

n∑
M=0

(
n

M

)
pMt (1−pt)n−M [CDF.BINOM(k∗l ,M, p) + 1− CDF.BINOM(k∗r ,M, p)]−ω0 ,

(.2.1)
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Algorithm 2 RTBIS Binom Routine: Using bisection to estimate rtb in a binomial setting.

1: Input: ∗function(N; param), x1 = 1, x2 = 400, acc = 10−9. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Let δint ← bδxc . . Number of trials must be an integer in CDF.BINOM.
27: Update xmid← rtb + δint .
28: Evaluate fmid← ∗function(xmid; param) .
29: if fmid ≤ 0 then
30: Set rtb← xmid .
31: end if
32: if fmid = 0 then
33: return rtb.
34: end if
35: if |δx| < acc then
36: Set rtb← rtb + 1 .
37: return rtb.
38: end if
39: end for
40: return .

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm (3)
to find the smallest candidate rtb. We follow Section by replacing n with rtb returned by Algorithm (3)
to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we output N0 = rtb

and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process to calculate Ω0

until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.
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.2.2 Directional or one-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : p01 < p10, we
construct ∗function based on Equation (0.0.20)

∗function(N; param) =
n∑

M=0

(
n

M

)
pMt (1− pt)n−M [1− CDF.BINOM(k∗r ,M, p)]− ω0 , (.2.2)

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm (3)
to find the smallest candidate rtb. We follow Section by replacing n with rtb returned by Algorithm (3)
to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we output N0 = rtb

and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process to calculate Ω0

until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.
Given ω0 as well as the other parameters and statistics as discussed in Section , when H1 : p01 > p10, we

construct ∗function based on Equation (0.0.22)

∗function(N; param) =
n∑

M=0

(
n

M

)
pMt (1− pt)n−MCDF.BINOM(k∗l ,M, p)− ω0 , (.2.3)

and feed it to Algorithm (2) to solve for n = rtb. The algorithm will repeatedly be called by Algorithm (3)
to find the smallest candidate rtb. We follow Section by replacing n with rtb returned by Algorithm (3)
to solve for Ω0. If Ω0 is greater than or equal to the power value specified by users, we output N0 = rtb

and Ω0 as the actual power. Otherwise, we update rtb = rtb + 1, and repeat the process to calculate Ω0

until it reaches the value specified. We then output N0 = rtb and Ω0 as the actual power.

Algorithm 3 OPTIMIZE Binom Routine: Optimize the sample size in a binomial setting.

1: Input: ∗function(N; param) and rtb returned by Algorithm (2) .
2: Initiate an empty and numeric set rtbPool to collect all the candidates .
3: Assign rtb to be the first element of rtbPool .
4: while True do
5: rtbNew← Call Algorithm (2) by passing ∗function(N; param), x1 = 1, x2 = rtb, acc = 10−9 .
6: if rtbNew in rtbPool then
7: Break the while loop .
8: else
9: Concatenate rtbPool and rtbNew by assigning rtbNew to be the next element of rtbPool .

10: Update rtb← rtbNew .
11: end if
12: end while
13: Assign rtb← min {rtbPool} .
14: return rtb .

.3 Power Analysis Table
When ω0 is specified output tables are suppressed. Depending on the test method and direction in Section .1 
and .2, N is estimated by N0, and Actual Power is estimated by Ω0. Power is ω0 specified by users. Footnote b is 
required to remind users that the sample size is estimated in pairs.
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Power Analysis Table

Actual Test Assumptions

Nb Powerc Power Risk Difference Risk Ratio Odds Ratio Sig.

Test for Proportion Differencea 100 .487 .485 -.400 .352 .338 0.05

a. Two-sided test.

b. Total number of pairs.

c. Based on normal approximation.

Table 2: Estimate Sample Size of Related-sample Binomial Test
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POWER SPEARMAN ONESAMPLE Algorithms

Introduction

Spearman rank-order correlation coefficient is a rank-based nonparametric statistic to measure the monotonic
realationship between two variables that are usually censored not normally distributed. The Spearman rank-
order correlation is equal to the Pearson correlation between the rank values of the two variables, thereby
also ranging between -1 and 1. To detect the power of the Spearman rank correlation test is an important
topic in the analysis of hydrological time series data [Yue et al., 2002]. In this document, we present the
Fisher’s asymptotic method to estimate the power for the one-sample Spearman rank-order correlation test.
More details are discussed in the following sections.

Power for the One-sample Spearman Rank-order Correlation Test

The following notations are used in the later sections.

n: The sample size in pairs, and n > 3 (n > 2 if variance estimated by [Caruso and Cliff, 1997]), which
is a fixed positive integer.

r: The Spearman rank-order correlation parameter between two variables, and r ∈ [−1, 1].

r0: The null hypothesis value for the Spearman rank-order correlation parameter, and r0 ∈ [−1, 1].

r1: The alternative hypothesis value for the Spearman rank-order correlation parameter, and r1 ∈ [−1, 1].

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

To estimate the power, users are also required to specify the values for n, r0, r1, α, the variance estimation
method (by Equation (0.0.2), (0.0.3), or (0.0.4), see details in Section ), and whether the test is nondirectional
or directional. The default setting is r0 = 0, α = 0.05, estimating the variance by Equation (0.0.3), and the
nondirectional test.

Nondirectional or Two-sided Testing Hypothesis

We proceed with the Fisher’s z -transformation by using an inverse hyperbolic tangent function [Fisher, 1915],

Zr =
1√

V(Zr)

[
tanh-1(r̂)− tanh-1(r)

]
∼ Normal(0, 1) , (0.0.1)

where r̂ is the estimator of r, and tanh-1(x) = 0.5 [log(1 + x)− log(1− x)]. [Fieller et al., 1957] suggested
that

V(Zr) ≈ 1.06

n− 3
, (0.0.2)

while [Bonett and Wright, 2000] argued that, per their simulation results,

V(Zr) ≈ 1 + r̂2/2

n− 3
=

1 + r21/2

n− 3
, (0.0.3)

which is a more accurate estimate, especially when |r1| ≥ 0.95. [Caruso and Cliff, 1997] estimated the
variance by

V(Zr) ≈ 1

n− 2
+
| tanh-1(r̂)|
6n+ 4

√
n

=
1

n− 2
+
| tanh-1(r1)|
6n+ 4

√
n

. (0.0.4)

We consider all of the estimates in this procedure. To facilitate the following presentation, we define

δr = tanh-1(r1)− tanh-1(r0) . (0.0.5)

Particularly, we allow that

tanh-1(r) =

{
+∞ if r = 1

−∞ if r = −1
and δr =

{
+∞ if r0 = −1 or r1 = 1

−∞ if r1 = −1 or r0 = 1
. (0.0.6)
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For a nondirectional test, we formulate two-sided testing hypotheses H0 : r = r0 versus H1 : r = r1 6= r0.
By applying the Fisher’s z -transformation using Equation (0.0.1), it is equivalent to test H0 : tanh-1(r) =
tanh-1(r0). Under the null hypothesis H0, the transformed test statistic approximately follows a standard
normal distribution. The critical value is therefore1

z∗ = PROBIT (1− α/2) . (0.0.7)

Under the alternative hypothesis, the test statistic also follows a normal distribution. The power for the
one-sample nondirectional Spearman rank-order correlation test can be estimated by2

Ω = 1− Φ

(
δr√
V(Zr)

+ z∗

)
+ Φ

(
δr√
V(Zr)

− z∗
)
, (0.0.8)

where δr and z∗ are computed by Equation (0.0.5) and (0.0.7), respectively, and V(Zr) is estimated by
Equation (0.0.2), (0.0.3), or (0.0.4) depending on the estimation method selected by users.

Directional or One-sided Testing Hypothesis

For a directional test, the critical value is

z∗ = PROBIT (1− α) . (0.0.9)

Suppose the one-sided testing hypotheses are formulated by H0 : r = r0 versus H1 : r = r1 ≥ r0. By applying
the Fisher’s z -transformation, the power is computed as

Ω = Φ

(
δr√
V(Zr)

− z∗
)
, (0.0.10)

where δr and z∗ are computed by Equation (0.0.5) and (0.0.9), respectively, and V(Zr) is estimated by
Equation (0.0.2), (0.0.3), or (0.0.4) depending on the estimation method selected by users. Suppose the
one-sided testing hypotheses are formulated by H0 : r = r0 versus H1 : r = r1 < r0. By applying the Fisher’s
z -transformation, the power is computed as

Ω = 1− Φ

(
δr√
V(Zr)

+ z∗

)
, (0.0.11)

where δr and z∗ are computed by Equation (0.0.5) and (0.0.9), respectively, and V(Zr) is estimated by
Equation (0.0.2), (0.0.3), or (0.0.4) depending on the estimation method selected by users.

1 PROBIT(prob) returns the value in a standard normal distribution having a cumulative probability equal to prob. The
argument prob is a probability greater than 0 and less than 1.

2 Φ(zvalue), or CDFNORM(zvalue), returns the probability that a standard normal random variable with mean 0 and
standard deviation 1 would be less than zvalue, which must be numeric.
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size in pairs that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (1), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 1 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x1 = 3, x2 = 400, acc = 10−6. . N: Sample size to be estimated.
2: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
3: if fmid = 0 then
4: return rtb = x2 .
5: end if
6: Evaluate f← ∗function(x1; param) .
7: if f ≥ 0 then
8: return rtb = x1 .
9: end if

10: while f ∗ fmid > 0 do
11: Set x1 ← x2 .
12: Update x2 ← 2x2 .
13: if x2 overflows then . Protect from infinite looping.
14: return rtb = SYSMIS .
15: end if
16: Set f← fmid .
17: Evaluate fmid← ∗function(x2; param) .
18: if fmid = 0 then
19: return rtb = x2 .
20: end if
21: end while
22: Let rtb← x1 .
23: Assign δx ← x2 − x1 .
24: for iteration j = 1, 2, 3, . . . do
25: Update δx ← 0.5 δx .
26: Update xmid← rtb + δx .
27: Evaluate fmid← ∗function(xmid; param) .
28: if fmid ≤ 0 then
29: Set rtb← xmid .
30: end if
31: if |δx| < acc or fmid = 0 then
32: return rtb.
33: end if
34: end for
35: return .

• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.
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• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

Nondirectional or two-sided testing hypothesis

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.8)

∗function(N; param) = 1− Φ

(
δr√
V(Zr)

+ z∗

)
+ Φ

(
δr√
V(Zr)

− z∗
)
− ω0 , (.0.12)

and feed it to Algorithm (1) to solve for n = rtb. We then set N0 = drtbe, and follow Section by replacing
n with N0 to solve for Ω0.

Directional or one-sided testing hypothesis

Depending on how the asymptotic variance is estimated, we consider the following situations:
Given ω0 and the [Fieller et al., 1957]’s method, as well as the other parameters and statistics as discussed

in Section , we solve for

rtb = 1.06

[
IDF.NORMAL(ω0, 0, 1) + z∗

δr

]2
+ 3 (.0.13)

analytically without using Algorithm (1). We then set N0 = drtbe, and follow Equation Section by using
the [Fieller et al., 1957]’s method and replacing n with N0 to solve for Ω0.

Given ω0 and the [Bonett and Wright, 2000]’s method, as well as the other parameters and statistics as
discussed in Section , we solve for

rtb =

(
1 +

r21
2

)[
IDF.NORMAL(ω0, 0, 1) + z∗

δr

]2
+ 3 (.0.14)

analytically without using Algorithm (1). We then set N0 = drtbe, and follow Equation Section by using
the [Bonett and Wright, 2000]’s method and replacing n with N0 to solve for Ω0.

Given ω0 and the [Caruso and Cliff, 1997]’s method, as well as the other parameters and statistics as
discussed in Section , when the alternative hypothesis is H1 : r = r1 > r0, we construct ∗function based on
Equation (0.0.10)

∗function(N; param) = Φ

(
δr√
V(Zr)

− z∗
)
− ω0 , (.0.15)

where V(Zr) is estimated by Equation (0.0.4), and feed it to Algorithm (1) to solve for n = rtb. We then
set N0 = drtbe, and follow Section by replacing n with N0 to solve for Ω0. When the alternative hypothesis
is H1 : r = r1 < r0, we construct ∗function based on Equation (0.0.11)

∗function(N; param) = 1− Φ

(
δr√
V(Zr)

+ z∗

)
− ω0 , (.0.16)

where V(Zr) is estimated by Equation (0.0.4), and feed it to Algorithm (1) to solve for n = rtb. We then
set N0 = drtbe, and follow Section by replacing n with N0 to solve for Ω0.

Power Analysis Table

When ω0 is specified, we output Table 1 instead of Table ??. Depending on the test direction and whether
the estimation method of the variance in Appendix Section and , N is estimated by N0, and Actual Power
is estimated by Ω0. Power is ω0 specified by users. All the other table settings are the same as Table ??.
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Power Analysis Table

Actual Test Assumptions

N Powerb Power Null Alternative Sig.

Spearman Correlationa 50 .407 .400 0 0.25 0.05

a. Two-sided test with a nondirectional alternative hypothesis.

b. Based on Fisher’s z -transformation and normal approximation.

The variance estimation is based on the method suggested by Bonett and Wright.

Table 1: Estimate Sample Size of One-sample Spearman Rank-order Correlation Test
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Introduction

Univariate linear regression is a basic and standard statistical approach in which researchers use the values
of several variables to explain or predict values of a scale outcome. In this document, we present the method
to estimate the power of the type III F -test in univariate multiple linear regression models. With the effect
size represented by multiple (partial) correlations, we discuss the approaches for both fixed and random
predictors. For the fixed predictors, the power estimation is based on the noncentral F -distribution. For
the random predictors, we assume that the target variable and these predictors jointly follow a multivariate
normal distribution, and estimate the power based on the distribution of the sample multiple correlation
coefficient. Numerical methods are used to control the truncation error.

Notations and Settings

The following notations are used in the later sections.

Y : The univariate target variable in the regression model.

X: The testing set of the predictors.

X−: The controlling set of the predictors.

ρ : The population multiple (partial) correlation coefficient to be tested.

R : The observed sample multiple (partial) correlation coefficient, which is the standard estimator of ρ.

p: The total number of the predictors in the linear regression model, not including the intercept term,
and p ≥ 1, which is a fixed integer.

p1: The number of predictors formulated in the statistical hypotheses, that is, we desire to test p1

parameters all equal to 0, adjusting the other (p − p1) predictors already contained in the model.
It must satisfy that 1 ≤ p1 ≤ p, and p1 is a fixed integer.

N : The sample size in the linear regression model which is a fixed positive integer. The minimum valid
N required for the procedure will be discussed later in this section.

α: The significance level to reflect the type I error rate, and α ∈ (0, 1).

Considering a linear regression model for N observations with p predictors, we desire to test that the
p1 regression parameters in X all equal to 0 by controlling for the other (p − p1) variables in X−. The
statistical hypotheses may be formulated in one of the following two ways, either in terms of the multiple
partial correlation coefficient

H0 : ρY X|X− = 0 versus Ha : ρY X|X− 6= 0 , (0.0.1)

where ρY X|X− denotes the multiple partial correlation coefficient between Y and X adjusting for X−, or in
terms of

H0 : ρ2
Y |XX− = ρ2

Y |X− versus Ha : ρ2
Y |XX− 6= ρ2

Y |X− , (0.0.2)

where ρ2
Y |XX− and ρ2

Y |X− are the squared multiple correlation coefficients in the full and nested models,
respectively.

To estimate the power, users are required to specify the values for N , p, p1, α, and either the alternative
hypothesized value of ρY X|X− or two squared ρ2

Y |XX− and ρ2
Y |X− for full and nested models, respectively.

Additional settings are also required with regard to

• Whether or not the intercept term is included.

• If the intercept term is included, it must satisfy that N ≥ p + 2. Otherwise, it must satisfy that
N ≥ p+ 1.

• Whether the predictors are assumed to be fixed or random.

• If ρY X|X− is specified, it must satisfy that −1 < ρY X|X− < 1.



POWER UNIVARIATE LINEAR Algorithms

• If ρ2
Y |XX− and ρ2

Y |X− are specified, it must satisfy that 0 < ρ2
Y |X− ≤ ρ2

Y |XX− < 1.

• If the hypothesis is formulated by Equation (0.0.1), it must satisfy that 1 ≤ p1 ≤ p.
• If the hypothesis is formulated by Equation (0.0.2), it must satisfy that 1 ≤ p1 < p.

Note that the default settings are that α = 0.05, the intercept term is included, and the predictors are
assumed to have fixed values.

Power Analysis of Univariate Linear Regression

In this section, we discuss the methodologies to estimate the power of the type III F -test under different
scenarios. Under the null hypothesis, the test statistic follows a standard F -distribution, and the critical
value is therefore1

F ∗ = IDF.F(1− α, u, v) , (0.0.3)

where

u = p1 and v =

{
N − 1− p with the intercept term

N − p otherwise
. (0.0.4)

F -test with Fixed Predictors

If the predictors are assumed to be fixed, under the alternative hypothesis, the test statistic follows a
noncentral F -distribution with the same numerator and denominator degrees of freedom as in Equation
(0.0.4). The noncentrality parameter is computed by2

λ = N
ρ2
Y X|X−

1− ρ2
Y X|X−

= N
ρ2
Y |XX− − ρ2

Y |X−

1− ρ2
Y |XX−

. (0.0.5)

Thus, the power for the type III F -test with the fixed predictors can be estimated by3

Ω = 1−NCDF.F(F ∗, u, v, λ) , (0.0.6)

where F ∗, u, v, and λ are computed by Equation (0.0.3), (0.0.4), and (0.0.5), respectively.

F -test with Random Predictors

[Gatsonis and Sampson, 1989] argued that the random assumption should be preferred due to the fact that
the values of the independent variables cannot usually be prespecified in power analysis. In this section,
we assumed that the p random predictors and Y jointly follow a (p + 1)-dimensional multivariate normal
distribution. To estimate the power, we start from the type III F -test statistic

F =
(R2

Y |XX− −R2
Y |X−)/u

(1−R2
Y |XX−)/v

=
R2

Y X|X−/u

(1−R2
Y X|X−)/v

, (0.0.7)

where u and v are computed by Equation (0.0.4), R2 is the squared sample multiple (partial) correlation
coefficient, and

R2
Y X|X− =

R2
Y |XX− −R2

Y |X−

1−R2
Y |X−

. (0.0.8)

1 IDF.F(prob, df1, df2) returns the value from the F -distribution, with the specified numerator and denominator degrees of
freedom df1 and df2, respectively, for which the cumulative probability is prob.

2 Instead of using N as an multiplier in Equaition (0.0.5), there is an alternative choice of (N − p+ p1). However, as noted
by [Maxwell, 2000], the different would be slight unless N is very small, which rarely occurs in practice.

3 NCDF.F(quant, df1, df2, λ) returns the cumulative probability that a value from the noncentral F -distribution, with the
specified numerator and denominator degrees of freedom df1 and df2, respectively, and the noncentrality parameter λ, will be
less than or equal to quant.



POWER UNIVARIATE LINEAR Algorithms

Under the alternative hypothesis, the exact power estimation formula is

Ω = P (F ≥ F ∗ | Ha) = P

(
R2

Y X|X−/u

(1−R2
Y X|X−)/v

≥ F ∗ | Ha

)
= P

(
R2

Y X|X− ≥
uF ∗

uF ∗ + v
| Ha

)
, (0.0.9)

where F ∗ is computed by Equation (0.0.3). By defining

R∗0 =
uF ∗

uF ∗ + v
, (0.0.10)

we can rewrite Equation (0.0.9) to

Ω = P
(
R2

Y X|X− ≥ R∗0 | Ha

)
. (0.0.11)

To numerically estimate Equation (0.0.9), we have to consider the distribution of R2. According to the
probability density function of R2 proposed by [Fisher, 1928], [Lee, 1972] took the integration and suggested
a computationally effective form which can also be applied to the squared sample multiple partial correlation
coefficient by computing

P
(
R2

Y X|X− ≤ R∗0
)

= [B(1;u/2, v/2)]
−1
(

1− ρ2
Y X|X−

)w/2 ∞∑
k=0

C(k)

=
Γ(u/2 + v/2)

Γ(u/2) Γ(v/2)

(
1− ρ2

Y X|X−

)w/2 ∞∑
k=0

C(k) , (0.0.12)

where u and v are defined by Equation (0.0.4);

w =

{
N − 1− (p− p1) with the intercept term

N − (p− p1) otherwise
; (0.0.13)

B(·) denotes the incomplete beta function; Γ(·) denotes the gamma function; and4

C(k) =
[(w

2

)
k

]2
(ρ2

Y X|X−)k B(R∗0;u/2 + k, v/2)
[(u

2

)
k
k!
]−1

=
[(w

2

)
k

]2
(ρ2

Y X|X−)k
Γ(u/2 + k) Γ(v/2)

Γ(u/2 + k + v/2)
CDF.BETA(R∗0, u/2 + k, v/2)

[(u
2

)
k
k!
]−1

, (0.0.14)

where we define

(t)j =

{
1 when j = 0∏t+j−1

i=t i for all the other integers when j > 0
. (0.0.15)

Note that the series
∑∞

k=0 C(k) is summed up to the k-th term. In practice, we need to determine an
appropriate upper limit of k to ensure the precision of the power estimation by controlling the potential
overflow or underflow issues. To achieve this, we further define a constant,

logCONST = log Γ(u/2 + v/2)− log Γ(u/2)− log Γ(v/2) +
w

2
log
(

1− ρ2
Y X|X−

)
, (0.0.16)

where u and v are defined by Equation (0.0.4), and w is estimated by (0.0.13). We then follow the discussions
of the unconditional analysis in [Gatsonis and Sampson, 1989], and find the desired k to approximate the
cumulative probability in Equation (0.0.12). By noting that k follows a negative binomial distribution, we
summarize the implementation details in Algorithm 1, which will return Ω via estimating

∑∞
k=0 C(k). Thus,

Equation (0.0.12) can be rewritten by

logP
(
R2

Y X|X− ≤ R∗0
)

= logCONST + log (sumCk) + adjust ∗ OVERFLOW , (0.0.17)

4 CDF.BETA(quant, shape1, shape2) returns the cumulative probability that a value from the Beta distribution, with the
given shape1 and shape2 parameters, will be less than quant.
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Algorithm 1 EstCseries Routine: Compute the power via estimating the series
∑∞

k=0 C(k) while controlling
the potential overflow or underflow issues.

1: Input: N , ρ2
Y X|X− , u, v, w, and R∗0 .

2: Create a dummy variable dum← FALSE .
3: Let OVERFLOW← ε+ . . ε+ is the truncated log-transformed largest double value, or 709.
4: Compute mode← ρ2

Y X|X−(w/2− 1)/(1− ρ2
Y X|X−) .

5: Initiate logC(0)← log Γ(u/2) + log Γ(v/2)− log Γ(u/2 + v/2) + log CDF.BETA(R∗0, u/2, v/2 ) .
6: Create an empty set S to hold numeric values .
7: Assign s1 ← logC(0), which is the first component of S .
8: for iteration k = 1, 2, 3, . . . do
9: Evaluate logC(k) based on Equation (0.0.19) .

10: Assign sk+1 ← logC(k), which is the (k + 1)-th component of S .
11: Compute negB← log {dnbinom(k,w/2, 1− ρ2

Y X|X−)} . . Negative binomial PMF in R notation.
12: if k > mode then
13: if negB < ε− then . ε− is the log-transformed smallest double value, or -708.3964.
14: Set dum← TRUE .
15: end if
16: end if
17: if dum then
18: Break and abort the for loop.
19: end if
20: end for
21: Let m← max {S} .
22: Estimate adjust← bm/OVERFLOWc .
23: Scale S′ ← S− adjust ∗ OVERFLOW .
24: Compute sumCk←

∑
k exp (S′) .

25: Estimate logConst based on Equation (0.0.16) .
26: Estimate logP(R2

Y X|X− ≤ R∗0) by using Equation (0.0.17).

27: Compute Ω by using Equation (0.0.18).
28: return Ω

where logCONST is calculated by Equation (0.0.16); OVERFLOW, adjust, and sumCk are defined or estimated
by Line (3), (22), and (24), respectively, in Algorithm (1). The desired power in Equation (0.0.9) is simply

Ω = 1− exp
[
logP

(
R2

Y X|X− ≤ R∗0
)]

, (0.0.18)

where the last term is computed by Equation (0.0.17). The following equations give the logarithm of some
of the quantities aforementioned which may be used in implementation:

logC(k) = 2 log
(w

2

)
k

+ k log ρ2
Y X|X− + log Γ(u/2 + k) + log Γ(v/2)− log Γ(u/2 + k + v/2)

+ log CDF.BETA(R∗0, u/2 + k, v/2)− log
(u

2

)
k
−

k∑
i=1

log i (0.0.19)

and

log (t)j =

{
0 when j = 0∑t+j−1

i=t log i for all the other integers when j > 0
. (0.0.20)

Note that if the squared correlation coefficients for full and nested models are specified, we first convert them
into the squared multiple partial correlation parameter by

ρ2
Y X|X− =

ρ2
Y |XX− − ρ2

Y |X−

1− ρ2
Y |X−

, (0.0.21)

and then compute the power by following the estimation procedure starting from Equation (0.0.12).
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Appendices

We discuss the method to reversely solve for the sample size given the user-supplied power values with all
the other parameters already specified in the procedure. The following notations are used in this section.

ω0: The user-supplied power value which is one of the test assumptions, and 0 < ω0 < 1.

Ω0: The actual power the test reaches.

N0: The least sample size that is required to reach Ω0.

To numerically estimate N0, we apply the RTBIS Routine, demonstrated by Algorithm (2), to a given power
function under certain conditions. Here we give some implementation notes.

Algorithm 2 RTBIS Routine: Using bisection to estimate the sample size N0 which is the smallest integer
greater than the root rtb of a given power function.

1: Input: ∗function(N; param), x2 = p+ 400, acc = 10−9. . N: Sample size to be estimated.
2: if The intercept term is included then
3: Input: x1 = p+ 2.
4: else
5: Input: x1 = p+ 1.
6: end if
7: Evaluate fmid← ∗function(x2; param) . . param: All the other parameters specified.
8: if fmid = 0 then
9: return rtb = x2 .

10: end if
11: Evaluate f← ∗function(x1; param) .
12: if f ≥ 0 then
13: return rtb = x1 .
14: end if
15: while f ∗ fmid > 0 do
16: Set x1 ← x2 .
17: Update x2 ← 2x2 .
18: if x2 overflows then . Protect from infinite looping.
19: return rtb = SYSMIS .
20: end if
21: Set f← fmid .
22: Evaluate fmid← ∗function(x2; param) .
23: if fmid = 0 then
24: return rtb = x2 .
25: end if
26: end while
27: Let rtb← x1 .
28: Assign δx ← x2 − x1 .
29: for iteration j = 1, 2, 3, . . . do
30: Update δx ← 0.5 δx .
31: Update xmid← rtb + δx .
32: Evaluate fmid← ∗function(xmid; param) .
33: if fmid ≤ 0 then
34: Set rtb← xmid .
35: end if
36: if |δx| < acc or fmid = 0 then
37: return rtb.
38: end if
39: end for
40: return .
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• The input function ∗function denotes the power function we desire to solve in terms of the sample
size. Its form depends on the test conditions, and will be discussed in later sections.

• We let x1 and x2 denote the sample size in the routine.

• The arguments of the power function ∗function include the sample size, either x1 or x2, and the other
parameters specified by users all combined in param depending on the test conditions.

F -test with Fixed Predictors

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.6)

∗function(N; param) = 1−NCDF.F(F ∗, u, v, λ)− ω0 , (.0.22)

and feed it to Algorithm (2) to solve for N = rtb. We then set N0 = drtbe, and follow Equation (0.0.3)-
(0.0.6) by replacing N with N0 to solve for Ω0.

F -test with Random Predictors

Given ω0 as well as the other parameters and statistics as discussed in Section , we construct ∗function
based on Equation (0.0.18)

∗function(N; param) = 1− exp
[
logP

(
R2

Y X|X− ≤ R∗0
)]
− ω0 , (.0.23)

and feed it to Algorithm (2) to solve for N = rtb. We then set N0 = drtbe, and follow Equation (0.0.7)-
(0.0.18) by replacing N with N0 to solve for Ω0.

Power Analysis Table

When ω0 is specified as well as the multiple partial correlation coefficient, we output Table 1 instead of Table
??. Depending on whether the predictors are assumed to be fixed or random in Section and , N is estimated

Power Analysis Table

Actual Predictors Test Assumptions

N Powerb Total Test Power Partialc Sig.

Type III F -testa 203 .801 8 3 .800 0.206 0.05

a. Intercept term is included.

b. Predictors are assumed to be random.

c. Multiple partial correlation coefficient.

Table 1: Estimate Sample Size with Specified Multiple Partial Correlation

by N0, and Actual Power is estimated by Ω0. Power is ω0 specified by users. All the other table settings are
the same as Table 1.

When ω0 is specified as well as the squared multiple correlation coefficients for the full and nested models,
we output Table 2 instead of Table ??. Depending on whether the predictors are assumed to be fixed or
random in Section and , N is estimated by N0, and Actual Power is estimated by Ω0. Power is ω0 specified
by users. All the other table settings are the same as Table ??.
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Power Analysis Table

Actual Predictors Test Assumptions

N Powerb Full Nested Power Fullc Nestedd Sig.

Type III F -testa 203 .801 8 3 .800 0.65 0.63 0.05

a. Intercept term is not included.

b. Predictors are assumed to be fixed.

c. Squared multiple correlation coefficient in full model.

d. Squared multiple correlation coefficient in nested model.

Table 2: Estimate Sample Size with Specified Multiple Correlations for Full and Nested Models
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PPLOT Algorithms 
PPLOT produces probability plots of one or more sequence or time series variables. The variables 
can be standardized, differenced, and/or transformed before plotting. Expected normal values or 
deviations from expected normal values can be plotted. PPLOT can be used to investigate whether 
the data are from a specified distribution: normal, lognormal, logistic, exponential, Weibull, 
gamma, beta, uniform, Pareto, Laplace, half normal, chi-square and Student’s t. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 78-1 
Notation 

Notation Description 
                      Sample mean 

 
S Sample standard deviation 

                     Sample mean for 

Sample standard deviation for 

Value of the ith observation 

The ith smallest observation 

Corresponding rank for 

n Sample size 
Fractional rank of for the specified distribution function 

Score for the specified distribution function 

Location parameter 

                         Scale parameter 

Shape parameter 

Degrees of freedom 

 
 

Fractional Ranks 

Based on the rank   for the observation , the fractional rank          is computed and 
used to estimate the expected cumulative distribution function of X. One of four methods can be 
selected to calculate the fractional rank       : 
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Scores 

The score of the specified distribution for case i is defined as 

where  is the inverse cumulative specified distribution function. 

P-P Plot 

For a P-P plot, the fractional rank and the cumulative specified distribution function  are 
plotted: 

Q-Q Plot

For a Q-Q plot, the observations and the score for the specified distribution function are plotted. 

Distributions 

The distributions and their parameters are listed below. Parameters may be either specified by 
users or estimated from the data. Any parameter values specified by the user should satisfy the 
conditions indicated. 
Table 78-2 
Distributions 



Estimates of the Parameters 

The estimates for parameters for each distribution are defined below. 
Table 78-3 
Parameter estimates for distributions 
Distribution Description 
Beta(  , ) 

Parameter type 
shape parameter 

Chi-square(  ) is the degrees of freedom specified by 
the user. 

Exponential(  ) 

Gamma(  ,   ) 

Half Normal(  ) 

Laplace(  , ) 

Logistic(  , ) 

 , 
Lognorm al 

Normal(  , ) 

Pareto(  ,b);  min 

Student’s t(  ) is the degrees of freedom specified by 
the user. 

Uniform(a,b) min 

max 

Weibull(  ,  ) 

shape parameter 

scale parameter 

shape parameter 

scale parameter   

scale parameter 

location parameter   

scale parameter 

location parameter 

scale parameter   

scale parameter 

shape parameter 

location parameter  

scale parameter 

scale parameter 

index of inequality 

lowerbound  

upperbound 

scale parameter 

PPLOT Algorithms 
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Distribution Description Parameter type 

exp                                                  shape parameter 

where 
and 
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PRINCALS Algorithms 
The PRINCALS algorithm was first described in Van Rijckevorsel and De Leeuw (1979) and 
De Leeuw and Van Rijckevorsel (1980); also see Gifi (1981, 1985). Characteristic features of 
PRINCALS are the ability to specify any of a number of measurement levels for each variable 
separately and the treatment of missing values by setting weights in the loss function equal to 0. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of cases (objects) 
m Number of variables 
p Number of dimensions 

 
For variable j; 

 
 

 

 

 

 
 

n-vector with categorical observations 

Number of valid categories (distinct values) of variable j 

Indicator matrix for variable j, of order 
 
 

when the  th object is in the   th category of variable 
when the  th object is not in the   th category of variable 

 

                                         Diagonal matrix, containing the univariate marginals; that is, the column 
sums of   

                                        Binary diagonal n×n matrix, with diagonal elements defined as 
 
 

when the  th observation is within the range 
when the  th observation outside the range 

 

The quantification matrices and parameter vectors are: 

X Object scores, of order n×p 
                                         Multiple category quantifications, of order  

Single category quantifications, of order   

Variable weights (equal to component loadings), of order p 

Q Transformed data matrix of order n×m with columns  
                                            Collection of multiple and single category quantifications. 

 
 

Note: The matrices , , and  are exclusively notational devices; they are stored in reduced 
form, and the program fully profits from their sparseness by replacing matrix multiplications  
with selective accumulation. 
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Objective Function Optimization 
The PRINCALS objective is to find object scores X and a set of   (for j=1,...,m) — the 
underlining indicates that they may be restricted in various ways — so that the function 

tr 
 

is minimal, under the normalization restriction where and I is the 

p×p identity matrix. The inclusion of   in ensures that there is no influence of data 
values outside the range , a circumstance that may indicate either genuine missing values or 
simulated missing values for the sake of analysis. contains the number of “active” data values 
for each object.  The object scores are also centered; that is, they satisfy with 
u denoting an n-vector with ones. 

 
Optimal Scaling Levels 

The following optimal scaling levels are distinguished in PRINCALS: 
 

 
 
For each variable, these levels can be chosen independently. The general requirement for all 
options is that equal category indicators receive equal quantifications. The general requirement 
for the non-multiple options is ; that is,  is of rank one; for identification purposes, 

is always normalized so that . 
 

Optimization 

Optimization is achieved by executing the following iteration scheme: 

1. Initialization I or II 

2. Update object scores 

3. Orthonormalization 

4. Update category quantifications 

5. Convergence test: repeat (2) through (4) or continue 
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6. Rotation 
 

Steps (1) through (6) are explained below. 
 

Initialization 
 

I. Random 
 

The object scores X are initialized with random numbers.  Then X is normalized so  that 
and , yielding .  For multiple variables, the initial category 

quantifications are obtained as                     . For single variables, the initial category 
quantifications are defined as the first successive integers normalized in such a way that 

and , and the initial variable weights are calculated as the vector 
, rescaled to unit length. 

 
II. All relevant quantities are copied from the results of the first cycle. 

 
Update object scores 

 
First the auxiliary score matrix Z is computed as 

 

 
and centered with respect to : 
 

 

These two steps yield locally the best updates when there would be no orthogonality constraints. 
 

Orthonormalization 
 

The problem is to find an -orthonormal that is closest to  in the least squares sense. In 
PRINCALS, this is done by setting 

 
GRAM 

 

which is equal to the genuine least squares estimate up to a rotation—see (6). The notation 
GRAM( ) is used to denote the Gram-Schmidt transformation (Björk and Golub, 1973). 

 
Update category quantifications 

 
For multiple nominal variables, the new category quantifications are computed as: 

 

For single variables one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for 
computing the rank-one decomposition of , with restrictions on the left-hand vector. This cycle 
starts from the previous category quantification with 
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When the current variable is numerical, we are ready; otherwise we compute 
 

. 
 

Now, when the current variable is single nominal, you can simply obtain    by normalizing 
  in the way indicated below; otherwise the variable must be ordinal, and you have to insert 

the weighted monotonic regression process 
 

← WMON( )  .  
 

The notation WMON( ) is used to denote the weighted monotonic regression process, which 
makes   monotonically increasing. The weights used are the diagonal elements of   and the 
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964; 
Barlow et al., 1972).  The result is normalized: 

 

 

Finally, we set . 
 

Convergence test 
 

The difference between consecutive values of the quantity 
 

TFIT  

where denotes the sth column of   and J is an index set recording which variables are 
multiple, is compared with the user-specified convergence criterion ε - a small positive number. 
It can be shown that TFIT .  Steps (2) through (4) are repeated as long as the 
loss difference exceeds ε. 

 
Rotation 

 
As remarked in (3), during iteration the orientation of X and Y with respect to the coordinate 
system is not necessarily correct; this also reflects that is invariant under simultaneous 
rotations of X and Y. From the theory of principal components, it is known that if all variables 
would be single, the matrix A — which can be formed by stacking the row vectors a j́—has the 
property that A’A is diagonal. Therefore you can rotate so that the matrix 

 

becomes diagonal. The corresponding eigenvalues are printed after the convergence message 
of the program. The calculation involves tridiagonalization with Householder transformations 
followed by the implicit QL algorithm (Wilkinson, 1965). 
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Diagnostics 
The following diagnostics are available. 

 

Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank pmax indicates the maximum number of dimensions that can be computed 
for any dataset.  In general 

 

where m1 is the number of multiple variables with no missing values, m2 is the number of single 
variables, and J is an index set recording which variables are multiple. Although the number of 
nontrivial dimensions may be less than pmax when m=2, PRINCALS does allow dimensionalities 
all the way up to pmax. When, due to empty categories in the actual data, the rank deteriorates 
below the specified dimensionality, the program stops. 

 
Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing values (that is, 
values that are regarded as out of range for the current analysis) for each variable. These are 
computed as the column sums of   and the total sum of . 

 
Fit and Loss Measures 

When the HISTORY option is in effect, the following fit and loss measures are reported: 
 

Total fit.  This is the quantity TFIT defined in (5). 
 

Total loss.This is , computed as the sum of multiple loss and single loss defined below. 
 

Multiple loss. This measure is computed as 

TMLOSS tr 

Single loss. This measure is computed only when some of the variables are single: 

SLOSS tr 

 

Eigenvalues and Correlations between Optimally Scaled Variables 

If there are no missing data, the eigenvalues printed by PRINCALS are those of , where 
R(Q) denotes the matrix of correlations between the optimally scaled variables in the columns 
of Q. For multiple variables, is defined here as .  When all variables are single or 
when p=1, R(Q) itself is also printed. If there are missing data, then the eigenvalues are those 
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of the matrix with elements , which is not necessarily a correlation matrix, although 
it is positive semidefinite. 
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PROBIT Algorithms 
The Probit procedure is used to estimate the effects of one or more independent variables on a 
dichotomous dependent variable. The program is designed for dose-response analyses and related 
models, but Probit can also estimate logistic regression models. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

m Number of covariate patterns 
Number of subjects for ith covariate pattern 

Number of responses for ith covariate pattern 
p Number of independent variables 
q Number of levels of the grouping variable. q=0 when there is no grouping 

variable 
c Natural response rate 
X  matrix with element , which represents the jth covariate 

for the ith covariate pattern 
γ p×1 vector with element , which represents the slope parameter of the jth 

independent variable 
α q×1 vector with element , which represents the parameter for the jth level 

of the grouping variable 
β vector which is a composite of γ and α 
s Total number of parameters in the model, equal to p+q if  the natural 

response rate is set to a constant, p+q+1 if the natural response rate is to 
be estimated by the model 

 
 
Model 

The model assumes a dichotomous dependent variable with probability P for the event of interest. 
Since the procedure assumes aggregated data for every covariate pattern, the random variable 

takes a binomial distribution. 
 

 

Hence, the log likelihood, L, for m observations after ignoring the constant factor can be written as 
 

 

For dose-response models, it is further assumed that 
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where  is the vector of covariates for the ith covariate pattern and has two forms: 
 

 

When there is no grouping variable, is simply the observed value of the jth independent 
variable for the ith covariate pattern, and β=γ. When there is a grouping variable, a set of indicator 
variables is constructed. There will be q indicator variables added to the X matrix and q 
parameters added to the β vector. 

 
if the  th covariate pattern is in the   th level 

0 otherwise 
 

Hence, the   vector has p+q elements and the associated parameter vector β is expanded  to 
, where . 

 
Maximum-Likelihood Estimates (MLE) 

To obtain the maximum likelihood estimates for c, and , set the following equations 
equal to 0: 

 

 

 
where   is the derivative of L with respect to . 

 
Algorithm 

Probit uses the algorithms proposed and implemented in NPSOL by Gill, Murray, Saunders, 
and Wright. The loss function for this procedure is the negative of the log-likelihood described 
in the model. The derivatives for the parameters are described above. The only bound for the 
parameters is .  For more details of the NPSOL algorithms, see CNLR (constrained 
nonlinear regression). 

 

Natural Response Rate 

When the user specifies a fixed number for the natural response rate,   is set to 0 for iterations 
and the bound for c is set equal to the fixed number. 



 
 

 

Initial Values 
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The initial value for each  is set to 0. If there is a control group, the initial value of c, designated 
by , is set to the ratio of the response to the number of subjects for the control group. If there is 
no control group, then is set to the minimum ratio of the response to the number of subjects, 
over all covariate patterns. 

 

Criteria 
 

Users can control two criteria, ITER and CONV. ITER is the maximum number of iterations 
allowed. The default value is . CONV (criterion of convergence) is the same 
as the OPTOLERANCE criterion in CNLR. 

 
Asymptotic Covariance Matrix 

The asymptotic covariance matrix for the MLE is estimated by , where I is 
the information matrix containing the negatives of the second partial derivatives of L.

 

Frequency Table and Goodness of Fit 
For every covariate pattern i, i=1,...,m, compute 
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Then the expected frequency is equal to 

 

 
The Pearson chi-square statistic is defined by 

 

and the degrees of freedom (df) is 
 

if 
if 

 
Fiducial Limits, RMP, and Parallelism 

The parallelism test statistic, fiducial limits, and relative median potency are available when 
there is only one covariate (predictor variable).  Assuming that are the MLE’s for 

and  is the MLE for   , is the asymptotic variance for , is the asymptotic 
variance for , and is the asymptotic covariance for and   . 

 
Fiducial Limits for Effective dose x 

For level of the grouping variable j and P = 0.01 through 0.09, 0.10 through 0.90 (by 0.05), and 
0.91 through 0.99, compute 

 
if logit model 
if probit model 

 
Then the effective dose to obtain probability P of response for level j is defined by 

 

 
and the 95% fiducial limit for effective dose is computed by 

 

where 

/ 
probit 

- 
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without heterogeneity factor 

with heterogeneity factor 

without heterogeneity factor 
with heterogeneity factor 

 

without heterogeneity factor 
with heterogeneity factor 

The heterogeneity factor is used if the Pearson chi-square statistic is significant. 
 

Note: If the covariate (predictor variable) x is transformed, transform it back to the original 
metrics for the estimate and its two limits. For example, if  is applied to the predictor for the 
analysis and  are the lower limit, the estimate, and the upper limit on the  scale, 
then  and are the lower and upper limits on the original scale. 

 
Relative Median Potency 

The relative median potency is available when there is a factor variable and a single covariate. It 
is not available if there is no factor variable or if there is more than one covariate. 

 
The estimate of relative median potency for group j versus group k is 

 

and its 95% confidence limit is 

 
where 

 

Note: If the covariate (predictor variable) x is transformed, transform it back to the original 
metrics for the relative median potency. 

 
Parallelism Test Chi-Square Statistic 

The parallelism test is available only if there is a factor variable. 
 

where  is the Pearson chi-square statistic, assuming that the group variable is in the model and 
is the Pearson chi-square for the jth group and the degrees of freedom for  is q−1. 
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PROPORTIONS - One Sample 

This section describes the algorithms for computing hypothesis tests and 

confidence intervals for  individual binomial proportions. The data are 

assumed to be from a simple random sample, and each hypothesis test or 

confidence interval is a separate test or individual interval, based on a binomial 

proportion.  

Notation 
        

       The following notation is used throughout this section unless otherwise noted: 

                     

        

        r  Number of “successes” or numerator of observed 

proportion 

 

 n Number of  “successes” and “failures” or total number of 

“trials,” denominator of observed proportion 

 

                    𝑝    Population proportion  

                     

                    𝑝0   Hypothesized population proportion  

                     

                    �̂�   Estimated population proportion  
 

𝛼 Specified Type I error level for hypothesis tests and non-

coverage level for confidence intervals 

 

        𝑧   𝛼 quantile of the standard normal distribution  
 

 

                  Φ(𝑧) Cumulative distribution function of the standard normal 

distribution 

Point Estimates and Standard Errors 

 Point estimate for population proportion p: 

�̂� =
𝑟

𝑛
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Estimate of difference from hypothesized population proportion: 

�̂� = �̂� − 𝒑𝟎 

Asymptotic standard errors of difference estimates: 

𝐴𝑆𝐸0(�̂�) = √𝑝0(1 − 𝑝0) 𝑛⁄  
 

𝐴𝑆𝐸1(�̂�) =  √�̂�(1 − �̂�) 𝑛⁄  

Hypothesis Tests 

Score Z test statistic (Agresti, 2019): 

𝒁 =
�̂� − 𝒑𝟎

√𝒑𝟎(𝟏 − 𝒑𝟎) 𝒏⁄
=

𝒓 − 𝒏𝒑𝟎

√𝒏𝒑𝟎(𝟏 − 𝒑𝟎)
 

 

Continuity-corrected score Z test statistic (Fleiss, Levin, & Paik, 2003): 
 

   

𝑍 =
�̂� − 𝑝0 ± 1 2𝑛⁄

√𝑝0(1 − 𝑝0) 𝑛⁄
=

𝑟 − 𝑛𝑝0 ± .5

√𝑛𝑝0(1 − 𝑝0)
 

 

where the sign of the continuity correction is the opposite of the sign of �̂� − 𝑝0. If 

the continuity correction is larger in magnitude than |�̂� − 𝑝0|, the continuity-

corrected Z = 0. 

Wald Z test statistic (Agresti, 2013): 

𝒁 =
�̂� − 𝒑𝟎

√�̂�(𝟏 − �̂�) 𝒏⁄
=

𝒓 − 𝒏𝒑𝟎

√𝒓(𝟏 − 𝒓 𝒏⁄ )
 

  

Continuity-corrected Wald Z test statistic (Hays, 1981): 
 

 

 𝑍 =
𝑝−𝑝0±1 2𝑛⁄

√𝑝(1−𝑝) 𝑛⁄
=

𝑟−𝑛𝑝0±.5

√𝑟(1−𝑟 𝑛⁄ )
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where the sign of the continuity correction is the opposite of the sign of �̂� − 𝑝0. If 

the continuity correction is larger in magnitude than |�̂� − 𝑝0|, the continuity-

corrected Z = 0. 

 Probabilities for Z test statistics: 
 

 

One-sided probability 𝑃1 = 𝑚𝑖𝑛{Φ(𝑍)|𝐻0, 1 − Φ(𝑍)|𝐻0} 

 

Two-sided probability 𝑃2 = 2𝑃1 

 Exact binomial probabilities (Agresti, 2013): 
 

  𝑃1 = 𝑚𝑖𝑛 {∑ (
𝑛
𝑖

) 𝑝0
𝑖𝑟

𝑖=0 (1 − 𝑝0)𝑛−𝑖 , ∑ (
𝑛
𝑖

) 𝑝0
𝑖𝑛

𝑖=𝑟 (1 − 𝑝0)𝑛−𝑖} = 

 

   𝑚𝑖𝑛{𝐶𝐷𝐹. 𝐵𝐼𝑁𝑂𝑀(𝑟, 𝑛, 𝑝0), 1 − 𝐶𝐷𝐹. 𝐵𝐼𝑁𝑂𝑀(𝑟 − 1, 𝑛, 𝑝0)} 

 

  𝑃2 = 2𝑃1   

 Mid-p adjusted probabilities (Agresti, 2013): 

𝑷𝟏𝒎𝒊𝒅−𝒑
= 𝑷𝟏−. 𝟓 (

𝒏
𝒓

) 𝒑𝟎
𝒓(𝟏 − 𝒑𝟎)𝒏−𝒓  

 

  𝑃2𝑚𝑖𝑑−𝑝
= 2𝑃1𝑚𝑖𝑑−𝑝

 

Confidence Intervals 
 

Lower (L) and Upper (U) bounds are computed for each available type of confidence 

intervals as follows. In some situations values outside the range [0,1] may result. Such 

values are truncated to 0 or 1. 

Agresti-Coull 100(1-)% intervals (Agresti & Coull, 1998): 
 

                      L = �̃� − 𝑧1−𝛼/2√�̃�(1 − �̃�) �̃�⁄  

 

 

                      U = �̃� + 𝑧1−𝛼/2√�̃�(1 − �̃�) �̃�⁄  

 

  where  �̃� = 𝑛 + 𝑧1−𝛼/2
2

 

 

  and  �̃� =
1

�̃�
(𝑟 +

𝑧1−𝛼/2
2

2
) 
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Anscombe 100(1-)% intervals (Brown, Cai, & DasGupta, 2001): 

 

                      L = 1/ {1 + 𝑒𝑥𝑝 [− (𝑙𝑛 (
𝑟+.5

𝑛−𝑟+.5
) − 𝑧1−𝛼/2√

(𝑛+1)(𝑛+2)

𝑛(𝑟+1)(𝑛−𝑟+1)
)]} 

 

 

                      U = 1/ {1 + 𝑒𝑥𝑝 [− (𝑙𝑛 (
𝑟+.5

𝑛−𝑟+.5
) + 𝑧1−𝛼/2√

(𝑛+1)(𝑛+2)

𝑛(𝑟+1)(𝑛−𝑟+1)
)]} 

Clopper-Pearson “exact” 100(1-)% intervals (Clopper & Pearson, 1934): 
 

L = 𝐼𝐷𝐹. 𝐵𝐸𝑇𝐴(𝛼/2, 𝑟, 𝑛 − 𝑟 + 1) 

 

 

                      U = 𝐼𝐷𝐹. 𝐵𝐸𝑇𝐴(1 − 𝛼/2, 𝑟 + 1, 𝑛 − 𝑟) 

Jeffreys 100(1-)% intervals (Brown, Cai, & DasGupta, 2001): 
 

L = 𝐼𝐷𝐹. 𝐵𝐸𝑇𝐴(𝛼/2, 𝑟 + .5, 𝑛 − 𝑟 + .5) 

 

                      U = 𝐼𝐷𝐹. 𝐵𝐸𝑇𝐴(1 − 𝛼/2, 𝑟 + .5, 𝑛 − 𝑟 + .5) 

Logit 100(1-)% intervals (Brown, Cai, & DasGupta, 2001): 
 

                      L = 1/ {1 + 𝑒𝑥𝑝 [− (𝑙𝑛 (
𝑟

𝑛−𝑟
) − 𝑧1−𝛼/2√

𝑛

𝑟(𝑛−𝑟)
)]} 

 

 

                      U = 1/ {1 + 𝑒𝑥𝑝 [− (𝑙𝑛 (
𝑟

𝑛−𝑟
) + 𝑧1−𝛼/2√

𝑛

𝑟(𝑛−𝑟)
)]} 

Wald 100(1-)% intervals (Brown, Cai, & DasGupta, 2001): 
 

                      L = �̂� − 𝑧1−𝛼/2√�̂�(1 − �̂�) 𝑛⁄  

 

 

                      U = �̂� + 𝑧1−𝛼/2√�̂�(1 − �̂�) 𝑛⁄  

Continuity-corrected Wald 100(1-)% intervals (Vollset, 1993): 
 

                      L = �̂� − 𝑧1−𝛼/2√�̂�(1 − �̂�) 𝑛⁄ − 1 2𝑛⁄  
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                      U = �̂� + 𝑧1−𝛼/2√�̂�(1 − �̂�) 𝑛⁄ + 1 2𝑛⁄  

Wilson (score) 100(1-)% intervals (Wilson, 1927): 
 

                      L = (�̂� +
𝑧1−𝛼/2

2

2𝑛
− 𝑧1−𝛼/2

√𝑝(1−𝑝)

𝑛
+

𝑧1−𝛼/2
2

4𝑛2 ) / (1 +
𝑧1−𝛼/2

2

𝑛
) 

 

 

                      U = (�̂� +
𝑧1−𝛼/2

2

2𝑛
+ 𝑧1−𝛼/2

√𝑝(1−𝑝)

𝑛
+

𝑧1−𝛼/2
2

4𝑛2 ) / (1 +
𝑧1−𝛼/2

2

𝑛
) 

Continuity-corrected Wilson (score) 100(1-)% intervals (Newcombe, 1998a): 
 

                      L =
2𝑛𝑝+𝑧1−𝛼/2

2 −1−𝑧1−𝛼/2√𝑧1−𝛼/2
2 −

1

𝑛
+4𝑛𝑝(1−𝑝)+4𝑝−2

2(𝑛+𝑧1−𝛼/2
2 )

 

 

 

                      U =
2𝑛𝑝+𝑧1−𝛼/2

2 +1+𝑧1−𝛼/2√𝑧1−𝛼/2
2 −

1

𝑛
+4𝑛𝑝(1−𝑝)+4𝑝−2

2(𝑛+𝑧1−𝛼/2
2 )

 

 

PROPORTIONS – Paired Samples  

This section describes the algorithms for computing hypothesis tests and 

confidence intervals for the difference in two related binomial proportions. The 

data are assumed to be from a simple random sample, and each hypothesis test 

or confidence interval is a separate test or individual interval.  

Notation 
        

       The following notation is used throughout this section unless otherwise noted: 

                     

        

        𝑛11  Number of observations with “successes” or target category 

values for both measurements 

 

  𝑛10 Number of  observations with “success” on the first 

measurement and “failure” on the second measurement  

 

  𝑛01  Number of  observations with “failure” on the first  

measurement and “success” on the second measurement 
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         𝑛00  Number of observations with “failure” on both  

measurements 

 

                    𝑛1+   Observed number of “successes” for the first measurement 

                     

                    𝑛+1  Observed number of “successes” for the second 

Measurement 

 

                    𝑛0+   Observed number of “failures” for the first measurement 

                     

                    𝑛+0  Observed number of “failures” for the second 

measurement 

 

         𝑛   Total number of observations  

 

                    𝑝1   Population proportion of “successes” for the first 

measurement 

                     

                    𝑝2   Population proportion of “successes” for the second  

measurement 

                     

                    �̂�1   Estimated population proportion for the first measurement 

 

                    �̂�2   Estimated population proportion for the second 

measurement 

 

�̂�11  Estimated populations proportion of cases with “success” 

for both measurements 

                     

�̂�10  Estimated populations proportion of cases with “success” 

for the first measurement and “failure” for the second 

measurement 

 

�̂�01  Estimated populations proportion of cases with “failure” 

for the first measurement and “success” for the second 

measurement 

                     

�̂�00  Estimated populations proportion of cases with “failure” 

for both measurements 

 

 𝛼 Specified Type I error level for hypothesis tests and non-

coverage level for confidence intervals 

 

         𝑧   𝛼 quantile of the standard normal distribution  
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                   Φ(𝑧) Cumulative distribution function of the standard normal 

distribution 

Point Estimates and Standard Errors 

 Point estimates for population proportions p1 and p2: 

�̂�1 =
𝑛1+

𝑛
 

  

�̂�2 =
𝑛+1

𝑛
 

Estimate of difference of population proportions: 

�̂� = �̂�𝟏 − �̂�𝟐 

Asymptotic standard errors of difference estimates: 

 

𝐴𝑆𝐸0(�̂�) = √(�̂�10 + �̂�01) 𝑛⁄  
 

 

𝐴𝑆𝐸1(�̂�) = √[(�̂�10 + �̂�01) − (�̂�10 − �̂�01)2] 𝑛⁄  

Hypothesis Tests 
 

McNemar Z test statistics (McNemar, 1947; Edwards, 1948): 
 

 

McNemar 𝑍 =
𝑛10−𝑛01

√𝑛10+𝑛01
 

   

Continuity-Corrected McNemar 𝑍 =
𝑛10−𝑛01±1

√𝑛10+𝑛01
 

 

where the sign of the continuity correction is the opposite of the sign of 𝑛10 −
𝑛01. If 𝑛10 = 𝑛01, the continuity-corrected Z = 0. 
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Wald Z test statistics (Agresti, 2013): 

 

Wald 𝑍 =
𝑛10−𝑛01

√𝑛10+𝑛01−(𝑛10−𝑛01)2 𝑛⁄
 

   

Continuity-Corrected Wald 𝑍 =
𝑛10−𝑛01±1

√𝑛10+𝑛01−(𝑛10−𝑛01)2 𝑛⁄
 

 

where the sign of the continuity correction is the opposite of the sign of 𝑛10 −
𝑛01. If 𝑛10 = 𝑛01 the continuity-corrected Z = 0. 

 Probabilities for Z test statistics: 
 

 

One-sided probability 𝑃1 = 𝑚𝑖𝑛{Φ(𝑍)|𝐻0, 1 − Φ(𝑍)|𝐻0} 

 

Two-sided probability 𝑃2 = 2𝑃1 

 Exact conditional binomial probabilities (Agresti, 2013): 
 

  𝑃1 = ∑ (
𝑛10 + 𝑛01

𝑖
) (. 5)(𝑛10+𝑛01)𝑚𝑖𝑛(𝑛10,𝑛01)

𝑖=0  

 

  𝑃2 = 2𝑃1   

 Mid-p adjusted probabilities (Fagerland, Lydersen, & Laake, 2013, 2014): 

𝑷𝟏𝒎𝒊𝒅−𝒑
= 𝑷𝟏−. 𝟓 (

𝒏𝟏𝟎 + 𝒏𝟎𝟏

𝒎𝒊𝒏(𝒏𝟏𝟎, 𝒏𝟎𝟏)) (. 𝟓)(𝒏𝟏𝟎+𝒏𝟎𝟏)  

 

  𝑃2𝑚𝑖𝑑−𝑝
= 2𝑃1𝑚𝑖𝑑−𝑝

 

Confidence Intervals 
 

Lower (L) and Upper (U) bounds are computed for each available type of 

confidence intervals as follows. In some situations values outside the range [-1,1] 

may result. Such values are truncated to -1 or 1. 

Agresti-Min 100(1-)% intervals (Agresti & Min, 2005): 
 

                      L =
𝑛10−𝑛01

𝑛+2
− 𝑧1−𝛼/2√[

𝑛10+.5

𝑛+2
+

𝑛01+.5

𝑛+2
− (

𝑛10−𝑛01

𝑛+2
)

2
] (𝑛 + 2)⁄  
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                      U =
𝑛10−𝑛01

𝑛+2
+ 𝑧1−𝛼/2√[

𝑛10+.5

𝑛+2
+

𝑛01+.5

𝑛+2
− (

𝑛10−𝑛01

𝑛+2
)

2
] (𝑛 + 2)⁄  

Bonett-Price 100(1-)% intervals (Bonett & Price, 2012): 
 

                      L =
𝑛10−𝑛01

𝑛+2
− 𝑧1−𝛼/2√[

𝑛10+1

𝑛+2
+

𝑛01+1

𝑛+2
− (

𝑛10−𝑛01

𝑛+2
)

2
] (𝑛 + 2)⁄  

 

 

                      U =
𝑛10−𝑛01

𝑛+2
+ 𝑧1−𝛼/2√[

𝑛10+1

𝑛+2
+

𝑛01+1

𝑛+2
− (

𝑛10−𝑛01

𝑛+2
)

2
] (𝑛 + 2)⁄  

Wald 100(1-)% intervals (Fagerland, Lydersen, & Laake, 2014): 
 

                      L =
𝑛10−𝑛01

𝑛+2
− 𝑧1−𝛼/2√[

𝑛10

𝑛
+

𝑛01

𝑛
− (

𝑛10−𝑛01

𝑛
)

2
] 𝑛⁄  

 

 

                      U =
𝑛10−𝑛01

𝑛+2
+ 𝑧1−𝛼/2√[

𝑛10

𝑛
+

𝑛01

𝑛
− (

𝑛10−𝑛01

𝑛
)

2
] 𝑛⁄  

Continuity-corrected Wald 100(1-)% intervals (Fagerland, Lydersen, & Laake, 2014): 
 

                      L =
𝑛10−𝑛01

𝑛+2
− 𝑧1−𝛼

2
√[

𝑛10
𝑛

+ 𝑛01
𝑛

− (
𝑛10−𝑛01

𝑛
)

2
] 𝑛⁄ − 1

𝑛
 

 

 

                      U =
𝑛10−𝑛01

𝑛+2
+ 𝑧1−𝛼/2√[

𝑛10
𝑛

+ 𝑛01
𝑛

− (
𝑛10−𝑛01

𝑛
)

2
] 𝑛⁄ + 1

𝑛
 

Newcombe MOVER Wilson-score-based 100(1-)% intervals (Newcombe, 1998b): 
 

                      L = �̂�1 − �̂�2 − √(�̂�1 − 𝑙1)2 + (𝑢2 − �̂�2)2 − 2�̂�(�̂�1 − 𝑙1)(𝑢2 − �̂�2) 

 

  U = �̂�1 − �̂�2 + √(𝑢1 − �̂�1)2 + (�̂�2 − 𝑙2)2 − 2�̂�(𝑢1 − �̂�1)(�̂�2 − 𝑙2) 

 

where 𝑙1 and 𝑢1 are lower and upper confidence limits for �̂�1 and 𝑙2 and 𝑢2 are 

lower and upper confidence limits for �̂�2 using the Wilson (score) intervals 

formulas from the one-sample binomial proportions algorithms section, and �̂� is an 

estimate of the correlation between �̂�1 and �̂�2.  

 

�̂� is estimated as follows:  



 

PROPORTIONS Algorithms 

 
 

If any of the marginal sums (𝑛1+, 𝑛0+, 𝑛+1, 𝑛+0) is zero, �̂� = 0. Otherwise, 

calculate 

 

 𝐴 = 𝑛11𝑛00 − 𝑛10𝑛01 and:  

 

 𝐼𝑓 𝐴 > 𝑛 2⁄ , �̂� = (𝐴 − 𝑛 2⁄ ) √𝑛1+𝑛0+𝑛+1𝑛+0⁄  

 𝐼𝑓 0 ≤ 𝐴 ≤ 𝑛 2⁄ , �̂� = 0 

 𝐼𝑓 𝐴 < 0, �̂� = 𝐴 √𝑛1+𝑛0+𝑛+1𝑛+0⁄  

 

PROPORTIONS – Independent Samples 

This section describes the algorithms for computing hypothesis tests and 

confidence intervals for the difference in two independent binomial 

proportions. The data are assumed to be from a simple random sample, and 

each hypothesis test or confidence interval is a separate test or individual 

interval.  

Notation 
        

       The following notation is used throughout this section unless otherwise noted: 

                     

        

        𝑟1  Number of observations with “success” in group 1 

 

  𝑛1 Number of  observations in group 1  

 

  𝑟2   Number of  observations with “success” in group 2 

 

         𝑛2  Number of observations in group 2 

 

         𝑛   Total number of observations  

 

                    𝑝1   Population proportion of “successes” for group 1 

                     

                    𝑝2   Population proportion of “successes” for group 2 

                     

                    �̂�1   Estimated population proportion for group 1 

 

                    �̂�2   Estimated population proportion for group 2 

 

 𝛼 Specified Type I error level for hypothesis tests and non-

coverage level for confidence intervals 
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         𝑧   𝛼 quantile of the standard normal distribution  
 

 

                   Φ(𝑧) Cumulative distribution function of the standard normal 

distribution 

Point Estimates and Standard Errors 

 Point estimates for population proportions p1 and p2: 

�̂�1 =
𝑟1

 𝑛1
 

  

�̂�2 =
𝑟2

 𝑛2
 

Estimate of difference of population proportions: 

�̂� = �̂�𝟏 − �̂�𝟐 

Asymptotic standard errors of difference estimates: 

𝐴𝑆𝐸0(�̂�) = √�̂�(1 − �̂�) 𝑛1 + �̂�(1 − �̂�) 𝑛2⁄⁄  
 
where �̂� = (𝑟1 + 𝑟2) 2𝑛⁄ . 

 
 

𝐴𝑆𝐸1(�̂�) =  √�̂�1(1 − �̂�1) 𝑛1 + �̂�2(1 − �̂�2) 𝑛2⁄⁄  

Hypothesis Tests 

Hauck-Anderson Z test statistic (Hauck & Anderson, 1986): 

 

  𝑍 =
�̂�1−�̂�2±1 (2𝑚𝑖𝑛(𝑛1,𝑛2))⁄

√�̂�1(1−�̂�1) (𝑛1−1)+�̂�2(1−�̂�2) (𝑛2−1)⁄⁄

 

 

where the sign of the continuity correction is the opposite of the sign of �̂�1 − �̂�2. 

If |�̂�1 − �̂�2| < 1 (2𝑚𝑖𝑛(𝑛1, 𝑛2))⁄ , Z = 0. 
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Wald Z test statistics (Fleiss, Levin, & Paik, 2003): 

 

Wald 𝑍 =
𝑝1−𝑝2

√𝑝1(1−𝑝1) 𝑛1+𝑝2(1−𝑝2) 𝑛2⁄⁄
 

   

Continuity-Corrected Wald 𝑍 =
�̂�1−�̂�2±(1 𝑛1⁄ +1 𝑛2⁄ ) 2⁄

√�̂�1(1−�̂�1) 𝑛1+�̂�2(1−�̂�2) 𝑛2⁄⁄

 

 

where the sign of the continuity correction is the opposite of the sign of �̂�1 − �̂�2. 

If |�̂�1 − �̂�2| < (1 𝑛1⁄ + 1 𝑛2⁄ ) 2⁄ , the continuity-corrected Z = 0. 

Wald Z test statistics using variance estimates under H0 (Fleiss, Levin, & Paik, 2003): 
 

Wald 𝑍 =
𝑝1−𝑝2

√𝑝(1−𝑝) 𝑛1+𝑝(1−𝑝) 𝑛2⁄⁄
 

 
 where �̂� = (𝑟1 + 𝑟2) 2𝑛⁄ . 

   

Continuity-Corrected Wald 𝑍 =
𝑝1−𝑝2±(1 𝑛1⁄ +1 𝑛2⁄ ) 2⁄

√𝑝(1−𝑝) 𝑛1+𝑝(1−𝑝) 𝑛2⁄⁄
 

 

where the sign of the continuity correction is the opposite of the sign of �̂�1 − �̂�2. 

If |�̂�1 − �̂�2| < (1 𝑛1⁄ + 1 𝑛2⁄ ) 2⁄ , the continuity-corrected Z = 0. 

 Probabilities for Z test statistics: 
 

 

One-sided probability 𝑃1 = 𝑚𝑖𝑛{Φ(𝑍)|𝐻0, 1 − Φ(𝑍)|𝐻0} 

 

Two-sided probability 𝑃2 = 2𝑃1 

Confidence Intervals 
 

Lower (L) and Upper (U) bounds are computed for each available type of 

confidence intervals as follows. In some situations values outside the range [-1,1] 

may result. Such values are truncated to -1 or 1. 
 

Agresti-Caffo 100(1-)% intervals (Agresti & Caffo, 2000): 
 

                      L = �̃�1 − �̃�2 − 𝑧1−𝛼/2√�̃�1(1 − �̃�1) �̃�1 + �̃�2(1 − �̃�2) �̃�2⁄⁄  
 

 

                      U = �̃�1 − �̃�2 + 𝑧1−𝛼/2√�̃�1(1 − �̃�1) �̃�1 + �̃�2(1 − �̃�2) �̃�2⁄⁄  
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 where �̃�1 = 𝑛1 + 2, �̃�2 = 𝑛2 + 2, �̃�1 = (𝑟1 + 1) (𝑛1 + 2)⁄ ,  

 

and �̃�2 = (𝑟2 + 1) (𝑛2 + 2)⁄ . 

Brown-Li Jeffreys 100(1-)% intervals (Brown & Li, 2005): 
 

                      L = �̅�1 − �̅�2 − 𝑧1−𝛼/2√�̅�1(1 − �̅�1) 𝑛1 + �̅�2(1 − �̅�2) 𝑛2⁄⁄  

 

 

                      U = �̅�1 − �̅�2 + 𝑧1−𝛼/2√�̅�1(1 − �̅�1) 𝑛1 + �̅�2(1 − �̅�2) 𝑛2⁄⁄  

 

 

 where �̅�1 = (𝑟1 + .5) (𝑛1 + 1)⁄  and �̅�2 = (𝑟2 + .5) (𝑛2 + 1)⁄  

Hauck-Anderson 100(1-)% intervals (Hauck & Anderson, 1986): 
 

                      L = �̂�1 − �̂�2 − 1 (2𝑚𝑖𝑛(𝑛1, 𝑛2))⁄ − 

 

                                𝑧1−𝛼/2√�̂�1(1 − �̂�1) (𝑛1 − 1) + �̂�2(1 − �̂�2) (𝑛2 − 1)⁄⁄  

 
 

                      U = �̂�1 − �̂�2 + 1 (2𝑚𝑖𝑛(𝑛1, 𝑛2))⁄ + 

 

                                𝑧1−𝛼/2√�̂�1(1 − �̂�1) (𝑛1 − 1) + �̂�2(1 − �̂�2) (𝑛2 − 1)⁄⁄  

Newcombe MOVER Wilson-score-based 100(1-)% intervals (Newcombe, 1998b): 
 

                      L = �̂�1 − �̂�2 − √(�̂�1 − 𝑙1)2 + (𝑢2 − �̂�2)2 

 

  U = �̂�1 − �̂�2 + √(𝑢1 − �̂�1)2 + (�̂�2 − 𝑙2)2 

 

where 𝑙1 and 𝑢1 are lower and upper confidence limits for �̂�1 and 𝑙2 and 𝑢2 are 

lower and upper confidence limits for �̂�2 using the Wilson (score) intervals 

formulas from the one-sample binomial proportions algorithms section.  

Continuity-Corrected Newcombe MOVER Wilson-score-based 100(1-)% intervals 
(Newcombe, 1998b): 

 

                      L = �̂�1 − �̂�2 − √(�̂�1 − 𝑙1𝑐)2 + (𝑢2𝑐 − �̂�2)2 

 

  U = �̂�1 − �̂�2 + √(𝑢1𝑐 − �̂�1)2 + (�̂�2 − 𝑙2𝑐)2 
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where 𝑙1𝑐 and 𝑢1𝑐 are lower and upper confidence limits for �̂�1 and 𝑙2𝑐 and 𝑢2𝑐 are 

lower and upper confidence limits for �̂�2 using the continuity-corrected Wilson 

(score) intervals formulas from the one-sample binomial proportions algorithms 

section.  

Wald 100(1-)% intervals (Fagerland, Lydersen, & Laake, 2015): 
 

                      L = �̂�1 − �̂�2 − 𝑧1−𝛼/2√�̂�1(1 − �̂�1) 𝑛1 + �̂�2(1 − �̂�2) 𝑛2⁄⁄  

 

 

                      U = �̂�1 − �̂�2 + 𝑧1−𝛼/2√�̂�1(1 − �̂�1) 𝑛1 + �̂�2(1 − �̂�2) 𝑛2⁄⁄  

Continuity-corrected Wald 100(1-)% intervals (Fagerland, Lydersen, & Laake, 2015): 
 

                      L = �̂�1 − �̂�2 − (1 𝑛1⁄ + 1 𝑛2⁄ ) 2⁄ − 

 

𝑧1−𝛼/2√�̂�1(1 − �̂�1) 𝑛1 + �̂�2(1 − �̂�2) 𝑛2⁄⁄  

 

 

 

                      U = �̂�1 − �̂�2 + (1 𝑛1⁄ + 1 𝑛2⁄ ) 2⁄ + 

 

𝑧1−𝛼/2√�̂�1(1 − �̂�1) 𝑛1 + �̂�2(1 − �̂�2) 𝑛2⁄⁄  

 
Note: For of the above intervals, any lower bounds calculated as less than -1 are 

truncated to -1, and any upper bounds calculated as greater than 1 are truncated to 1. 
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PROXIMITIES Algorithms 
PROXIMITIES computes a variety of measures of similarity, dissimilarity, or distance between 
pairs of cases or pairs of variables. 

 
Standardizing Cases or Variables 

Either cases or variables can be standardized. The following methods of standardization are 
available: 

 
Z 

PROXIMITIES subtracts the mean from each value for the variable or case being standardized and 
then divides by the standard deviation of the values. If a standard deviation is 0, PROXIMITIES 
sets all values for the case or variable to 0. 

 
RANGE 

PROXIMITIES divides each value for the variable or case being standardized by the range of the 
values. If the range is 0, PROXIMITIES leaves all values unchanged. 

 
RESCALE 

From each value for the variable or case being standardized, PROXIMITIES subtracts the 
minimum value and then divides by the range. If a range is 0, PROXIMITIES sets all values for 
the case or variable to 0.50. 

 
MAX 

PROXIMITIES divides each value for the variable or case being standardized by the maximum 
of the values. If the maximum of a set of values is 0, PROXIMITIES uses an alternate process 
to produce a comparable standardization: it divides by the absolute magnitude of the smallest 
value and adds 1. 

 
MEAN 

PROXIMITIES divides each value for the variable or case being standardized by the mean of 
the values. If a mean is 0, PROXIMITIES adds one to all values for the case or variable to 
produce a mean of 1. 

 
SD 

PROXIMITIES divides each value for the variable or case being standardized by the standard 
deviation of the values. PROXIMITIES does not change the values if their standard deviation is 0. 
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Transformations 
Three transformations are available for the values PROXIMITIES computes or reads: 

 
ABSOLUTE 

Take the absolute values of the proximities. 

 
REVERSE 

Transform similarity values into dissimilarities, or vice versa, by changing the signs of the 
coefficients. 

 
RESCALE 

RESCALE standardizes the proximities by first subtracting the value of the smallest and then 
dividing by the range. 

 
If you specify more than one transformation, PROXIMITIES does them in the order listed above: 
first ABSOLUTE, then REVERSE, then RESCALE. 

 
Proximities Measures 

Measure defines the formula for calculating distance. For example, the Euclidean distance 
measure calculates the distance as a “straight line” between two clusters. 

 
Measures for Continuous Data 

Measures for continuous data, also called interval measures, assume that the variables are scale. 
 

EUCLID 

The distance between two items, x and y, is the square root of the sum of the squared differences 
between the values for the items. 

 
EUCLID 

 

SEUCLID 

The distance between two items is the sum of the squared differences between the values for 
the items. 

 
SEUCLID 
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CORRELATION 

This is a pattern similarity measure. 
 

CORRELATION 
 

where  is the (standardized) Z-score value of x for the ith case or variable, and N is the number 
of cases or variables. 

 
COSINE 

This is a pattern similarity measure. 
 

COSINE 
 
 
 

CHEBYCHEV 

The distance between two items is the maximum absolute difference between the values for 
the items. 

 
CHEBYCHEV 

 
BLOCK 

The distance between two items is the sum of the absolute differences between the values for 
the items. 

 
BLOCK 

 
MINKOWSKI(p) 

The distance between two items is the pth root of the sum of the absolute differences to the 
pth power between the values for the items. 

 
MINKOWSKI 

 
POWER(p,r) 

The distance between two items is the rth root of the sum of the absolute differences to the pth 
power between the values for the items. 

 
POWER 
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Measures for Frequency Count Data 

Frequency count measures assume that the variables are discrete numeric. 

 
CHISQ 

The magnitude of this dissimilarity measure depends on the total frequencies of the two cases or  
variables whose proximity is computed. Expected values are from the model of independence of  
cases (or variables), x and y. 

 
 

CHISQ 
 
 
 

PH2 
 

This is the CHISQ measure normalized by the square root of the combined frequency. Therefore, 
its value does not depend on the total frequencies of the two cases or variables whose proximity is 
computed. 

 
PH2 

 
 

Measures for Binary Data 

Binary measures assume that the variables take only two values. 
 

PROXIMITIES constructs a contingency table for each pair of items in turn.  It uses this 
table to compute a proximity measure for the pair. 
Table 81-1 
2 x 2 Contingency table 

 

 Item 2 Present Item 2 Absent 
Item 1 Present a b 
Item 1 Absent c d 

 
PROXIMITIES computes all binary measures from the values of a, b, c, and d. These values 
are tallies across variables (when the items are cases) or tallies across cases (when the items 
are variables). 

 
Russel and Rao Similarity Measure 

This is the binary dot product. 
 

RR 
 

CHISQ 
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Simple Matching Similarity Measure 
 

This is the ratio of the number of matches to the total number of characteristics. 
 

SM 
 

 

Jaccard Similarity Measure 
 

This is also known as the similarity ratio. 
 

JACCARD 
 

 

Dice or Czekanowski or Sorenson Similarity Measure 
 

DICE 
 
 

Sokal and Sneath Similarity Measure 1 
 

SS1 
 
 

Rogers and Tanimoto Similarity Measure 
 

RT 
 

 
 

Sokal and Sneath Similarity Measure 2 
 

SS2 
 

 
 

Kulczynski Similarity Measure 1 
 

This measure has a minimum value of 0 and no upper limit. It is undefined when there are no 
nonmatches      and .  Therefore, PROXIMITIES assigns an artificial upper limit of 
9999.999 to K1 when it is undefined or exceeds this value. 

 
K1 
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Sokal and Sneath Similarity Measure 3 

This measure has a minimum value of 0, has no upper limit, and is undefined when there are 
no nonmatches and       . As with K1, PROXIMITIES assigns an artificial upper limit 
of 9999.999 to SS3 when it is undefined or exceeds this value. 

 
SS3 

 
 

Conditional Probabilities 

The following three binary measures yield values that you can interpret in terms of conditional 
probability.  All three are similarity measures. 

 
Kulczynski Similarity Measure 2 

This yields the average conditional probability that a characteristic is present in one item given 
that the characteristic is present in the other item. The measure is an average over both items 
acting as predictors.  It has a range of 0 to 1. 

 
K2 

 
 

Sokal and Sneath Similarity Measure 4 

This yields the conditional probability that a characteristic of one item is in the same state (present 
or absent) as the characteristic of the other item.  The measure is an average over both items 
acting as predictors. It has a range of 0 to 1. 

 
SS4 

 
 

Hamann Similarity Measure 

This measure gives the probability that a characteristic has the same state in both items (present 
in both or absent from both) minus the probability that a characteristic has different states in the 
two items (present in one and absent from the other). HAMANN has a range of –1 to +1 and is  
monotonically related to SM, SS1, and RT. 

 
HAMANN 

 

 
Predictability Measures 

The following four binary measures assess the association between items as the predictability of  
one given the other.  All four measures yield similarities. 
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Goodman and Kruskal Lambda (Similarity) 

This coefficient assesses the predictability of the state of a characteristic on one item (presence 
or absence) given the state on the other item.  Specifically, lambda measures the proportional 
reduction in error using one item to predict the other, when the directions of prediction are of equal 
importance.  Lambda has a range of 0 to 1. 

 

LAMBDA 
 
 

Anderberg’s D (Similarity) 

This coefficient assesses the predictability of the state of a characteristic on one item (presence 
or absence) given the state on the other. D measures the actual reduction in the error probability 
when one item is used to predict the other.  The range of D is 0 to 1. 

 

D 
 
 

Yule’s Y Coefficient of Colligation (Similarity) 

This is a function of the cross-product ratio for a table. It has a range of –1 to +1. 
 

Y 
 
 

Yule’s Q (Similarity) 

This is the version of Goodman and Kruskal’s ordinal measure gamma. Like Yule’s Y, Q is a 
function of the cross-product ratio for a table and has a range of –1 to +1. 

 
Q 

 
 

Other Binary Measures 

The remaining binary measures available in PROXIMITIES are either binary equivalents of 
association measures for continuous variables or measures of special properties of the relation 
between items. 

 
Ochiai Similarity Measure 

This is the binary form of the cosine. It has a range of 0 to 1 and is a similarity measure. 
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OCHIAI 
 
 

Sokal and Sneath Similarity Measure 5 

This is a similarity measure.  Its range is 0 to 1. 
 

SS5 
 
 

Fourfold Point Correlation (Similarity) 

This is the binary form of the Pearson product-moment correlation coefficient. Phi is a similarity 
measure, and its range is 0 to 1. 

 
PHI 

 
 

Binary Euclidean Distance 

This is a distance measure. Its minimum value is 0, and it has no upper limit. 
 

BEUCLID 
 

Binary Squared Euclidean Distance 

This is also a distance measure. Its minimum value is 0, and it has no upper limit. 
 

BSEUCLID 
 

Size Difference 

This is a dissimilarity measure with a minimum value of 0 and no upper limit. 
 
 

SIZE 
   

 
Pattern Difference 

This is also a dissimilarity measure.  Its range is 0 to 1. 
 

PATTERN  
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Binary Shape Difference 
 

This dissimilarity measure has no upper or lower limit. 
 
 

BSHAPE 
   

 

Dispersion Similarity Measure 
 

This similarity measure has a range of –1 to +1. 
 

DISPER 
   

 

Variance Dissimilarity Measure 
 

This dissimilarity measure has a minimum value of 0 and no upper limit. 
 

VARIANCE 
 
 

Binary Lance-and-Williams Nonmetric Dissimilarity Measure 
 

Also known as the Bray-Curtis nonmetric coefficient, this dissimilarity measure has a range 
of 0 to 1. 

 
BLWMN 
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PROXSCAL Algorithms 
PROXSCAL performs multidimensional scaling of proximity data to find a least-squares 
representation of the objects in a low-dimensional space. Individual differences models can be 
specified for multiple sources. A majorization algorithm guarantees monotone convergence for 
optionally transformed, metric and nonmetric data under a variety of models and constraints. 

Detailed mathematical derivations concerning the algorithm can be found in Commandeur and 
Heiser (1993). 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated. For the dimensions 
of the vectors and matrices: 

n Number of objects 
m Number of sources 
p Number of dimensions 
s Number of independent variables 
h Maximum(s, p) 
l Length of transformation vector 
r Degree of spline 
t Number of interior knots for spline 

 
The input and input-related variables are: 

                                         n×n matrix with raw proximities for source k 

                                          n×n matrix with weights for source k 

E n×s matrix with raw independent variables 
F n×p matrix with fixed coordinates 

 
Output and output-related variables are: 

                                         n×n matrix with transformed proximities for source k 

Z n×p matrix with common space coordinates 
                                         p×p matrix with space weights for source k 

                                         n×p matrix with individual space coordinates for source k 

Q n×h matrix with transformed independent variables 
B h×p matrix with regression weights for independent variables 
S l×(r+t) matrix of coefficients for the spline basis 

 
Special matrices and functions are: 
 

 
  



 
 

 

Introduction    

 

The following loss function is minimized by PROXSCAL, 
 

 

which is the weighted mean squared error between the transformed proximities and the distances 
of n objects within m sources. The transformation function for the proximities provides 
nonnegative, monotonically nondecreasing values for the transformed proximities . The 
distances d are simply the Euclidean distances between the object points,  with the 
coordinates in the rows of . 

 
The main algorithm consists of the following major steps: 

 
1. find initial configurations , and evaluate the loss function; 

 
2. find an update for the configurations ; 

 
3. find an update for the transformed proximities ; 

4. evaluate the loss function; if some predefined stop criterion is satisfied, stop; otherwise, go to 
step 2. 

 

Preliminaries 

At the start of the procedure, several preliminary computations are performed to handle missing 
weights or proximities, and initialize the raw proximities. 

 
 

Missing Values 
 

On input, missing values may occur for both weights and proximities. If a weight is missing, it is 
set equal to zero. If a proximity is missing, the corresponding weight is set equal to zero. 



 
 

 

Proximities 
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Only the upper or lower triangular part (without the diagonal) of the proximity matrix is needed. 
In case both triangles are given, the weighted mean of both triangles is used. Next, the raw 
proximities are transformed such that similarities become dissimilarities by multiplying with -1, 
taking into account the conditionality, and setting the smallest dissimilarity equal to zero. 

 
Transformations 

For ordinal transformations, the nonmissing proximities are replaced by their ascending rank 
numbers, also taking into account the conditionality. For spline transformations, the spline basis 
S is computed. 

 
Normalization 

The proximities are normalized such that the weighted squared proximities equal the sum of the 
weights, again, taking into account the conditionality. 

 
Step 1:  Initial Configuration 

PROXSCAL allows for several initial configurations. Before determining the initial configuration, 
missings are handled, and the raw proximities are initialized. Finally, after one of the starts 
described below, the common space Z is centered on the origin and optimally dilated in 
accordance with the normalized proximities. 

 
Simplex Start 

The simplex start consists of a rank-p approximation of the matrix .  Set H, an n×p 
columnwise orthogonal matrix, satisfying T , where denotes the matrix with the first 
p columns of the identity matrix. The nonzero rows are selected in such a way that the first 
Z=B(J)H contains the p columns of B(J) with the largest diagonal elements. The following steps 
are computed in turn, until convergence is reached: 

1. For a fixed Z, H=PQT, where PQT is taken from the singular value decomposition B(J)Z=PLQT; 

2. For a fixed H, , where is the pseudo-inverse of V. 

For a restricted common space Z, the second step is adjusted in order to fullfill the restictions. 
This procedure was introduced in Heiser (1985). 

 
Torgerson Start 

The proximities are aggregated over sources, squared, double centered and multiplied with −0.5, 
after which an eigenvalue decomposition is used to determine the coordinate values, thus 

T 



 
 

T 
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where elements of are defined as 

 

 

followed by         , where only the first p positive ordered eigenvalues                     ) 
and eigenvectors are used. This technique, classical scaling, is due to Torgerson (1952, 1958) and 
Gower (1966) and also known under the names Torgerson scaling or Torgerson-Gower scaling. 

 
(Multiple) Random Start 

The coordinate values are randomly generated from a uniform distribution using the default 
random number generator from IBM® SPSS® Statistics. 

 
User-Provided Start 

The coordinate values provided by the user are used. 
 
Step 2:  Configuration Update 

The coordinates of the common space and the space weights (if applicable) are updated. 

 
Update for the Common Space 

The common space Z is related to the individual spaces  through the model       , where 
 are matrices containing space weights. Assume that weight matrix  is of full rank. Only 

considering Z defines the loss function as 

T   T 
 

where 

vec 

 
vec 

 
for which a solution is found as 

 

 
Several special cases exist for which the solution can be simplified. First, the weights matrices 

  may all be equal, or even all equal to one. In these cases H will simplify, as will the pseudo-
inverse of H. Another simplification is concerned with the different models, reflected in 
restrictions for the space weights. This model is the generalized Euclidean model, also known as 
IDIOSCAL (Carroll and Chang, 1972). The weighted Euclidean model, or INDSCAL, restricts 

T 
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 to be diagonal, which does simplify H, but not the pseudo-inverse. The identity model requires 
        for all k, and does simplify H and its pseudo-inverse, for the kronecker product vanishes. 
To avoid computing the pseudo-inverse of a large matrix, PROXSCAL uses three technical 

simplifications when appropriate. First, the pseudo-inverse can be replaced by a proper inverse by 
adding the nullspace, taking the proper inverse and then subtracting the nullspace again as 

 

where T T  . Furthermore, a dimensionwise approach (Heiser and Stoop, 1986) is 
used which results in a solution for dimension a of Z as 

 

 

where 
 

where is the ath column of an identity matrix, and 
 

T 
 
 

with  an n×p matrix equal to Z, but with the ath column containing zeros. 
Still, the proper inverse of a n×n matrix is required. The final simplification is concerned with 

a majorization function in which the largest eigenvalue of V allows for an easy update (Heiser, 
1987; Groenen, Heiser, and Meulman, 1999). Instead of the largest eigenvalue itself, an upper 
bound is used for this scalar (Wolkowicz and Styan, 1980). 

 
Update for the Space Weights 

An update for the space weights for the generalized Euclidean model is given by 

T -1 T 

Suppose T is the singular value decomposition of for which the diagonal matrix with 
singular values is in nonincreasing order.  Then, for the reduced rank model, the best r(r<p) 
rank approximation of is given by T, where contains the first r columns of , and 

  contains the first r columns of . 
 

For the weighted Euclidean model, the update reduces to a diagonal matrix 

diag T -1
diag T 

The space weights for the identity model need no update, since         for all k. Simplifications 
can be obtained if all weights W are equal to one and for the reduced rank model, which can be 
done in r dimensions, as explained in Heiser and Stoop (1986). 

T T 

T 



 
 

T 
T         

T 
T 

T T 

T T 
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Restrictions 

The user can impose restrictions on the common space by fixing some of the coordinates or 
specifying that the common space is a weighted sum of independent variables. 

 
Fixed Coordinates 

If some of the coordinates of Z are fixed by the user, then only the free coordinates of Z need to be 
updated. The dimensionwise approach is taken one step further, which results in an update for 
object i on dimension a as 

 
   

 

where the ath column of Z is divided into              , with the ith column of the identity 

matrix, and T T . 

This update procedure will only locally minimize the loss function, and repeatedly cycling 
through all free coordinates until convergence is reached, will provide global optimization. After 
all free coordinates have been updated, Z is centered on the origin. On output, the configuration is 
adapted as to coincide with the initial fixed coordinates. 

 
Independent Variables 

Independent variables Q are used to express the coordinates of the common space Z as a weighted 
sum of these independent variables as 

 

An update for Z is found by performing the following calculations for j=1,...,h: 

1. 

 

2.   T, where 

3. 
update as 

 

4.  optionally, compute optimally transformed variables by regressing , 
 

where and k1 is greater than or equal to the largest eigenvalue of 

, on the original variable . Missing elements in the original variable are replaced with 
the corresponding values from  . 

T 

T    T T 

T 

T 
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Finally, set  
 

Independent variables restrictions were introduced for the MDS model in Bentler and Weeks 
(1978), Bloxom (1978), de Leeuw and Heiser (1980) and Meulman and Heiser (1984). If there are 
more dimensions (p) than independent variables (s), p−s dummy variables are created and treated 
completely free in the analysis. The transformations for the independent variables from Step 4 are 
identical to the transformations of the proximities, except that the nonnegativety constraint does 
not apply. After transformation, the variables q are centered on the origin, normalized on n, and 
the reverse normalization is applied to the regression weights b. 

 
Step 3: Transformation Update 

The values of the transformed proximities are updated. 

 
Conditionality 

Two types of conditionalities exist in PROXSCAL. Conditionality refers to the possible 
comparison of proximities in the transformation step. For unconditional transformations, 
all proximities are allowed to be compared with each other, irrespective of the   source. 
Matrix-conditional transformations only allow for comparison of proximities within one matrix k, 
in PROXSCAL refered to as one source k. Here, the transformation is computed for each source 
seperately (thus m times). 

 
Transformation Functions 

All transformation functions in PROXSCAL result in nonnegative values for the transformed 
proximities. After the transformation, the transformed proximities are normalized and the 
common space is optimally dilated accordingly. The following transformations are available. 

 
Ratio.           . No transformation is necessary, since the scale of  is adjusted in the 
normalization step. 

 
Interval.                 . Both α and β are computed using linear regression, in such a way that both 
parameters are nonnegative. 

 
Ordinal.     WMON . Weighted monotone regression (WMON) is computed using the 
up-and-down-blocks minimum violators algorithm (Kruskal, 1964; Barlow et al., 1972). For the 
secondary approach to ties, ties are kept tied, the proximities within tieblocks are first contracted 
and expanded afterwards. 

Spline.vec                .  PROXSCAL uses monotone spline transformations (Ramsay, 1988). 
In this case, the spline transformation gives a smooth nondecreasing piecewise  polynomial 
transformation. It is computed as a weighted regression of D on the spline basis S. Regression 
weights b are restricted to be nonnegative and computed using nonnegative alternating least 
squares (Groenen, van Os and Meulman, 2000). 

T. 
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Normalization 

After transformation, the transformed proximities are normalized such that the sum-of-squares 
of the weighted transformed proximities are equal to mn(n−1)/2 in the unconditional case and 
equal to n(n−1)/2 in the matrix-conditional case. 

 
Step 4: Termination 

After evaluation of the loss function, the old function value and new function values are used to 
decide whether iterations should continue. If the new function value is smaller than or equal to 
the minimum Stress value MINSTRESS, provided by the user, iterations are terminated. Also, if 
the difference in consecutive Stress values is smaller than or equal to the convergence criterion 
DIFFSTRESS, provided by the user, iterations are terminated. Finally, iterations are terminated if 
the current number of iterations, exceeds the maximum number of iterations MAXITER, also 
provided by the user.  In all other cases, iterations continue. 

 
Acceleration 

For the identity model without further restrictions, the common space can be updated with 
acceleration as   new update  old, also referred to as the relaxed update. 

 
Lowering  Dimensionality 

For a restart in p−1 dimensions, the p−1 most important dimensions need to be identified.  For 
the identity model, the first p−1 principal axes are used. For the weighted Euclidean model, the 
p−1 most important space weights are used, and for the generalized Euclidean and reduced rank 
models, the p−1 largest singular values of the space weights determine the remaining dimensions. 



 
 

2 
2 

 
Stress Measures 
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The following statistics are used for the computation of the Stress measures: 

 
 

where d is the average distance. 

The loss function minimized by PROXSCAL, normalized raw Stress, is given by: 
 

                                           , with . 

Note that at a local minimum of X, α is equal to one. The other Fit and Stress measures provided 
by PROXSCAL are given by: 

2 
Stress-I: 2 , with . 

2 
Stress-II: 2 , with . 

S-Stress:    4                       , with . 

Dispersion Accounted For (DAF):  . 

Tucker’s coefficient of congruence: 1-  2. 
 
Decomposition of Normalized Raw Stress 

Each part of normalized raw Stress, as described before, is assigned to objects and sources. Either 
sum over objects or sum over sources are equal to total normalized raw Stress. 
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Transformations on Output 

On output, whenever fixed coordinates or independent variables do not apply, the models are not 
unique. In these cases transformations of the common space and the space weights are in order. 

 
For the identity model, the common space Z is rotated to principal axes. For the  weighted 
Euclidean model, diag  T so that diag T                   , and reverse transformations 
are applied to the space weights . Further, the sum over sources of the squared space weights 
are put in descending order as to specify the importance of the dimensions. For the generalized 
Euclidean model, the Cholesky decomposition   T T specifies the common space on 
output as T , so that   T . 
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Introduction 
Linear regression model models the conditional mean of the target variable against a list of feature 
variables (also called predictors). Regular linear regression model makes strong assumptions on 
the distribution of the target variable and is sensitive to outliers. However, in many cases where 
data is volatile and extremes are important, simply modelling the mean of the target mean is not 
enough and meaningless and we are more interested in modelling certain percentiles of the target 
variable. Quantile regression model models the conditional percentiles of the target variable 
against the predictors. It does not make assumptions on the distribution of the target variable and 
is robust to outliers. Quantile regression has been widely used in industries and researches, such 
as ecology, healthcare, and financial economics.  

Notation 
The following notation is used throughout the section unless otherwise stated: 

n Number of distinct records in the dataset. It is an integer and . 

m Number of parameters (including parameters for dummy variables but excluding intercept) 
in the model.  

k Number of parameters to be estimated in the simplex method. This is the number of 
columns (excluding RHS column) in the least required simplex tableau. If there is an 
intercept, k=m+1, if not, k=m. 

  vector of single target variable consists of . 

 vector of frequency count variable. If an element is not an integer, it is computed by 
rounding the value to the nearest integer. If it is less than 0.5 or if it is missing, the 
corresponding case is not used. 

 vector of regression weight. If there is no regression weight specified, . If 
regression weight for case i is zero, negative or missing, the corresponding case is not 
used. 

N Effective sample size.  it is an integer number, .If frequency count variable f is 

not use, N=n. 

X  design matrix. The rows represent the cases and the columns represent the 
parameters. The ith row is 𝒙" = (𝑥"&, … , 𝑥")), ,  The jth column is 

.  

𝒆  vector of unobserved errors. 
 The regression percentile. 

𝜷(-)  vector of 𝑝𝑡ℎ quantile regression parameters. 𝜷(-) = (𝛽2
(-), 𝛽&

(-), … , 𝛽3
(-)). 𝛽2

(-)is the 
intercept. If there is no intercept, 𝜷(-) = (𝛽&

(-), … , 𝛽3
(-))is a  vector. 

𝜷4(-) vector of estimated 𝜷(-).	𝜷4(-) = (𝛽62
(-), 𝛽6&

(-), … , 𝛽63
(-)). 𝛽62

(-)is the estimate of the 
intercept. If there is no intercept, 	𝜷4(-) = (𝛽6&

(-), … , 𝛽63
(-)) is a  vector. 
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Model 
Quantile regression of a single target variable y and design matrix X has the form 

𝒚 = 𝑿𝜷(-) + 𝒆 

𝑄(-)(𝒚|𝑿) = 𝑿𝜷(-),	                                 (1) 

where 0 < 𝑝 < 1 is the regression percentile.                    

Notes: 

1. The elements of 𝒆 are independent with each other, so are those of y. 

2. X can be any combination of continuous and categorical effects and interaction effects (up 
to two-way). The parameterization of design matrix X is the same as that in GLM 
procedure. See Lam (1995a) for further details on the model parameterization. Please note 
that we might expand interaction effects to include more than two-way and nested effects 
used in old SPSS procedures.  

3. The target variable needs to be a continuous variable. The predictors can be continuous 
variables or dummy variables for categorical predictors. 

Implementation notes:  

Some special data situations would be handled as follows: 

• When n = 1, i.e., there is only one case in the data set, no matter whether f1 = 1 or not, do 
nothing and issue an error message, such as “There is only one case in the data set, no 
model selection or fit would be conducted.” 

• When the target variable y is constant, do nothing and issue an error message, such as 
“The target variable, y, is constant, no model selection or fit would be conducted.” 

• When the effects which might be continuous, categorical or composite, in the design 
matrix X are constant, (a) delete all of them if there is an intercept or (b) delete all of 
them except the first non-zero constant effect if there is no intercept, issue a warning 
message, such as “The following effects are constant and are excluded from the analysis: X1, 
X4, X1xX4, …”, then do analysis based on the rest of effects.  

The reason for deleting constant effects is to reduce the number of possible effects which 
would reduce processing time in model selection methods. 

• User has to specify a target and at least one predictor for non-intercept model otherwise 
a model would not be fit. If the user does not specify any predictors, then an intercept 
only model will be fit. 

• For missing values, list-wise deletion is used. 

Coefficient Estimation 
The coefficients would be estimated by minimizing the absolute error function 

𝜷4(-) = 𝒂𝒓𝒈𝒎𝒊𝒏𝜷(E)∈GH{(1 − 𝑝) K 𝑤"M𝑦" − 𝜷(-)𝒙𝒊OM
PQR𝜷(E)𝒙𝒊

S

+ 𝑝 K 𝑤"M𝑦" − 𝜷(-)𝒙𝒊OM
PQT𝜷(E)𝒙𝒊

S

} 

                                                                                                                                                      (2) 
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where 𝑤" = 𝑔"𝑓" . 

1) Since 𝑦" = 𝜷(-)𝒙𝒊O + 𝑒",  let 𝑒" = 𝑢" − 𝑣", where 𝑢" = max	{𝑒", 0}, 𝑣" = max	{−𝑒", 0}, then we 
have: 

(1 − 𝑝) K 𝑤"M𝑦" − 𝜷(-)𝒙𝒊OM
PQR𝜷(E)𝒙𝒊

S

+ 𝑝 K 𝑤"M𝑦" − 𝜷(-)𝒙𝒊OM
PQT𝜷(E)𝒙𝒊

S

=K 𝑤"[𝑝𝑢" + (1 − 𝑝)𝑣"
_

"`&
] 

                                                                                                                                                      (3) 

Thus, the minimization problem can be transformed into the standard “Linear Programming” 
type of problem: 

	𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆c𝜷(E),𝒖,𝒗f𝑝𝒘′𝒖 + (1 − 𝑝)𝒘′𝒗 

𝑠. 𝑡.					𝒚 − 𝑿𝜷(-) = 𝒖 − 𝒗                                                    (4) 

𝜷(-) ∈ 𝑅),						𝒖 ≥ 0,			𝒗 ≥ 0, 

where 𝒘 = (𝑤&,… ,𝑤_)′. 
2) We further define [𝜷]m = max{𝜷, 𝟎} and	[𝜷]q = max{−𝜷, 𝟎} , 𝑩 = [	𝑿	 − 𝑿			𝑰		 − 𝑰], 𝜽 =

([𝜷]m	[𝜷]q	𝒖O	𝒗O)′, 𝒅 = (𝟎O	𝟎O		𝑝𝒘O			(1 − 𝑝)𝒘′)′	, then the “Linear Programming” problem 
becomes: 

𝒎𝒊𝒏{𝜽}𝒅′𝜽 

𝑠. 𝑡.					𝑩𝜽 = 𝒚                                                               (5) 

		𝜽 ≥ 0. 

There are many linear programming methods that can solve the above minimization problem. The 
most popular ones are simplex method, interior point method and the finite smoothing algorithm.  

Simplex method 

The simplex method is the most commonly used linear programming method. The special version 
of the simplex algorithm developed by Barrodale and Roberts (1974) solves the quantile regression 
linear programming problem by exploiting the special structure of the constraint matrix B.  

The simplex tableau corresponding to the quantile regression “Linear Programming” problem (5) 
is: 

[𝛽&]m … [𝛽)]m [𝛽&]q … [𝛽)]q 𝑢& … 𝑢_ 𝑣& … 𝑣_ RHS 
𝑥&& … 𝑥&) −𝑥&& … −𝑥&) 1   −1   𝑦& 
⋮ ⋱ ⋮ ⋮ ⋱ ⋮  ⋱   ⋱  ⋮ 
𝑥_& … 𝑥_) −𝑥_& … −𝑥_)   1   −1 𝑦_ 
0 … 0 0 … 0 −p𝑤& … −p𝑤_ − (1−p)	𝑤& … − (1−p)	𝑤_ 0 

Table 1 

In the above simplex tableau, the first row to the n-th row represent the constraints of 𝑩𝜽 = 𝒚 
corresponding to the n observed data points in our data. And the last row represents the objective 
function 𝒅′𝜽 in Equation (5).  
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Basics for simplex method  

Now let’s further examine the above simplex tableau. A direct solution to all the constraint 
equations will be  𝑢" = 𝑦", for 𝑖 = 1,… , 𝑛,	 with all the other parameters set to be zero. A set of 
parameters like 𝑢" for 𝑖 = 1,… , 𝑛 are called a set of basis in the simplex method, and the 
parameters that are not in the basis are called non-basis variables. The set of basis parameters have 
the following properties: 

1. The number of parameters in the basis is the same as the number of constraint equations. 
2. The basis variables should be in the form of (1, 0, …, 0)’, (0, 1, 0, …)’, (0, 0, 1, 0, …)’, ... so 

that a direct solution for the constraint equations can be immediately get by setting all the 
basis variables to be equal to the RHS (right-hand-side) values and setting all the non-basis 
parameters to be zero. 

Note: it’s just a coincident that the 𝑢"s in the quantile regression setting automatically form a set of 
basis variables. This is because of the special structure of the constraint matrix 𝑩 in the quantile 
regression setting.  

The simplex method solves the linear programming problem by iteratively interchanging the basis 
variables and non-basis variables one pair at a time until a proper set of basis variables are 
obtained. The solution defined by the set of “proper” basis variables will optimize the objective 
function and thus solve our linear programming problem. 

In order for the basis variables to define a “proper” solution, they not only need to satisfy the above 
two properties, but also the following: 

3. Feasible, which means the solution not only solves the constraint equations 𝑩𝜽 = 𝒚, but also 
satisfies 𝜽 ≥ 0. For the 𝑢"’s to be a set of feasible basis, we need all the 𝑦" ≥ 0, for 𝑖 =
1,… , 𝑛. If any of the 𝑦"s is negative, for example, let’s say 𝑦& is negative, then we need to 
change the sign of the first row and replace the corresponding 𝑢& in the basis by 𝑣&.  

4. The last row (objective function coefficient row) of the basis variables need to be zero. This is 
for the easiness of reading results because when all the non-basis variables are set to be zero 
and the coefficients of the basis variables in the objective function are all zero, the cell on the 
right bottom corner of the simplex tableau will represent the optimized value of the objective 
function. 

Note: for initialization of the simplex tableau of quantile regression problem, we only need to store 
the X matrix, the objective function row and the RHS column. For later iterations, we actually 
store the columns of the non-basis variables instead of the X matrix (they are of the same size, 
though). The issue of storing only the least required information in order to minimize the memory 
storage requirement will be addressed later. 

Note: if the user assign p to be 0 or 1, use p=E-10 for p=0 and p=1−E-10 for the case p=1. 

Implementation of simplex method (Barrodale and Roberts) 

Step 1: Find an initial set of feasible basis to start with (initialization of the simplex tableau) 

As mentioned in section 4.1.1, if all the 𝑦" ≥ 0, the 𝑢"s automatically make a set of feasible basis. 
Thus we start by making all the 𝑦" ≥ 0 in the initial simplex tableau. Instead of reading the initial 
data set directly into the constraints matrix 𝑩, we will read in (−𝒙", −𝑦") when 𝑦" < 0. So the 
initial simplex tableau becomes (break into two lines): 

[𝛽&]m … [𝛽)]m [𝛽&]q … [𝛽)]q 
sign(𝑦&)𝑥&& … sign(𝑦&)𝑥&) −sign(𝑦&)𝑥&& … −sign(𝑦&)𝑥&) 
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⋮ ⋱ ⋮ ⋮ ⋱ ⋮ 
sign(𝑦_)𝑥_& … sign(𝑦_)𝑥_) −sign(𝑦_)𝑥_& … −sign(𝑦_)𝑥_) 

0 … 0 0 … 0 
 
 

𝑢& … 𝑢_ 𝑣& … 𝑣_ RHS 
1   −1   |𝑦&| 
 ⋱   ⋱  ⋮ 
  1   −1 |𝑦_| 

coeff(𝑢&) … coeff(𝑢_) coeff(𝑣&) … coeff(𝑣_) 0 

Table 2 

where sign(𝑦") = 1	𝑤ℎ𝑒𝑛	𝑦" ≥ 0, 𝑎𝑛𝑑	𝑠𝑖𝑔𝑛(𝑦") = −1	𝑤ℎ𝑒𝑛	𝑦" < 0	. 

Note: 

1. We have made changes to the objective function line to reflects the effect of the transformation. 
The coefficients of  𝑢"s in the objective function are changed to: 

coeff(𝑢") = ��&
�
− 𝑝� sign(𝑦") −

&
�
�𝑤" = �

−𝑝𝑤"					𝑤ℎ𝑒𝑛	𝑦" ≥ 0
−	(1 − 𝑝)𝑤"							𝑤ℎ𝑒𝑛	𝑦" < 0                       (6) 

The coefficients of  𝑣"s in the objective function are changed to: 

coeff(𝑣") = −	𝑤" − coeff(𝑢") = �−	
(1 − 𝑝)𝑤"					𝑤ℎ𝑒𝑛	𝑦" ≥ 0
−	𝑝𝑤"							𝑤ℎ𝑒𝑛	𝑦" < 0                                       (7) 

2. The coefficients of 𝑢" and 𝑣" in the objective function will always sum to −	𝑤" throughout the 
whole simplex procedure.  

3. After this transformation, we actually have changed the sign of the error term for those data 
points with 𝑦" < 0. In other words, we have now 𝑒" = sign(𝑦")(𝑢" − 𝑣"). We will have to address 
this change in the later section for scoring. 

4. The above is an intermediate step just to show how I get to the final initial tableau. In actual 
coding, directly store the shaded part of the matrix below. 

Now the 𝑢"s make a set of feasible basis. Next, we make the coefficients of the basis in the object 
function (coeff(𝑢")s) to be zero by Gaussian elimination. Subtracting coeff(𝑢") times of the i-th 
row of the constraints from the objective function row to make the coefficients of all the 𝑢"s in the 
objective function to be zero, we have (break into three lines): 

[𝛽&]m … [𝛽)]m 
sign(𝑦&)𝑥&& … sign(𝑦&)𝑥&) 

⋮ ⋱ ⋮ 
sign(𝑦_)𝑥_& … sign(𝑦_)𝑥_) 

−K sign(𝑦")𝑥"&
_

coeff(𝑢") … −K sign(𝑦")𝑥")
_

coeff(𝑢") 

 
 

[𝛽&]q … [𝛽)]q 
−sign(𝑦&)𝑥&& … −sign(𝑦&)𝑥&) 

⋮ ⋱ ⋮ 
−sign(𝑦_)𝑥_& … −sign(𝑦_)𝑥_) 
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K sign(𝑦")𝑥"&
_

coeff(𝑢") … K sign(𝑦")𝑥")
_

coeff(𝑢") 

 
 
𝑢& … 𝑢_ 𝑣& … 𝑣_ RHS 
1   −1   |𝑦&| 
 ⋱   ⋱  ⋮ 
  1   −1 |𝑦_| 
0 … 0 −𝑤& … −𝑤_ −K |𝑦"|

_
coeff(𝑢") 

Table 3 

Note: 

1. The shaded cells in the tableau are the information we need to store in system memory at this 
time point. See 4-6 for details. 

2. The coefficients of [𝛽�]m and [𝛽�]q in the objective function always sum to zero for 𝑗 =
	1, … , 𝑘. 

3. We need to mark the variables so that we are able to track which ones are in the basis and 
which ones are not in later iterations. Here we create a vector of length 2(k + n) to mark the 
variables and we call the vector index vector. At the initialization step, we initialize this index 
vector with the following: first k + 1 cells are populated by 	1, 2, … , k to represent the 
positions of [𝛽&]m, …, [𝛽)]m; and the next kcells are populated by −1,−2,… ,−	k to represent 
the positions of [𝛽&]q, …, [𝛽)]q; then the next n cells are marked k + 1, k + 2,… , k + n to 
represent the positions of 𝑢&, …, 𝑢_; and the last n cells are marked −(k + 1),−(k +
2),… ,−(k + n) to represent the positions of 𝑣&, …, 𝑣_. In later iterations, we will always 
keep this order of the variables in the index vector: k non-basis variables followed by k non- 
basis variables of the opposite sign of the first k	variables, then n basis variables followed by n 
non-basis variables of the opposite sign of the n basis variables. This means we will need to 
manipulate the orders of the elements in the index vector according to our operations in later 
steps. 
 

4. We only need to store the k columns for the first k non-basis variables, including the objective 
function row (n+1 rows). Then the next k columns can be derived from the first k columns: the 
first n rows of the opposite sign and with the same absolute value as the first k variables; for 
the objective function row, the k +1 to the 2k element will either be of the opposite sign (for 
[𝛽�]ms	and		[𝛽�]q𝑠) or sum to −𝑤" (for 𝑢"s and 𝑣"s)  with the first k elements. The index 
vector will tell us exactly which variable a column is standing for. However, there is no need 
at all during the whole simplex procedure to explicitly write out the k +1 to the 2k th columns 
as they are never really used in the computation.  
 

5. We do not need to save anything for the columns of the basis variables as they are always of 
the form (1, 0, 0, …), (0, 1, 0, …) … and with the objective function row being zero. 
However, we do need to mark the position of the “1” element in the basis variables. This is 
done in the index vector where we store the index of the n basis variables, we will always save 
their index in the order of the position of the “1” element. The last n columns of non-basis 
variables are of the form (-1, 0, 0, …), (0, -1, 0, …) … in the first n rows. The objective 
function row of the last n variables will either be zero (for [𝛽�]ms	and		[𝛽�]q𝑠) or −𝑤" (for 𝑢"s 
and 𝑣"s) with the n coefficients for the basis variables. Thus, we only need to save the n 𝑤"s in 
the memory. 
 

6. For the RHS column, we need to store the whole column (n+1 rows) in memory. 
 

7. We need to update the index vector properly at the end of each iteration to keep the above 
points 3-6 always true during the whole computation process. We will address this again in 
step 4. 
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In summary, we need to store: first k columns with n+1 rows, the index vector of length 2(k + n), 
the RHS vector of length (n+1), and the n 𝑤"s. 

 
After the initialization of the simplex tableau and the index vector, we can start the iteration (steps 
2-5) to optimize the objective function. 

Step 2: Select a variable in �𝛽��ms	or�𝛽��q𝑠	 to enter the basis.  

We will start to use the least required simplex tableau from now on. The least required simplex 
tableau contains only columns for the first k non-basis variables in the index vector and the RHS 
column. For why it is the least required tableau, see the notes 3-6 at the end of step 1. We represent 
the current least required simplex tableau as: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 4 

Note the above tableau is a general form. It can be the tableau right after the initialization or the 
tableau at any iteration during the computation. 

The variable to enter the basis is the one with the largest non-negative coefficient in the objective 
function among the non-basis variables in [𝜷]m	and	[𝜷]q. To find the variable, we first locate the 
variables among the 𝑛𝑏&, …, 𝑛𝑏) that are in [𝜷]m	and	[𝜷]q.  These are the variables with labels of 
1, 2, …, k or -1, -2, …, -k among the first k elements in the index vector. For the variables among 
the 𝑛𝑏&, …, 𝑛𝑏) that are in [𝜷]m	and	[𝜷]q,  we search their objective function row for the one with 
the largest absolute value. If we found out that |𝑐�| is the largest among the ones corresponding to 
non-basis variables in [𝜷]m	and	[𝜷]q (𝑐� can be zero, set any 𝑐� satisfying M𝑐�M < 𝑡𝑜𝑙 to be zero, 
tol=machine epsilon) then the variable 𝑛𝑏� is the one to enter the basis. If we found out that |𝑐�| is 
the largest among the ones corresponding to non-basis variables in [𝜷]m	and	[𝜷]q, but 𝑐� < 0, we 
change the sign of the whole column for 𝑛𝑏� (including 𝑐�) and the new 𝑛𝑏� is the one to enter the 
basis. In the second case (𝑐� < 0), we also need to change the sign of the labels at the j-th and the 
(k+j)-th place in the index vector.  

For example, in the simplex tableau right after the initialization, if −∑ sign(𝑦")𝑥"�_ coeff(𝑢") is 
the largest positive coefficient among −∑ sign(𝑦")𝑥"&_ coeff(𝑢"), …, −∑ sign(𝑦")𝑥")_ coeff(𝑢") 
and ∑ sign(𝑦")𝑥"&_ coeff(𝑢"), …, ∑ sign(𝑦")𝑥")_ coeff(𝑢"), then [𝛽�]m is the variable to enter the 
basis.  

Note:  

1. Here we only consider the variables in [𝜷]m	and	[𝜷]q, i.e., [𝛽�]ms or [𝛽�]qs for the one to enter the 
basis. This is the major difference between the Barrodale and Roberts’ simplex method and the 
general simplex method. By using the Barrodale and Roberts’ simplex method we utilize the 
special structure of the constraint matrix 𝑩 in the quantile regression setting to accelerate the 
optimization process. 

2. If there a tie among the largest |𝑐�|s, which means there are more than one |𝑐�| that is the largest 
value among all the |𝑐�|s, we will choose the first |𝑐�| in the order of ascending j. 

Step 3: Select a basis variable to leave the basis. 
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Now that we have selected 𝑛𝑏� as the variable to enter the basis in step 2, next we need to examine 
the column of  𝑛𝑏� and RHS: 

𝑛𝑏� RHS 
𝑧&� 𝑟& 
⋮ ⋮ 
𝑧_� 𝑟_ 
𝑐� obj 

Table 5 

 

Check that in the column of  𝑛𝑏�, the elements (𝑧&�, …, 𝑧_�) that have an absolute value that is less 
than the tolerance (machine epsilon) should be set to zero. The resulted Table 5 is called “new 
Table 5”. 

[[ 

If the number of parameters k<=25, run plan 1, else run plan 2. Note that plan 1 and plan 2 are 
completely the same for functionality but plan 1 runs faster than plan 2 for small number of 
parameters (k<=25). We have kept both plans here for performance purpose. 

Plan 1: 

Calculate the ratios 𝑧&�/𝑟&, …, 
���
��

. Check the [2k+1]-th label to the [2k +	𝑛]- th label in the index 
vector, if the [2k +	𝑖]-th label is in 1, 2, …, k or -1, -2, …, -k, set the i-th ratio to be zero*, i can be 
any of 1, 2, …, n. This is to guarantee that the variable we choose to leave the basis is selected 
among the 𝑢"𝑠 and 𝑣"s. If the i-th element of the column of  𝑛𝑏�, i.e.,  𝑧"�, is negative, also set the i-
th ratio to be zero** (i in 1, 2, .., n).    

Sort the positive ratios in 𝑧&�/𝑟&, …, 
���
��

 (after modification by * and **) by decreasing order. If 
there is a tie, order the ratios by the order of the data. Record the ranking of the positive ratios as a 
vector. Let’s say there are m positive ratios and the order is 𝑧���/𝑟��, 𝑧���/𝑟��,…, 

� ¡�

� ¡
 from the 

largest to the smallest, the ranking vector will be 𝑠&, 𝑠�, …, 𝑠3. 

Note that when 𝑟� = 0 and 𝑧�� > 0, the ratio of 𝑧��/𝑟� is positive infinity. In this case, the positive 
infinity is taken as the largest positive ratio. 

Note that the modifications of * and ** only work on the ratios 𝑧&�/𝑟&, …, 
���
��

, thus do not change 
the original values of (𝑧&�, …, 𝑧_�) and (𝑟&, …, 𝑟_) in the “new Table 5”. And the following 
calculations use the original values of (𝑧&�, …, 𝑧_�) from the “new Table 5”. 

Next, calculate the values of “𝑐� − 𝑤��𝑧���”,  “𝑐� − 𝑤��𝑧��� − 𝑤��𝑧���”,  “𝑐� − 𝑤��𝑧��� − 𝑤��𝑧��� −
𝑤�£𝑧�£�”, … sequentially. Stop until we find an “l” such that “𝑐� − 𝑤��𝑧��� − ⋯−𝑤�¥𝑧�¥� ≥0” and   
“𝑐� − 𝑤��𝑧��� − ⋯−𝑤�¥𝑧�¥� − 𝑤�¥¦�𝑧�¥¦�� < 0” and “𝑙 + 1 ≤ 𝑚”. If such an “l” cannot be found, 
report a computation error “unbounded solution” and stop. 

This is the end of plan 1. 

Plan 2: 
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For positive 𝑧&�, …, 𝑧_�, find the largest positive ratio among 𝑧&�/𝑟&, …, 𝑧_�/𝑟_, assume it’s the s-
th ratio 𝑧��/𝑟�. If there is a tie, choose a smaller s.  

Note that when 𝑟� = 0 and 𝑧�� > 0, the ratio of 𝑧��/𝑟� is positive infinity. In this case, the positive 
infinity is taken as the largest positive ratio and the s with 𝑧��/𝑟� being positive infinity is chosen. 

Check that the [2k +	𝑠]- th label in the index vector is in k + 1, k + 2,… , k + n or −(k +
1),−(k + 2),… ,−(	k + n) . Because we want to guarantee that the variable we choose to leave 
the basis is selected among the 𝑢"𝑠 and 𝑣"s. If not, go to the next largest (or the other tied) positive 
ratio among 𝑧&�/𝑟&, …, 𝑧_�/𝑟_, assume it’s the s’-th ratio. Again, check that the [2k +	𝑠′]- th label 
in the index vector is in k + 1, k + 2,… , k + n or −(k + 1),−(k + 2),… ,−(	k + n) ).  Do this 
until a proper “s” is found. If such an “s” cannot be found, report a computation error “unbounded 
solution”. 

Next, calculate the value of 𝑐� − 𝑤�𝑧��.  

Let count=1. 

While (𝑐� − 𝑤�𝑧�� ≥ 0) { 

Record 𝑠©ª«_¬ = 𝑠. 

Next, we choose the next variable to leave the basis, i.e., we choose the new “s”. Examine again 
the “new Table 5” and find the next (the (count+1)-th) largest positive ratio among 𝑧&�/𝑟&, …, 
𝑧_�/𝑟_ with positive 𝑧&�, …, 𝑧_�, assume it’s the new s-th ratio 𝑧��/𝑟�.If there is a tie, choose a 
smaller s.  

Note that when 𝑟� = 0 and 𝑧�� > 0, the ratio of 𝑧��/𝑟� is positive infinity. In this case, the positive 
infinity is taken as the largest positive ratio and the s with 𝑧��/𝑟� being positive infinity is chosen. 

Check that the [2k +	𝑠]- th label in the index vector is in k + 1, k + 2,… , k + n or −(k +
1),−(k + 2),… ,−(	k + n) . Because we want to guarantee that the variable we choose to leave 
the basis is selected among the 𝑢"𝑠 and 𝑣"s. If not, go to the next largest (or the other tied) positive 
ratio among 𝑧&�/𝑟&, …, 𝑧_�/𝑟_, assume it’s the s’-th ratio. Again, check that the [2k +	𝑠′]- th label 
in the index vector is in k + 1, k + 2,… , k + n or −(k + 1),−(k + 2),… ,−(	k + n) ).  Do this 
until a proper “s” is found. If such an “s” cannot be found, report a computation error “unbounded 
solution”. 

count=count+1. 

Calculate the new value of 𝑐� − 𝑤�𝑧��. Repeat until the condition 𝑐� − 𝑤�𝑧�� ≥ 0 is not satisfied, 
i.e., 𝑐� − 𝑤�𝑧�� < 0. 

} 

Now we have the vector of (𝑠&, 𝑠�, … , 𝑠©ª«_¬	). Let 𝑙 = 𝑐𝑜𝑢𝑛𝑡 − 1. 

This is the end of plan 2. 

After finding the desired “l”, perform the following operation. 

Change the current least required simplex tableau: 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 
𝑧&& … 𝑧&� … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
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𝑧�& … 𝑧�� … 𝑧�) 𝑟� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_� … 𝑧_) 𝑟_ 
𝑐& … 𝑐� … 𝑐) obj 

Table 6 

to: 

 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 
𝑧&& … 𝑧&� … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

−𝑧�¥& … −𝑧�¥� … −𝑧�¥) −𝑟�¥ 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

−𝑧��& … −𝑧��� … −𝑧��) −𝑟�� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

−𝑧��& … −𝑧��� … −𝑧��) −𝑟�� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_� … 𝑧_) 𝑟_ 

𝑐& − 𝑤��𝑧��&
− ⋯−𝑤�¥𝑧�¥& 

… 𝑐� − 𝑤��𝑧���
− ⋯−𝑤�¥𝑧�¥� 

… 𝑐) − 𝑤��𝑧��)
− ⋯−𝑤�¥𝑧�¥) 

obj−𝑤��𝑟�� −
⋯−𝑤�¥𝑟�¥ 

 

Table 7 

The above operation is: subtracting 𝑤�� times of the 𝑠&-th row from the objective function row, 
subtracting 𝑤�� times of the 𝑠�-th row from the objective function row, …, subtracting 𝑤�¥ times of 
the 𝑠-th row from the objective function row, and changing the sign of the 𝑠&-th, 𝑠�-th, …, 𝑠-th 
rows. 

We also need to interchange the [2k +	𝑠&]- th, [2k +	𝑠�]- th, …, [2k +	𝑠]- th label with the [2k 
+n +	𝑠&]- th, [2k +𝑛 +	𝑠�]- th, …, [2k +𝑛 +	𝑠]- th label in the index vector. 

 

Next, replace the 𝑠©ª«_¬-th basis by 𝑛𝑏�. Let s=𝑠m&. 

Change the current least required simplex tableau: 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 
𝑧&& … 𝑧&� … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧�& … 𝑧�� … 𝑧�) 𝑟� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_� … 𝑧_) 𝑟_ 
𝑐& … 𝑐� … 𝑐) obj 

Table 8 

Note: the values in Table 9 is different from those in Tables 5, 6 and 7. These are the updated 
values in the current tableau. 

 

to: 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 

𝑧&& −
𝑧&�
𝑧��

𝑧�& … −
𝑧&�
𝑧��

 … 𝑧&) −
𝑧&�
𝑧��

𝑧�) 𝑟& −
𝑧&�
𝑧��

𝑟� 
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⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧�&/𝑧�� … 1/𝑧�� … 𝑧�)/𝑧�� 𝑟�/𝑧�� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑧_& −
𝑧_�
𝑧��

𝑧�& … −
𝑧_�
𝑧��

 … 𝑧_) −
𝑧_�
𝑧��

𝑧�) 𝑟_ −
𝑧_�
𝑧��

𝑟� 

𝑐& −
𝑐�
𝑧��

𝑧�& … −
𝑐�
𝑧��

 … 𝑐) −
𝑐�
𝑧��

𝑧�) obj− ©�
� �
𝑟� 

 

Table 9 

The above operation is: subtracting 
���
� �

 times of the s-th row from the first row, subtracting 
���
� �

 

times of the s-th row from the second row, …, subtracting 
�( ®�)�
� �

 times of the s-th row from the (s-

1)-th row, subtracting 
�( ¦�)�
� �

 times of the s-th row from the (s+1)-th row,…, subtracting 
���
� �

 times 

of the s-th row from the n-th row, subtracting 
©�
� �

 times of the s-th row from the objective function 

row, divide the s-th row by 𝑧��, and replace the j-th column by the new values (−���
� �
, …− �( ®�)�

� �
, 

&
� �

,	− �( ¦�)�
� �

, …, −���
� �

, − ©�
� �

)’ as shown in the above table.  

Note: 

1. The second tableau are using the values from the first tableau, in other words, a notation 
stands for the same value in these two tables.  

2. May need to temporarily save the values of 𝑧&�, …, 𝑧_� and 𝑐� before the above operations. 

We also need to interchange the [2k +	𝑠]- th label with the j- th label in the index vector, and 
interchange the [2k +n + 	𝑠]- th label with the (k+j)- th label in the index vector. 

]] 

This is the end of step 3. 

Step 4: Repeat steps 2-3 until the coefficient of the non-basis variables in the objective function 
are zero or negative (condition 1) or all the k [𝛽�]m	𝑜𝑟	[𝛽�]q have entered the basis (condition 2). 
This is called the stage 1 iterations. Stage 1 iterations are terminated when either one or both of the 
condition 1 and condition 2 is satisfied. 

The first condition is checked by looking at the current least required simplex tableau: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 10 

For the variables 𝑛𝑏&, …, 𝑛𝑏), with labels of  𝑙&, …, 𝑙) in the first k elements of the index vector, 
check that 𝑐� = 0 when 𝑙� is in 1, 2, …, k or -1, -2, …, -k; and check that 𝑐� ≤ 0 and −𝑤|�| − 𝑐� ≤
0 when 𝑙� is in k + 1, k + 2,… , k + n or −(k + 1),−(k + 2),… ,−(	k + n), for 𝑗 = 	1, … , 𝑘.  

The second condition is true when all the first k elements of the index vector are in k + 1, k +
2,… , k + n or −(k + 1),−(k + 2),… ,−(	k + n). Or this condition can be checked by add a 
counter to step 3 where we “replace the s-th basis by 𝑛𝑏�”. If the counter equals k, then all the k 
[𝛽�]m	𝑜𝑟	[𝛽�]q have entered the basis. 
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If condition 1 is satisfied (condition 2 either satisfied or not), go to step 6. 

If condition 1 is not satisfied but condition 2 is satisfied, go to step 5. 

Step 5: If after step 4 there are still positive coefficients of the non-basis variables in the objective 
function, which means the first condition in step 4 is not satisfied but the stage 1 iteration is 
terminated as the second condition is satisfied, we start stage 2 iteration. 

In stage 2 iteration, the variables both leaving and entering the basis will come from the 𝑢" or 𝑣" 
variables. 

In the current least required simplex tableau: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 11 

with the labels of the variables 𝑛𝑏&, …, 𝑛𝑏) in the index vector being 𝑙&, …, 𝑙). For any columns 
with 𝑐� < −𝑤� for j=1, …, k, replace the column by its opposite sign column: 

𝑛𝑏�  𝑛𝑏� 
𝑧&�  −𝑧&� 
⋮  ⋮ 
𝑧��  −𝑧�� 
	⋮  	⋮ 
	𝑧_�  −𝑧_� 
𝑐�  −𝑤� − 𝑐� 

 Table 12 

 

At the same time we need to exchange the j-th label with the (k+j)-th label in the index vector. 

For the new tableau: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 13 

Let’s say 𝑐� is the largest one among all the positive coefficients in the objective function row, then 
𝑛𝑏� is the variable to enter the basis. If there is a tie among the largest 𝑐�’s, choose the one with a 
smaller j. 

Now that we have selected 𝑛𝑏� as the variable to enter the basis, next we need to examine the 
column of  𝑛𝑏� and RHS: 

𝑛𝑏� RHS 
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𝑧&� 𝑟& 
⋮ ⋮ 
𝑧_� 𝑟_ 
𝑐� obj 

Table 14 

 

Check that in the column of  𝑛𝑏�, the elements (𝑧&�, …, 𝑧_�) that have an absolute value that is less 
than the tolerance (machine epsilon) should be set to zero. The resulted Table 15 is called “new 
Table 15”. 

Perform the operation in step 3 that is marked between “[[“ and “]]”. 

Repeat step 5 until there are no more positive coefficients of the non-basis variables in the 
objective function. 

This condition is checked by looking at the current least required simplex tableau: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 15 

For the variables 𝑛𝑏&, …, 𝑛𝑏), with labels of  𝑙&, …, 𝑙) in the first k elements of the index vector, 
check that 𝑐� ≤ 0 and −𝑤|�| − 𝑐� ≤ 0 for 𝑗 = 1,… , 𝑘.  

 

Step 6: Check that the final solution is feasible. 

If the final tableau contains negative values in the RHS column, let’s say in the current tableau: 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 16 

𝑟� < 0 is the most negative one among 𝑟&, …, 𝑟_, i. e., 𝑟� < 0	and	𝑟� = min	(𝑟&, …, 𝑟_). 

If the (2k+s)-th label in the index vector is among 1, 2, …, k or -1, -2, …,-k, then multiply the s-th 
row in the above tableau by (-1), and the corresponding basis [𝛽�]m (or [𝛽�]q) must be 
interchanged with the corresponding non-basis [𝛽�]q (or [𝛽�]m) by exchanging the (2k+s)-th label 
with the (2k+n+s)-th label in the index vector. 

If the (2k+s)-th label in the index vector is among k + 1, k + 2,… , k + n or −(k + 1),−(k +
2),… ,−(	k + n), then check in the tableau 

𝑛𝑏& … 𝑛𝑏) RHS 
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𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 17 

Situation 1: Find the first 𝑛𝑏� with 𝑐� = 0 and the j-th label in the index vector is among 1, 2, 
…, k or -1, -2, …, -k, make 𝑛𝑏� a new basis in place of the s-th basis by replacing the above 
tableau by: 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 

𝑧&& −
𝑧&�
𝑧��

𝑧�& … −
𝑧&�
𝑧��

 … 𝑧&) −
𝑧&�
𝑧��

𝑧�) 𝑟& −
𝑧&�
𝑧��

𝑟� 

⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧�&/𝑧�� … 1/𝑧�� … 𝑧�)/𝑧�� 𝑟�/𝑧�� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

𝑧_& −
𝑧_�
𝑧��

𝑧�& … −
𝑧_�
𝑧��

 … 𝑧_) −
𝑧_�
𝑧��

𝑧�) 𝑟_ −
𝑧_�
𝑧��

𝑟� 

𝑐& −
𝑐�
𝑧��

𝑧�& … −
𝑐�
𝑧��

 … 𝑐) −
𝑐�
𝑧��

𝑧�) obj− ©�
� �
𝑟� 

 

Table 18 

The above operation is: subtracting 
���
� �

 times of the s-th row from the first row, subtracting 
���
� �

 

times of the s-th row from the second row, …, subtracting 
�( ®�)�
� �

 times of the s-th row from 

the (s-1)-th row, subtracting 
�( ¦�)�
� �

 times of the s-th row from the (s+1)-th row,…, subtracting 
���
� �

 times of the s-th row from the n-th row, subtracting 
©�
� �

 times of the s-th row from the 

objective function row, divide the s-th row by 𝑧��, and replace the j-th column by the new 
values (−���

� �
, …− �( ®�)�

� �
, &
� �

,	− �( ¦�)�
� �

, …, −���
� �

, − ©�
� �

)’ as shown in the above table.  

Note: 

1. The second tableau are using the values from the first tableau, in other words, a notation 
stands for the same value in these two tables.  

2. May need to temporarily save the values of 𝑧&�, …, 𝑧_� and 𝑐� before the above 
operations. 

And exchange the j-th label with the (2k+s)-th label and the (k+j)-th label with the (2k+n+s)-
th label in the index vector. 

Situation 2: If no such 𝑛𝑏� can be found, then multiply the s-th row in Table 20 by (-1), and 
add the new s-th row to the objective function row, i.e., change Table 20 to the new tableau 
below: 

𝑛𝑏& … 𝑛𝑏� … 𝑛𝑏) RHS 
𝑧&& … 𝑧&� … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 

−𝑧�& … −𝑧�� … −𝑧�) −𝑟� 
⋮ ⋱ ⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_� … 𝑧_) 𝑟_ 

𝑐& − 𝑤�𝑧�& … 𝑐� − 𝑤�𝑧�� … 𝑐) − 𝑤�𝑧�) obj−𝑤�𝑟� 
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Table 19 

And exchange the (2k+s)-th label with the (2k+n+s)-th label in the index vector. 

Perform step 5 on this new tableau, until there are no more positive coefficients of the non-
basis variables in the objective function, i.e., for the variables 𝑛𝑏&, …, 𝑛𝑏) in the final tableau, 
with labels of  𝑙&, …, 𝑙) in the first k elements of the index vector, check that 𝑐� ≤ 0 and 
−𝑤|�| − 𝑐� ≤ 0 for 𝑗 = 1,… , 𝑘.  

Repeat step 6 until all the RHS values are non-negative. If after 100 times repetition of step 6 the 
final solution is still not feasible, terminate with an error message: “infeasible solution”. 

Step 7: Read off the final solution to our linear programming problem. 

The final estimated quantile regression parameters are the RHS elements corresponding to each of 
the 𝛽�s in the basis. 

𝑛𝑏& … 𝑛𝑏) RHS 
𝑧&& … 𝑧&) 𝑟& 
⋮ ⋱ ⋮ ⋮ 
𝑧_& … 𝑧_) 𝑟_ 
𝑐& … 𝑐) obj 

Table 20 

Read the (2k+1)-th to the (2k+n)-th label in the index vector and find the corresponding 
parameters and set their value to be 𝑟& to 𝑟_. All the other variables are set to be zero. Read the 
right bottom cell of the above tableau for the final optimized value of the objective function. 

Record the estimated value of the model parameters: 𝜷4(-). 

Record the values of the error terms: 𝑒" = sign(𝑦")(𝑢" − 𝑣"), for i= 1, 2, …, n. 

Note: There are three possible outcomes for a linear programming problem: no solution 
(infeasible), unbounded optimum or optimal solution. The optimal solution situation is when we 
normally terminated the simplex iteration and a set of feasible solution has been reached. The 
infeasible situation is addressed in step 6 and the unbounded optimum situation is addressed in 
step 3 with the computation error. 

Note that we generally assume that n>=k. In other words, there is more data points than the 
number of parameters. 

Implementation note: 

1. We will first check that whether the regular linear regression fitting of the data is a perfect fit. 
A perfect fit will have the sum of squared error being zero, i.e., SSe = 0. If the computed SSe is 
smaller than 1.0e-8, then we will identify the linear regression as a perfect fit to the data. For 
the case of a perfect fit, we do not estimate quantile models using Simplex or Interior Point 
algorithms, we just use the solution of linear regression for all p, and set the covariance matrix 
to all zeros (regardless of IID setting). 

2. If user specified p=0 or p=1, we actually use 1e-10 or 1 - 1e-10 respectively for Simplex method. 
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Interior point method 
The interior point method is one of the linear programming algorithms and is suitable to deal with 
large to huge data.  

We start from the standard “Linear Programming” type of equations for quantile regression 
(equation (4) from section 4.1): 

	𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆c𝜷(E),𝒖,𝒗f𝑝𝒘′𝒖 + (1 − 𝑝)𝒘′𝒗 

𝑠. 𝑡.					𝒚 − 𝑿𝜷(-) = 𝒖 − 𝒗                                                    (4) 

𝜷(-) ∈ 𝑅),						𝒖 ≥ 0,			𝒗 ≥ 0, 

where 𝒘 = (𝑤&,… ,𝑤_)′. 

 

For simplicity, let’s define �̄� = 𝑾𝒖 and �̄� = 𝑾𝒗. Then the above quantile regression equations 
become	

	𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆c𝜷(E),𝒖,𝒗f𝑝�̄�′𝒆 + (1 − 𝑝)�̄�′𝒆 

𝑠. 𝑡.					�̄� − �̄�𝜷(-) = �̄� − �̄�                                                    (8) 

𝜷(-) ∈ 𝑅),						�̄� ≥ 0,			�̄� ≥ 0, 

where 𝑾 = 𝒅𝒊𝒂𝒈(𝑤&,… ,𝑤_), �̄� = 𝑾𝒚, �̄� = 𝑾𝑿 and 𝒆 is a vector of 1’s with length n. 

By the above variable substitutions, we have changed the quantile regression problem with 
regression weights into a regular quantile regression problem with no weights. 

We take advantage of the following dual problem of equations (8): 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆𝒃 	�̄�′𝒃	 

𝑠. 𝑡.						�̄�O𝒃 = 𝟎	                                                              (9) 
𝑝 − 1 ≤ 𝑏" ≤ 𝑝,    𝑖 = 1,… , 𝑛. 

Setting 𝑎" = 𝑏" + 1 − 𝑝 for 𝑖 = 1,… , 𝑛, the dual problem becomes: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆𝒂 	�̄�′𝒂	 

𝑠. 𝑡.						�̄�O𝒂 = (1 − 𝑝)�̄�′𝒆                                                      (10) 

0 ≤ 𝑎" ≤ 1,    𝑖 = 1,… , 𝑛 

where 𝒆 is a vector of 1’s with length n. 

To change the inequality constraints 𝑎" ≤ 1 into equality constraints, we add slack variables 𝑠", 𝑖 =
1,… , 𝑛, such that 𝑎" + 𝑠" = 1 for 𝑖 = 1,… , 𝑛. 

The dual problem becomes: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆𝒂,𝒔 	�̄�′𝒂	 

𝑠. 𝑡.						�̄�O𝒂 = (1 − 𝑝)�̄�′𝒆                                                      (11) 

𝒂 + 𝒔 = 𝒆  
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𝑎", 𝑠" ≥ 0,    𝑖 = 1,… , 𝑛 

where 𝒆 is a vector of 1’s with length n. 

We use the log barrier function to replace the inequality constraints 𝑎", 𝑠" ≥ 0 for 𝑖 = 1,… , 𝑛 to 
get: 

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆𝒂,𝒔,𝝁 	𝐵(𝒂, 𝒔, 𝜇) = �̄�′𝒂 + 𝜇K (log 𝑎" + log 𝑠")
_

"`&
 

𝑠. 𝑡.						�̄�O𝒂 = (1 − 𝑝)�̄�′𝒆                                                      (12) 

𝒂 + 𝒔 = 𝒆  

where 𝒆 is a vector of 1’s with length n. 

Use Lagrangian multipliers for the equality constraints, the objective function becomes: 

L(𝒂, 𝒔, 𝜇, 𝜷(-), 𝒖) = 	𝐵(𝒂, 𝒔, 𝜇) − 𝜷(-)O(�̄�O𝒂 − (1 − 𝑝)�̄�O𝒆) − 𝒖′(𝒂 + 𝒔 − 𝒆)                (13) 

Set the derivative of the above Lagrangian equation as zero and 𝒗 = 𝜇𝑨q& to get: 

�̄�O𝒂 = (1 − 𝑝)�̄�′𝒆 

𝒂 + 𝒔 = 𝒆  

�̄� − �̄�𝜷(-) = �̄� − �̄�                                                       (14) 

𝑼𝑺𝒆 = 𝜇𝒆 

𝑨𝑽𝒆 = 𝜇𝒆 

where 	𝑨 = 𝒅𝒊𝒂𝒈(𝑎&, … , 𝑎_), 𝑼 = 𝒅𝒊𝒂𝒈(𝑢¼&, … , 𝑢¼_), 𝑺 = 𝒅𝒊𝒂𝒈(𝑠&, … , 𝑠_), 𝑽 = 𝒅𝒊𝒂𝒈(�̅�&, … , �̅�_) 
and 𝒆 is a vector of 1’s with length n. 

The goal of the interior point method is to solve Equation (13) using Newton’s method. 

 

Applying Newton’s method  

From Equation (13), apply the Newton step as following: 

�̄�O(𝒂 + 𝜹𝒂) = (1 − 𝑝)�̄�′𝒆 

(𝒂 + 𝜹𝒂) + (𝒔 + 𝜹𝒔) = 𝒆  

�̄� − �̄�(𝜷(-) + 𝜹𝜷) = (�̄� + 𝜹𝒖) − (�̄� + 𝜹𝒗)                                    (15) 

(𝑼 + ∆𝒖)(𝑺 + ∆𝒔)𝒆 = 𝜇𝒆 

(𝑨 + ∆𝒂)(𝑽 + ∆𝒗)𝒆 = 𝜇𝒆 

where 	𝑨 = 𝒅𝒊𝒂𝒈(𝑎&, … , 𝑎_), 𝑼 = 𝒅𝒊𝒂𝒈(𝑢¼&, … , 𝑢¼_), 𝑺 = 𝒅𝒊𝒂𝒈(𝑠&, … , 𝑠_), 𝑽 = 𝒅𝒊𝒂𝒈(�̅�&, … , �̅�_), 
∆𝒂,	∆𝒗,	∆𝒖,	∆𝒔 denote the diagonal matrices with diagonals  𝜹𝒂, 𝜹𝒗, 𝜹𝒖, 𝜹𝒔 and 𝒆 is a vector of 1’s 
with length n. 

Solving the above equations, we get: 

𝜹𝜷 = (�̄�′𝑮�̄�)q𝟏[−(1 − 𝑝)�̄�O𝒆 + �̄�O𝒂 + �̄�′𝑮𝝃(𝜇)] 

𝜹𝒂 = 𝑮[−�̄�𝜹𝜷 + 𝝃(𝜇)] 

𝜹𝒔 = −𝜹𝒂                                                                 (16) 

𝜹𝒖 = 𝜇𝑺q𝟏𝒆 − 𝑼𝒆 − 𝑺q𝟏𝑼𝜹𝒔 − 𝑺q𝟏∆𝒔∆𝒖𝒆 

𝜹𝒗 = 𝜇𝑨q𝟏𝒆 − 𝑽𝒆 − 𝑨q𝟏𝑽𝜹𝒂 − 𝑨q𝟏∆𝒂∆𝒗𝒆 
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where 𝝃(𝜇) = 	 �̄� − �̄�𝜷(-) + 	𝜇(𝑨q𝟏 − 𝑺q𝟏)𝒆 − 𝑨q𝟏∆𝒂∆𝒗𝒆 + 𝑺q𝟏∆𝒔∆𝒖𝒆  and 𝑮 =
(𝑺q𝟏𝑼 + 𝑨q𝟏𝑽)q𝟏. 

Appendix A has detailed derivation for solving equations (14) to get equations (15). 

In next subsection, we will state in detail how to iteratively solve equations (15) to eventually 
solve equations (13). 

Implementation of interior point method  

Step 1, we need to initialize the parameters. 

𝜷(-) = (�̄�𝑻�̄�)q𝟏�̄�𝑻�̄� 

�̄� = 𝐦𝐚𝐱c�̄� − �̄�𝜷(-), 0f 

�̄� = 𝐦𝐚𝐱c−(�̄� − �̄�𝜷(-)), 0f 

𝒂 = (1 − 𝑝)𝒆 

𝒔 = 𝑝𝒆 

 And the 𝑮 matrix has diagonal elements 𝑔"" =
&

ÇQ
E m

ÈQ
�®E

. 

Step 2, do the following iterations: 

Step 2.1 Letting 𝜇 = 0 in equations (16) and ignoring the second order terms, solve for the 
parameters, i.e., 

 	
𝜹𝜷 = (�̄�′𝑮�̄�)q𝟏[−(1 − 𝑝)�̄�O𝒆 + �̄�O𝒂 + �̄�′𝑮𝝃(𝜇)] 

𝜹𝒂 = 𝑮[−�̄�𝜹𝜷 + 𝝃(𝜇)] 

𝜹𝒔 = −𝜹𝒂                                                                 (17) 

𝜹𝒖 = −𝑼𝒆 − 𝑺q𝟏𝑼𝜹𝒔 

𝜹𝒗 = −𝑽𝒆 − 𝑨q𝟏𝑽𝜹𝒂 

where 𝝃(𝜇) = 	 �̄� − �̄�𝜷(-) and 𝑮 = (𝑺q𝟏𝑼 + 𝑨q𝟏𝑽)q𝟏. 

Step 2.2 Compute step length (new 𝜇) as following: 

 First compute:  

 γÊË = 𝜎min	{ min
"`&,..,_,			ÍÎQR2

�− ÏQ
ÍÎQ
	Ð , min

"`&,..,_,			Í QR2
�− �Q

Í Q
Ð} and  

 γÊÑ = 𝜎min	{ min
"`&,..,_,			ÍÇQR2

�− «Q
ÍÇQ
Ð , min

"`&,..,_,			ÍÈQR2
�− ÒQ

ÍÈQ
Ð} 

 where 𝜎 = 0.99995. 

If γÊË > 1 then set  γÊË = 1. Similarly if γÊÑ > 1 then set  γÊÑ = 1. 

 If γÊË = γÊÑ = 1, then directly jump to step 2.4. 

 Else compute: 

 𝑔Ê(γÊË, γÊÑ) = (𝒔 + γÊË𝜹𝒔)O(�̄� + γÊÑ𝜹𝒖) + (𝒂 + γÊË𝜹𝒂)′(�̄� + γÊÑ𝜹𝒗) 

 Then the new 𝜇 is: 

 𝜇 = (ÕÊ(Ö×Ø,Ö×Ù)
ÕÊ(2,2)

)Ú ÕÊ(2,2)
�_

, where 𝑔Ê(0,0) = 𝒔O�̄� + 𝒂′�̄�. 

Step 2.3 Solve equations (16) using the new step length 𝜇, i.e., solve: 

𝜹𝜷 = (�̄�′𝑮�̄�)q𝟏[−(1 − 𝑝)�̄�O𝒆 + �̄�O𝒂 + �̄�′𝑮𝝃(𝜇)] 
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𝜹𝒂 = 𝑮[−�̄�𝜹𝜷 + 𝝃(𝜇)] 

𝜹𝒔 = −𝜹𝒂                                                                 (16) 

𝜹𝒖 = 𝜇𝑺q𝟏𝒆 − 𝑼𝒆 − 𝑺q𝟏𝑼𝜹𝒔 − 𝑺q𝟏∆𝒔∆𝒖𝒆 

𝜹𝒗 = 𝜇𝑨q𝟏𝒆 − 𝑽𝒆 − 𝑨q𝟏𝑽𝜹𝒂 − 𝑨q𝟏∆𝒂∆𝒗𝒆 

where 𝝃(𝜇) = 	 �̄� − �̄�𝜷(-) + 	𝜇(𝑨q𝟏 − 𝑺q𝟏)𝒆 − 𝑨q𝟏∆𝒂∆𝒗𝒆 + 𝑺q𝟏∆𝒔∆𝒖𝒆 and 𝑮 =
(𝑺q𝟏𝑼 + 𝑨q𝟏𝑽)q𝟏. 

Update ∆𝒂, ∆𝒔, ∆𝒖	𝒂𝒏𝒅	∆𝒗. 

Then compute:  

 γÊË = 𝜎min	{ min
"`&,..,_,			ÍÎQR2

�− ÏQ
ÍÎQ
	Ð , min

"`&,..,_,			Í QR2
�− �Q

Í Q
Ð} and  

 γÊÑ = 𝜎min	{ min
"`&,..,_,			ÍÇQR2

�− «Q
ÍÇQ
Ð , min

"`&,..,_,			ÍÈQR2
�− ÒQ

ÍÈQ
Ð} 

 where 𝜎 = 0.99995. 

If γÊË > 1 then set  γÊË = 1. Similarly if γÊÑ > 1 then set  γÊÑ = 1. 

 

Step 2.4 Calculate the new parameters: 

 𝒂 = 𝒂 + γÊË𝜹𝒂 

 𝒔 = 𝒔 + γÊË𝜹𝒔 

 �̄� = �̄� + γÊÑ𝜹𝒖 

 �̄� = �̄� + γÊÑ𝜹𝒗 

 𝜷(-) = 𝜷(-) + γÊÑ𝜹𝜷 

Step 2.5 Check the condition: 

 𝒂O�̄� + 𝒔O�̄� < eps, where eps=machine error. 

 If the condition is met, then stop. Else, repeat step 2.1-2.5. 

Step 3, output the final coefficients 𝜷(-) and error terms 𝑒" = (𝑢¼" − �̅�")/𝑤". 

Implementation note: 

1. As the Newton’s method is very sensitive to computation precision, all the computation in the 
whole process must be double precision. 

2. For the cases where an inverse of a matrix is needed, to avoid the effects of illness matrix on 
computation precision, we suggest avoiding directly take the inverse of a matrix. For example,  

𝜷(-) = (�̄�O�̄�)q𝟏�̄�O�̄� 
is suggested to calculated as solving the system of linear equations: (�̄�𝑻�̄�)𝜷(-) = �̄�𝑻�̄�. We do 
the same for 𝜹𝜷 = (�̄�′𝑮�̄�)q𝟏[−(1 − 𝑝)�̄�O𝒆 + �̄�O𝒂 + �̄�′𝑮𝝃(𝜇)]. 

3. In the Interior Point method, if user specified p=0 or p=1, we actually use 1e-10 or 1 - 1e-10 
respectively. At the same time, if the user-specified convergence eps used in step 2.5 above 
(which by default is 1e-6) is greater than min(p,1-p)/10, it should be reduced to min(p,1-p)/10. 
Even if p is not 0 or 1, but p (or 1-p) is so small that the condition eps <= min(p,1-p)/10 is not 
satisfied, we will still reduce esp to min(p,1-p)/10. 
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Model and Predictor Summary  

Variance-covariance matrix of the estimated parameters 
Based on the asymptotic normality of the parameter estimators, we can directly estimate the variance-
covariance matrix of the estimated parameters 𝜷(-). In the quantile regression model: 

𝑦" = 𝜷(-)𝒙𝒊O + 𝑒"                                                                     (18) 

Let 𝑾 = 𝒅𝒊𝒂𝒈(𝑤&,… ,𝑤_). 

5.1.1. IID case 

If we assume that the error terms are i.i.d. (independent and identically distributed), i.e., 𝑒"~𝐹, the 
variance-covariance matrix of 𝜷(-) is: 

[𝑝(1 − 𝑝)𝑠�(𝑝)	](𝑿O𝑾𝑿)q&                                                      (19) 

where X is the design matrix, and 𝑠(𝑝) = [𝑓Þ𝐹q&(𝑝)ß]q& is the sparsity function.  

The sparsity function is estimated as: 

 𝑠(𝑝) ≈ 𝑠_(𝑝) = [𝐹_q&(𝑝 + ℎ_) − 𝐹_q&(𝑝 − ℎ_)]/(2ℎ_)                                             (20) 

where ℎ_ is the bandwidth. 

We provide two options for the users to choose the bandwidth ℎ_ (assuming Gaussian model for	𝑠(𝑝)): 

The Bofinger bandwidth: 

ℎ_ = 𝑛q&/á[4.5𝜙ä(Φq&(𝑝))/(2(Φq&(𝑝))� + 1)�]&/á                             (21) 

The Hall-Sheather bandwidth: 

ℎ_ = 𝑛q&/Ú𝑧æ
�/Ú[1.5𝜙�(Φq&(𝑝))/(2(Φq&(𝑝))� + 1)]&/Ú                          (22) 

where 𝜙(z) and Φ(z) are the probability density function and the cumulative distribution function for a 
standard Normal distribution, respectively. 𝑧æ satisfies Φ(𝑧æ) = 1 − α/2, and α is the significance 
level. By default, α is 0.05, and 𝑧æ = 1.96. 

The 𝐹_q&(𝑝 + ℎ_) and 𝐹_q&(𝑝 − ℎ_) in equation (10) are estimated by the (𝑝 + ℎ_)-th and (𝑝 − ℎ_)-th 
percentile of the quantile regression residuals 𝑒"s, respectively. The (𝑝 + ℎ_)-th and (𝑝 − ℎ_)-th 
percentile of the 𝑒"s are found as following: 

1. With n observed data points, we have n 𝑒"s. Organize the n 𝑒"s from the smallest to the largest, 
these are the &

_
-th, �

_
-th, …, _

_
-th percentile of the residuals.  

2. When 𝑝 + ℎ_ and 𝑝 − ℎ_ is not exactly one of the &
_
, �
_
 …, _

_
, we will use the ceiling[n(𝑝 +

ℎ_)]/n-th percentile to estimate the (𝑝 + ℎ_)-th percentile and use the ceiling[n(𝑝 − ℎ_)]/n-th 
percentile for the (𝑝 + ℎ_)-th percentile of the residuals 𝑒"s. 

Non IID case 

If we assume that the error terms are not i.i.d., i.e., 𝑒"~𝐹", the variance-covariance matrix of 𝜷(-) is: 

𝑝(1 − 𝑝)𝑯_
q&(𝑿O𝑾𝑿)𝑯𝒏

q𝟏                                                        (23) 
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where X is the design matrix, and  

𝑯_(𝑝) = 𝑿O𝑾𝑭𝑿                                                              (24) 

Where F is the diagonal matrix with elements (𝑓&Þ𝐹&q&(𝑝)ß, 𝑓�Þ𝐹�q&(𝑝)ß, … , 𝑓_Þ𝐹_q&(𝑝)ß) on the 
diagonal.  

The i-th diagonal element of F: 𝑓"�𝐹"q&(𝑝)�, is estimated by 

 𝑚𝑎𝑥c0, 𝑓6"Þ𝒙"O𝜷4(-)ß		f	for	𝑖 = 1, 2, … , 𝑛                                          (25) 

and 

𝑓6"Þ𝒙"O𝜷4(-)ß = 2ℎ_/(𝒙"O(𝜷4(-mì�) − 𝜷4(-qì�))).                                    (26) 

The 𝜷4(-mì�) and 𝜷4(-qì�) are the regression parameters at percentiles 𝑝 + ℎ_ and 𝑝 − ℎ_ respectively, 
and ℎ_ is the bandwidth which we calculated the same as in section 5.1.1. The 𝜷4(-mì�) and 𝜷4(-qì�) are 
calculated by fitting the quantile regression model at percentiles 𝑝 + ℎ_ and 𝑝 − ℎ_, i.e., we need to 
optimize the objective function two more times to calculate 𝜷4(-mì�) and 𝜷4(-qì�). 

 

Other derived inference of the estimated parameters 

Standard errors of regression coefficients   

From the variance-covariance matrix for the regression coefficients calculated in section 5.1.1 and 
5.1.2, the standard errors of the regression coefficients are simply the square root of the diagonals of 
the variance-covariance matrix. 

t-statistics for regression coefficients  

The t-statistics for regression coefficients are the ratios of the estimated value and the standard errors 
for the coefficients: 

𝑡� =
í4�
(E)

�î(í4�
(E))

                                                                    (27) 

for j=1, 2, …, k. 

The corresponding p-value is 𝑝 = 2 × �1 − 𝑝𝑟𝑜𝑏Þ𝑡ðñò ≤ |𝑡�|ß� for j=1, 2, …, k, where 𝑑𝑓î = 𝑁 − 𝑘. 

The probability 𝑝𝑟𝑜𝑏Þ𝑡ðñò ≤ |𝑡�|ß is computed as cdfT (|𝑡�|, 𝑑𝑓î), where cdfT () is the cumulative 
distribution function for t distribution. 

100(1−α)% confidence intervals for regression coefficients 

 

The 100(1−α)% confidence intervals for regression coefficients are: 

𝛽6�
(-) ± 𝑡æ/�,ðñò × 𝑠𝑒(𝛽6�

(-)）                                                 (28) 
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for j=1, 2, …, k. And 𝑡æ/�,ðñò is calculated as idfT(1 − 𝛼/2,	𝑑𝑓î), where idfT () is the inverse 
cumulative distribution function for t distribution. If user specifies a 95% confidence interval, then α =
0.05, and 𝑡æ/�,ðñò = idfT (0.975,	𝑑𝑓î). 

Implementation note:  

For redundant coefficients, estimates (𝛽6�
(-)) are set to zero and standard errors, t statistics, and 

confidence intervals are set to SYSMIS. 

 
Model quality measures 

Adjusted R square  

The R square value compares the full model with an intercept only model, and measures how much 
variation in the data is explained by the full model. After fitting the full model as in section 4, we fit 
another model which includes only an intercept parameter, i.e., k=1, m=0 and 

 𝒚 = 𝛽2
(-)𝟏 + 𝒆.                                                               (29) 

Record the minimized value of the objective function for the full model as 𝑉÷(𝑝), and the minimized 
value of the objective function for the intercept only model as 𝑉ø(𝑝). 

The R square value is calculated as: 

1 − ù4(-)
ùú(-)

.                                                                (30) 

Note: in case where the full model is a non-intercept model, we still compare it with a constant 
(intercept only) model to calculate the R square. 

Mean Absolute Error    

The Mean Absolute Error (MAE) is calculated as: 

(∑ 𝑤"𝑢"_
"`& + ∑ 𝑤"𝑣"_

"`& )/n                                                      (31) 

 

Scoring  

Fitted values  
The error terms can be directly get from the results of the simplex method: 

𝑒" = sign(𝑦")(𝑢" − 𝑣") 

 for i= 1, 2, …, n. 

Then the fitted values are: 

𝑦Ê" = 𝑦" − 𝑒"                                                               (32) 
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Predicted values and residuals 
For new record or testing data, the predicted target values are calculated as: 

𝑦Ê = ∑ 𝑥�)
�`& 𝛽6�

(-)                                                               (33) 

for a single data point. 

If the new record or testing data has the observed target value with it, then the prediction residuals can 
be calculated as: 𝑦 −	𝑦Ê. 

 

100(1−𝛂)% confidence intervals for predicted target values 

IID case 

If we assume that the error terms are i.i.d. (independent and identically distributed), i.e., 𝑒"~𝐹, the 
confidence interval for 𝑦Ê  is: 

𝑦Ê ± 𝑧æ𝑎_                                                                  (34) 

where 

 𝑎_ = [𝑝(1 − 𝑝)𝒙′(𝑿O𝑾𝑿)q&𝒙]&/�𝑠_(𝑝)                                                (35) 

where 𝒙 is the vector of observed predictor values at a single data point and 𝑠_(𝑝) is calculated as in 
section 5.1.1.  

Note: 𝑧æ satisfies Φ(𝑧æ) = 1 − α/2, and Φ(z) is the cumulative distribution function for a standard 
Normal distribution. By default, α is 0.05, and 𝑧æ = 1.96. 

Non IID case 

If we assume that the error terms are not i.i.d., i.e., 𝑒"~𝐹", the confidence interval for 𝑦Ê at a single data 
point is still: 

𝑦Ê ± 𝑧æ𝑎                                                                 (36) 

where  

	𝑎 = [𝑝(1 − 𝑝)𝒙′(𝑿O𝑾𝑿)q&𝒙]&/�𝑠(𝑝)																																																(37) 

where 𝑠(𝑝) = [𝑓Þ𝐹q&(𝑝)ß]q&, and 𝑓Þ𝐹q&(𝑝)ß is estimated by 𝑚𝑎𝑥c0, 𝑓6Þ𝒙′𝜷4(-)ß		f with            

𝑓6Þ𝒙′𝜷4(-)ß = 2ℎ_/(𝒙′(𝜷4(-mì�) − 𝜷4(-qì�))). The ℎ_ ,	𝜷4(-mì�) and 𝜷4(-qì�) are defined the same as in 
section 5.1.2. 

Appendix A 
Appendix A: Detailed derivation for solving equations (15) to get equations (16) 

From equation (15) – 4 and 5, we can get (∆𝒔𝒆 = 𝜹𝒔, ∆𝒖𝒆 = 𝜹𝒖, ∆𝒗𝒆 = 𝜹𝒗, ∆𝒂𝒆 = 𝜹𝒂): 

𝑼𝑺𝒆 + 𝑼𝜹𝒔 + 𝑺𝜹𝒖 + ∆𝒖∆𝒔𝒆 = 𝜇𝒆                                             (A1) 
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𝑨𝑽𝒆 + 𝑨𝜹𝒗 + 𝑽𝜹𝒂 + ∆𝒂∆𝒗𝒆 = 𝜇𝒆                                             (A2) 

Multiply 𝑺q𝟏 to the first equation and 𝑨q𝟏 to the second equation to get: 

𝑼𝒆 + 𝑺q𝟏𝑼𝜹𝒔 + 𝜹𝒖 + 𝑺q𝟏∆𝒖∆𝒔𝒆 = 𝜇𝑺q𝟏𝒆                                    (A3) 

𝑽𝒆 + 𝜹𝒗 + 𝑨q𝟏𝑽𝜹𝒂 + 𝑨q𝟏∆𝒂∆𝒗𝒆 = 𝜇𝑨q𝟏𝒆                                    (A4) 

So, 

𝜹𝒖 = 	𝜇𝑺q𝟏𝒆 − 𝑼𝒆 − 𝑺q𝟏𝑼𝜹𝒔 − 𝑺q𝟏∆𝒖∆𝒔𝒆                                   (16-4) 

𝜹𝒗 = 𝜇𝑨q𝟏𝒆 − 𝑽𝒆 − 𝑨q𝟏𝑽𝜹𝒂 − 𝑨q𝟏∆𝒂∆𝒗𝒆                                   (16-5) 

From equations (15) – 2 and (14) – 2, we get 𝜹𝒔 + 𝜹𝒂 = 𝟎, i.e.,  

𝜹𝒔 = −𝜹𝒂                                                         (16-3) 

 

From equation (15) – 3, we get: 

𝑾𝒚−𝑿𝜷(-) − 𝒖 + 𝒗 = 𝑿𝜹𝜷 + 𝜹𝒖 − 𝜹𝒗                                    (A5) 

Substitute (16-4) and (16-5) into equation (A5), we get: 

𝑾𝒚−𝑿𝜷(-) − 𝒖 + 𝒗 = 𝑿𝜹𝜷 + 𝜇𝑺q𝟏𝒆 − 𝑼𝒆 − 𝑺q𝟏𝑼𝜹𝒔 − 𝜇𝑨q𝟏𝒆 + 𝑽𝒆 + 𝑨q𝟏𝑽𝜹𝒂 +
𝑨q𝟏∆𝒂∆𝒗𝒆 − 𝑺q𝟏∆𝒖∆𝒔𝒆       (A6) 

Let 𝝃(𝜇) = 	𝑾𝒚 − 𝑿𝜷(-) + 	𝜇(𝑨q𝟏 − 𝑺q𝟏)𝒆 − 𝑨q𝟏∆𝒂∆𝒗𝒆 + 𝑺q𝟏∆𝒖∆𝒔𝒆, we get (𝑼𝒆 = 𝒖 and 𝑽𝒆 = 𝒗 
and equation 16-3): 

𝝃(𝜇) = 𝑿𝜹𝜷 + 𝑺q𝟏𝑼𝜹𝒂 + 𝑨q𝟏𝑽𝜹𝒂                                     (A7) 

Solving for 𝜹𝒂 from equation (A7) and letting 𝑮 = (𝑺q𝟏𝑼 + 𝑨q𝟏𝑽)q𝟏, we get: 

𝜹𝒂 = 𝑮[−𝑿𝜹𝜷 + 𝝃(𝜇)]                                           (16-2) 

 

In equation (15) – 1, substitute 𝜹𝒂 by equation (16-2), we get: 

𝑿O𝒂 + 𝑿′𝑮[−𝑿𝜹𝜷 + 𝝃(𝜇)] = (1 − 𝑝)𝑿′𝒆                               (A8) 

Solving for 𝜹𝜷 from equation (A8), we get: 

𝜹𝜷 = (𝑿′𝑮𝑿)q𝟏[−(1 − 𝑝)𝑿O𝒆 + 𝑿O𝒂 + 𝑿′𝑮𝝃(𝜇)]                      (16-1) 
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QUICK CLUSTER Algorithms 
When the desired number of clusters is known, QUICK CLUSTER groups cases efficiently 
into clusters. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 83-1 
Notation 

Notation Description 
NC Number of clusters requested 

Mean of ith cluster 

Vector of kth observation 

Euclidean distance between vectors and 
 

Convergence criteria 
 
 

Algorithm 
The first iteration involves three steps. 

 

Step 1:  Select Initial Cluster Centers 

To select the initial cluster centers, a single pass of the data is made. The values of the first 
NC cases with no missing values are assigned as cluster centers, then the remaining cases are 
processed as follows: 

 

►    and , then replaces  . If 
 and , then      replaces ; that is, if the distance 

between     and its closest cluster mean is greater than the distance between the two closest means 
(  and ), then       replaces either  or , whichever is closer to       . 

 

► If does not replace a cluster mean in (a), a second test is made: 
Let  be the closest cluster mean to . 
Let be the second closest cluster mean to . 
If  , then         ; 
That is, if is further from the second closest cluster’s center than the closest cluster’s center is 
from any other cluster’s center, replace the closest cluster’s center with . 

 
At the end of one pass through the data, the initial means of all NC clusters are set. Note that if 
NOINITIAL is specified, the first NC cases with no missing values are the initial cluster means. 

  



 
 
 

 

QUICK CLUSTER Algorithms 
 
Step 2:  Update Initial Cluster Centers 

Starting with the first case, each case in turn is assigned to the nearest cluster, and that cluster 
mean is updated. Note that the initial cluster center is included in this mean. The updated cluster 
means are the classification cluster centers. 

 
Note that if NOUPDATE is specified, this step is skipped. 

 

Step 3: Assign Cases to the Nearest Cluster 

The third pass through the data assigns each case to the nearest cluster, where distance from a 
cluster is the Euclidean distance between that case and the (updated) classification centers. Final 
cluster means are then calculated as the average values of clustering variables for cases assigned 
to each cluster. Final cluster means do not contain classification centers. 

 
When the number of iterations is greater than one, the final cluster means in step 3 are set to the 
classification cluster means in the end of step 2, and QUICK CLUSTER repeats step 3 again. The 
algorithm stops when either the maximum number of iterations is reached or the maximum change 
of cluster centers in two successive iterations is smaller than times the minimum distance among 
the initial cluster centers. 

 
References 
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RANK Algorithms 
RANK produces new variables containing ranks, normal scores, and Savage and related scores 
for numeric variables. 

 
Notation 

Let be m distinct ordered observations for the sample and be 
the corresponding sum of caseweights for each value. Define 

 

                          cumulative sum of caseweights up to 
 

                          total sum of caseweights 
 
 
Statistics 

The following statistics are available. 
 

Ran
k 

 
 

A rank is assigned to each case based on four different ways of treating ties or caseweights not 
equal to 1. 

 
For every i, , 

 
(a) if  

Calculation Condition 
                                     if TIES = LOW 

                                           if TIES = HIGH 

                                       if TIES = MEAN 

if TIES = CONDENSE 
 
 

(b) if  

Calculation Condition 
                                      if TIES = LOW 

                                           if TIES = HIGH 

                                        if TIES = MEAN 

if TIES = CONDENSE 
 

  



 
 
 

 

RANK Algorithms 
 

Note:        . 
 

RFRACTION 

Fractional rank: 
 

                  ,   
 

PERCENT 

Fractional rank as a percentage: 
 

                       ,   
 

PROPORTION Estimate for Cumulative Proportion 

The proportion is calculated for each case based on four different methods of estimating fractional 
rank: 
 

 
 

Note:   will be set to SYSMIS if the calculated value of  by the formula is negative. 
 

NORMAL (a) 

Normal scores that are the Z-scores from the standard normal distribution that corresponds to the 
estimated cumulative proportion F. The normal score is defined by 

 
,   

 

where is the inverse cumulative standard normal distribution (PROBIT). 
 

NTILES (K) 

Assign group membership for the requested number of groups.  If K groups are requested, the 
n tile for case i is defined by 

 



 
 

where    is the greatest integer that is less than or equal to . 

 
SAVAGE (S) 

 

RANK Algorithms 

 

Savage scores based on exponential distribution. The Savage score is calculated by 
 

 
 
and are defined as the expected values of the order statistics from an exponential 
distribution; that is 
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RATIO STATISTICS Algorithms 

This procedure provides a variety of descriptive statistics for the ratio of two variables. 

 

Notation 

The following notation is used throughout this section unless otherwise stated: 

Table 85-1 
Notation 

Notation Description 

Number of observations 

                 Numerator of the Ith ratio (i=1,...,n). This is usually the appraisal roll value. 

                  Denominator of the ith ratio (i=1,...,n). This is usually the sale price. 

The ith ratio (i=1,...,n). Often called the appraisal ratio. 

                  Case weight associated with the ith ratio (i=1,...,n). 

 

 

Data 

This procedure requires for i = 1, …, n that: 

          , 

          , 

          , and 

     is a whole number. If the Weight variable contains fractional values, then only the integral 

parts are used. 

 
A case is considered valid if it satisfies all four requirements above. This procedure will use only 

valid cases in computing the requested statistics. 

 

Ratio Statistics 

The following statistics are available. 

 

Ratio 
 

 
Minimum 

The smallest ratio and is denoted by 𝑅min. 

  



 
 

 

 

  RATIO STATISTICS Algorithms 
 

 
Maximum 

The largest ratio and is denoted by . 

 

Range 

The difference between the largest and the smallest ratios. It is equal to              . 

 

Median 

The middle number of the sorted ratios if n is odd. The mean (average) of the two middle ratios if 

the n is even.  The median is denoted as . 

 
Average Absolute Deviation (AAD) 
 

 
  

 

 

 

 

Coefficient of Dispersion (COD) 

 
 

Coefficient of Concentration (COC) 

Given a percentage 100% × g, the coefficient of concentration is the percentage of ratios falling 

within the interval              . The higher this coefficient, the better uniformity. 

 
Mean 

 

 
Standard Deviation (SD) 

 

 

where . 
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Coefficient of Variation (COV) 
 

 

Weighted Mean 
 

 

 

 
 

 
 

 

  
 

This is the weighted mean of the ratios weighted by the sales prices in addition to the usual 

case weights. 

 
Price-Related Bias 

The algorithms for computing the price-related bias (PRB) measure for the RATIO 

STATISTICS procedure are listed below. The statistics to be displayed and/or printed are the  

price-related bias statistic and confidence interval bounds. Case weights should be positive 

integers, and rounded versions of them are used in computations. 

Calculation of Intermediate Quantities 

 

𝑽𝒊 =. 𝟓 
𝑨𝒊

�̃�
+ . 𝟓 𝑺𝒊 

𝑳𝒊 = 𝒍𝒐𝒈𝟐(𝑽𝒊) =  
𝒍𝒏(𝑽𝒊)

𝒍𝒏(𝟐)
  

𝑫𝒊 =  
(𝑹𝒊 − �̃�)

�̃�
 

 

�̅� =
∑ 𝑓𝑖𝐿𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

 

 

�̅� =
∑ 𝑓𝑖𝐷𝑖

𝑛
𝑖=1

∑ 𝑓𝑖
𝑛
𝑖=1

 

 

Price-Related Bias (PRB) 

 

𝑩 =
∑ 𝒇𝒊(𝑳𝒊 − �̅�)𝒏

𝒊=𝟏 (𝑫𝒊 − �̅�)

∑ 𝒇𝒊(𝑳𝒊 − �̅�)𝒏
𝒊=𝟏

𝟐
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Confidence Interval for Price-Related Bias 

 

𝑪 = �̅� − 𝑩�̅� 

�̂�𝑖 = 𝐶 + 𝐵𝐿𝑖 

 

�̂�(𝐵) =
∑ 𝑓𝑖(�̂�𝑖 − 𝐷𝑖)

𝑛
𝑖=1

2

(∑ 𝑓𝑖
𝑛
𝑖=1 − 2) ∑ 𝑓𝑖(𝐿𝑖 − �̅�)𝑛

𝑖=1
2 

 
 

                                         L = 𝐵 − 𝑡1−𝛼 2⁄ ,∑ 𝒇𝒊
𝒏
𝒊=𝟏 −2 √�̂�(𝐵) 

 

 

                                                U = 𝐵 + 𝑡1−𝛼 2⁄ ,∑ 𝒇𝒊
𝒏
𝒊=𝟏 −2 √�̂�(𝐵) 

 

The computations in the last two sections are scalar formulas for performing a bivariate or 

simple linear regression of the 𝐷𝑖 values on the 𝐿𝑖  values, where the 𝐵 value for the price-

related bias is the estimated slope coefficient from the regression, and the confidence interval 

bounds are the lower and upper bounds for that slope coefficient.  

 
Price Related Differential (a.k.a.  Index of Regressivity) 

 

 

This is quotient by dividing the Mean by the Weighted Mean. 

 
Property appraisals sometimes result in unequal tax burden between high-value and low-value 

properties in the same property group. Appraisals are considered regressive if high-value 

properties are under-appraised relative to low-value properties. On the contrary, appraisals are 

considered progressive if high-value properties are relatively over-appraised. The price related 

differential is a measure for measuring assessment regressivity or progressivity. Hence the price 

related differential is also known as the index of regressivity. 

 

Recall that the [unweighted] mean weights the ratios equally, whereas the weighted mean high-

value properties are under-appraised, thus pulling the weighted mean below the mean. On the 

other hand, if the PRD is less than 1, high-value properties are relatively over-appraised, 

pulling the weighted mean above the mean. 

 

 

 

 

 



 
 

 

 
 

 

RATIO STATISTICS Algorithms 

 

Confidence Interval for the Median 

The confidence interval can be computed under the assumption that the ratios follow a normal 

distribution or nonparametrically. 

 

Distribution free (nonparametric) 

 
 

Given the confidence level 100% × (1 − 𝛼), the confidence interval for the median is an 

interval such that



 
 

 

 

  RATIO STATISTICS Algorithms 

 

 
 

, 

 

where   is the 100% × 𝑘/𝑛 quantile, and 𝐼0.5(𝑛 − 𝑟 + 1, 𝑟) is the incomplete Beta function. 

An equivalent formula is 

 

. 

 

Since the rightmost term is the cumulative Binomial distribution and it is discrete, r is solved as 

the largest value such that 

 

. 

 

Thus the confidence interval has coverage probability of at least . 

Normal distribution 

Assuming the ratios follow a normal distribution, a two-sided 100% × (1 − 𝛼) confidence 

interval for a median of a normal distribution is 

 

 
where are values defined in Table 1 of Odeh and Owen (1980). 

The value  is, in fact, the solution to the following equations: 

 
with  follows a noncentral Student t-distribution where d is degrees of freedom associated with 

the standard deviation s, δ is noncentrality parameter, γ is the probability, n is the sample size, and 

 is the upper p percentile point of a standard normal distribution. 

 
Confidence Interval for the Mean 

The normal distribution is used to approximate the distribution of the ratios. The 

100%×         confidence interval for the mean is: 
 

 
where   is the upper  percentage point of the t distribution with degrees of 

freedom, and where . 
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Confidence Interval for the Weighted Mean 

 

Using the Delta method, variance of the weighted mean is approximated as 

 

. 
 

where 
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RBF Algorithms 
A radial basis function (RBF) network is a feed-forward, supervised learning network with only 
one hidden layer, called the radial basis function layer.  The RBF network is a function of one 
or more predictors (also called inputs or independent variables) that minimizes the prediction 
error of one or more target variables (also called outputs).  Predictors and targets can be a mix 
of categorical and scale variables. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

 
 
Architecture 

There are three layers in the RBF network: 
 

 
There are many types of radial basis functions; there are two distinct types of Gaussian RBF 
architectures that we support: 

 
Ordinary RBF (ORBF): This type uses the exp activation function, so the activation of the RBF 
unit is a Gaussian “bump” as a function of the inputs. In ORBF, the Gaussian basis function takes 
form 

 

  



 
 

RBF Algorithms 

Normalized RBF (NRBF): This type uses the softmax activation function, so the activation of all 
the RBF units are normalized to sum to one. In NRBF networks, the basis function takes form 

 

 

Error Function 
 

Sum-of-squares error is used: 
 
 

  

 
  

 
 

where 
 
 

 
 

The sum-of-squares error function with identity activation function for output layer can be 
used for both scale and categorical targets. For scale targets,  approximates the conditional 
expectation of the target value .  For categorical targets,   approximates the 
posterior probability of class k:  . 

 
Note:  though          (the sum is over all classes of the same categorical target  
variable),   may not lie in the range [0, 1]. 

 

Training 

The network is trained in two stages: 
 

1. Determine the basis functions by clustering methods. The center and width for each basis 
function is computed. 

 
2. Determine the weights given the basis functions. For the given basis functions, 

compute the ordinary least-squares regression estimates of the weights. 
 

The simplicity of these computations allows the RBF network to be trained very quickly. 



 
 

 

Determining Basis Functions 

RBF Algorithms 

 

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, 
the mean and standard deviation for each scale variable and proportion of each category for 
each categorical variable are derived. Using the results from clustering, the center of the jth 
RBF is set as: 

 

if pth variable is scale 
if pth variable is a dummy variable of a categorical variable 

 
where  is the jth cluster mean of the pth input variable if it is scale, and     is the proportion 
of the category of a categorical variable that the pth input variable corresponds to. The width of 
the jth RBF is set as 

if pth variable is scale 
if pth variable is a dummy variable of a categorical variable 

 
where is the jth cluster standard deviation of the pth variable and h>0 is the RBF overlapping 
factor that controls the amount of overlap among the RBFs. Since some may be zeros, we 
use spherical shaped Gaussian bumps; that is, a common width 

 

 
in for all predictors. In the case that  is zero for some j, set it to be . If all 

are zero, set all of them to be . 
 

When there are a large number of predictors, could be easily very large and hence 
 

is practically zero for every record and every RBF unit if is 

relatively small. This is especially bad for ORBF because there would be only a constant term in 
the model when this happens.  To avoid this, is increased by setting the default overlapping 
factor h proportional to the number of inputs: h=1 + 0.1  P. 

 
For more information, see the topic “TWOSTEP CLUSTER Algorithms”. 

 

Automatic Selection of Number of Basis Functions 

The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By 
default, the reasonable range [K1, K2] is determined by first using the two-step clustering method 
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and  K1 
=max{2, min(K, R)} for NRBF and K2=max(10, 2K, R). 



 
 
 

 

RBF Algorithms 
 

If a test data set is specified, then the “best” model is the one with the smaller error in the test 
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best” 
model.  The BIC is defined as 

 

 
 

where                 is the mean squared error and k= (P+1+R)J1 for 

NRBF and (P+1+R)J1+R for ORBF is the number of parameters in the model. 

 
Output Statistics 

The following output statistics are available. Note that, for scale variables, output statistics are 
reported in terms of the rescaled values of the variables. 

 
Sum-of-Squares Error 

 
As described in “Error Function”. The cross entropy error is displayed if the output layer 
activation function is softmax, otherwise the sum-of-squares error is shown. 

 
Relative Error 

 
For each scale target r: 

 

 
For each categorical target r, report , the percent of incorrect predictions 

 
Average Overall Relative Error 

 
If there is at least one scale target: 

 
 

 
 
 

where is the mean of   over patterns. 
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If all targets are categorical, report the average percent of incorrect predictions: 
 

 

where C is the number of categorical variables. 
 

Sensitivity Analysis 
 

For each predictor p and each input pattern m, compute: 
 

 
where   is the predicted output vector (standardized if standardization of output 
variable is used in training) using as its input, and 
𝑆𝑆𝑝𝑝 = �𝑥𝑥𝑝𝑝

min, 𝑥𝑥𝑝𝑝
(2), 𝑥𝑥𝑝𝑝

(3), 𝑥𝑥𝑝𝑝
(4), 𝑥𝑥𝑝𝑝

max� for scale predictors and 
{(1,0,…,0),(0,1,0,…,0),…,(0,0,…,1)} for categorical predictors. 
Then compute: 

 
 

 

 
 

 
and normalize the s to sum to 1, and report these normalized values as the sensitivity values for 
the predictors. This is the average maximum amount we can expect the output to change based 
on changes in the pth predictor. The greater the sensitivity, the more we expect the output to 
change when the predictor changes. 
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REGRESSION Algorithms 
This procedure performs multiple linear regression with five methods for entry and removal 
of variables. It also provides extensive analysis of residual and influential cases. Caseweight 
(CASEWEIGHT) and regression weight (REGWGT) can be specified in the model fitting. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 87-1 
Notation 
Notation   Description 

Dependent variable for case   with variance 

Caseweight for case i; if CASEWEIGHT is not specified 

Regression weight for case i;  if REGWGT is not specified 

l Number of distinct cases 

W 
 
 

P Number of independent variables 
C 

Sum of caseweights: 
 

The kth independent variable for case i 
 

Sample mean for the kth independent variable:   
 

Sample mean for the dependent variable: 

Leverage for case i 

   
 

            Sample covariance for and  

             Sample variance for Y 

            Sample covariance for and Y 

              Number of coefficients in the model.               if the intercept is not included; otherwise 

R The sample correlation matrix for and Y 
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Descriptive Statistics 
 

 
  

  

 
where 

 

 

and 
 

 

The sample mean  and covariance  are computed by a provisional means algorithm. Define 

                      cumulative weight up to case k. 

then 
 

 
where 

 

 
If the intercept is included, 

 

 
where 

 

 

Otherwise, 
 

 
where 
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The sample covariance   is computed as the final   divided by . 
 
Sweep Operations (Dempster, 1969) 

For a regression model of the form 
 

 
sweep operations are used to compute the least squares estimates b of  and the associated 
regression statistics. The sweeping starts with the correlation matrix R. Let  be the new matrix 
produced by sweeping on the kth row and column of R. The elements of  are 

 

 

 
and 

 

 
If the above sweep operations are repeatedly applied to each row of   in 

 

 

where   contains independent variables in the equation at the current step, the result is 
 

 

The last row of 
 

 

contains the standardized coefficients (also called BETA), and 
 

 
can be used to obtain the partial correlations for the variables not in the equation, controlling for 
the variables already in the equation. Note that this routine is its own inverse; that is, exactly the 
same operations are performed to remove a variable as to enter a variable. 

 
Note: When the stepwise or forward entry method is used, the variable order in the swept 
correlation matrix described above might differ from the variable order in the Swept Correlation 
Matrix table displayed in the output. 
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Variable Selection Criteria 
Let be the element in the current swept matrix associated with and . Variables are 
entered or removed one at a time.    is eligible for entry if it is an independent variable not 
currently in the model with 

 

(tolerance with a default of 0.0001) 
 

and also, for each variable   that is currently in the model, 
 

 
The above condition is imposed so that entry of the variable does not reduce the tolerance of 
variables already in the model to unacceptable levels. 

 
The F-to-enter value for   is computed as 

 

 
with 1 and degrees of freedom, where   is the number of coefficients currently in 
the model and 

 

 
 

The F-to-remove value for   is computed as 
 

 
 

with 1 and degrees of freedom. 
 
Methods for Variable Entry and Removal 

Five methods for entry and removal of variables are available. The selection process is repeated 
until the maximum number of steps (MAXSTEP) is reached or no more independent variables 
qualify for entry or removal. The algorithms for these five methods are described in the following 
sections. 

 
Stepwise 

If there are independent variables currently entered in the model, choose   such   that 
is minimum.  is removed if   (default = 2.71) or, if 

probability criteria are used,  (default = 0.1). If the inequality does 
not hold, no variable is removed from the model. 
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If there are no independent variables currently entered in the model or if no entered variable 
is to be removed, choose    such that is maximum.    is entered if 

  (default = 3.84) or,   (default = 0.05). If the 
inequality does not hold, no variable is entered. 

 
At each step, all eligible variables are considered for removal and entry. 

 
Forward 

 

This procedure is the entry phase of the stepwise procedure. 
 

Backward 

This procedure is the removal phase of the stepwise procedure and can be used only after at least 
one independent variable has been entered in the model. 

 

Enter (Forced Entry) 

Choose  such that is maximum and enter . Repeat for all variables to be entered. 
 

Remove (Forced Removal) 

Choose  such that is minimum and remove . Repeat for all variables to be removed. 
 
Statistics 

The following statistics are available. 
 

Summary 

For the summary statistics, assume p independent variables are currently entered in the equation, 
of which a block of q variables have been entered or removed in the current step. 

 
Multiple R 

 

 
R Square 
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Adjusted R Square 
 

 
R Square Change (when a block of q independent variables was added or removed) 

 

 
F Change and Significance of F Change 

 

 
the degrees of freedom for the addition are q and , while the degrees of freedom for the 
removal are q and . 

 
Residual Sum of Squares 

 

 
with degrees of freedom . 

 
Sum of Squares Due to Regression 

 

 
with degrees of freedom p. 

 
ANOVA Table 

Table 87-2 
ANOVA table 

 
Standard Error of Estimate 

 
Also known as the standard error of regression, this is simply the square root of the mean square 
residual from the ANOVA table, or . 

Analysis of Variance 
Regression 

w 

df 
p 

Sum of Squares Mean Square 



 
 

 

 
 

Variance-Covariance Matrix for Unstandardized Regression Coefficient Estimates 
 

A square matrix of size p with diagonal elements equal to the variance, the below diagonal 
elements equal to the covariance, and the above diagonal elements equal to the correlations: 

 

 

 

 

Selection Criteria 

The following selection criteria are available. 
 

Akaike Information Criterion (AIC) 
 

 
Amemiya’s Prediction Criterion (PC) 

 

 
Mallow’s CP 

 

 
where   is the mean square error from fitting the model that includes all variables specified 
or implied across all METHOD subcommands. 

 
Schwarz Bayesian Criterion (SBC) 

 

 
Collinearity 

The following measures of collinearity are available. 
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Variance Inflation Factors 
 

 

 
Tolerance 

 

 
Eigenvalues 

 
The eigenvalues of scaled and uncentered cross-product matrix for the independent variables in 
the equation are computed by the QL method (Wilkinson and Reinsch, 1971). 

 
Condition Indices 

 

 
Variance-Decomposition Proportions 

 
Let 

 

 
be the eigenvector associated with eigenvalue .  Also, let 

 
and 

 
The variance-decomposition proportion for the jth regression coefficient associated with the 
ith component is defined as 

 

 
 

Statistics for Variables in the Equation 

The following statistics are computed for each variable in the equation. 
 

Regression Coefficient 
 

for 
 

The standard error of   is computed as 

   



 
 

 

 
 
 

 

95% confidence interval for coefficient 
 

 
If the model includes the intercept, the intercept is estimated as 

 

 

The variance of   is estimated by 
 
 

                                                                                                               cov 
 
 

Beta Coefficients 
 

 

The standard error of   is estimated by 
 

 

F-test for   
 

 

with 1 and degrees of freedom. 
 

Part Correlation 
 

 
Partial Correlation 
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Statistics for Variables Not in the Equation 

The following statistics are computed for each variable not in the equation. 
 

Standardized regression coefficient Beta if predictor enters the equation at the next 
step 

 
 
 

The F-test for   
 

 
with 1 and degrees of freedom 

 

Partial Correlation 
 
 
 
 
 

Tolerance 
 

 
 

Minimum tolerance among variables already in the equation if predictor enters at the 
next step is 

 

 

Residuals and Associated Statistics 
There are 19 temporary variables that can be added to the active system file. These variables can 
be requested with the RESIDUAL subcommand. 

 

Centered Leverage Values 

For all cases, compute 
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For selected cases, leverage is ; for unselected case i with positive caseweight, leverage is 
 

if intercept is included 
otherwise 

 
Unstandardized Predicted Values 
 

 
Unstandardized Residuals 

 

 
Standardized Residuals  

 

 
where s is the square root of the residual mean square. 

 
Standardized Predicted Values 

 

if no regression weight is specified 
SYSMIS otherwise 

 

where sd is computed as 
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Studentized Residuals 

 

 
Deleted Residuals 

 

for selected cases with 
otherwise 

 
Studentized Deleted Residuals 

 
 

 
where 

 

 
Adjusted Predicted Values 

 

 
DfBeta 

 

 

where 
 

  

 
 

if intercept is included 
otherwise 

 
and . 

 
This is only computed for selected cases with case weight greater than or equal to 1. 
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Standardized DfBeta 
 

where            is the jth component of , and 
 

This is only computed for selected cases with case weight greater than or equal to 1. 
 
DfFit 

 

 

This is only computed for selected cases with case weight greater than or equal to 1. 
 
Standardized DfFit 

 

This is only computed for selected cases with case weight greater than or equal to 1. 
 
Covratio 

 

This is only computed for selected cases with case weight greater than or equal to 1. 
 

Mahalanobis Distance 

For selected cases with  
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Cook’s Distance (Cook, 1977) 

For selected cases with 
 

if intercept is included 
otherwise 

 

For unselected cases with 
 

if intercept is included 
otherwise 

 
 

where is the leverage for unselected case i, and  is computed as 
 

if intercept is included 
otherwise 

 

Standard Errors of the Mean Predicted Values 

For all the cases with positive caseweight, 
 

if intercept is included 
otherwise 

 
95% Confidence Interval for Mean Predicted Response 

 
 
 
95% Confidence Interval for a Single Observation 
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Durbin-Watson Statistic 
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where            . 
 

Note: the Durbin-Watson statistic cannot be computed if there are fractional case weights. Even 
with integer case weights, the formula is only valid if the case weights represent contiguous case 
replications in the original sample. 

 
Partial Residual Plots 

The scatterplots of the residuals of the dependent variable and an independent variable when 
both of these variables are regressed on the rest of the independent variables can be requested 
in the RESIDUAL branch. The algorithm for these residuals is described in (Velleman and 
Welsch, 1981). 

 
Missing Values 

By default, a case that has a missing value for any variable is deleted from the computation of the 
correlation matrix on which all consequent computations are based. Users are allowed to change 
the treatment of cases with missing values. 
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The RELIABILITY procedure employs one of two different computing methods, depending upon 
the MODEL specification and options and statistics requested. 

 
Method 1 does not involve computing a covariance matrix. It is faster than method 2 and, for large 
problems, requires much less workspace. However, it can compute coefficients only for ALPHA 
and SPLIT models, and it does not allow computation of a number of optional statistics, nor does 
it allow matrix input or output. Method 1 is used only when alpha or split models are requested 
and only FRIEDMAN, COCHRAN, DESCRIPTIVES, SCALE, and/or ANOVA are specified on 
the STATISTICS subcommand and/or TOTAL is specified on the SUMMARY subcommand. 

 
Method 2 requires computing a covariance matrix of the variables. It is slower than method 1 and 
requires more space. However, it can process all models, statistics, and options. 

 
The two methods differ in one other important respect. Method 1 will continue processing a scale 
containing variables with zero variance and leave them in the scale. Method 2 will delete variables 
with zero variance and continue processing if at least two variables remain in the scale. If item 
deletion is required, method 2 can be selected by requesting the covariance method. 

 
Notation 

There are N persons taking a test that consists of k items. A score  is given to the jth person 
on the ith item. 

1 2 ... i ... k 
1 

. 

. 

j 

. 

. 

N 
 
 
 

If the model is SPLIT,   items are in part 1 and                are in part 2. If the number of 
items in each part is not specified and k is even, the program sets              .  If k is odd, 

                     . It is assumed that the first   items are in part 1. 
Table 88-1 
Notation 

Notation Description 
Sum of the weights, where is the weight for case j 

  

.. . 

.. . 

... ... G 
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Notation Description 
The total score of the jth person 

 
                                           Mean of the observations for the jth person 

The total score for the ith item 

 

Grand sum of the scores 

 

Grand mean of the observations 
 
 

Scale and Item Statistics—Method 1 
 
Item Means and Standard Deviations 

 
Mean for the ith Item 

 

 
Standard Deviation for the ith Item 

 

 

Scale Mean and Scale Variance 
 

Scale Mean 
 

 
For the split model: 

Mean Part 1 

 
 

 
 

Mean Part 2 
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Scale Variance 
 

 
 

For the split model: 

Variance Part 1 

 
 

Variance Part 2 
 

 

Item-Total Statistics 
 

Scale Mean if the ith Item is Deleted 
 

 

Scale Variance if the ith Item is Deleted 
 

 
where the covariance between item i and the case score is 
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Alpha if the ith Item Deleted 
 
 

 
 
 

Correlation between the ith Item and Sum of Others 
 

 

The ANOVA Table (Winer, 1971) 
Table 88-2 
ANOVA table 

 

Each of the mean squares is obtained by dividing the sum of squares by the corresponding degrees 
of freedom.  The F ratio for between measures is 

 
  between measures          

residual 
 

Friedman Test or Cochran Test 
    between measures    

within people 
 

Note: Data must be ranks for the Friedman test and a dichotomy for the Cochran test. 

Source of 
variation 
 
Between 
people 

Sum of Squares df 

   

Within 
people 

   

Between 
measures 

   

Residual 

Total 
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Kendall’s Coefficient of Concordance 
  between measures 

total 

(Will not be printed if Cochran is also specified.) 
 
Tukey’s Test for Nonadditivity 

The residual sums of squares are further subdivided to 
 

nonadd 
 

where 
 

 
 

 

 
 

bet. meas bet. people 
 

 
 

 
 

   
 

 
 
 
 

 
bet. meas 

 
 
 
 

bal res nonadd 
 

The test for nonadditivity is 
 

  nonadd          
balance 

 

The regression coefficient for the nonadditivity term is 
 

 
and the power to transform to additivity is 

 

 

Scale Statistics 
Reliability coefficient alpha (Cronbach 1951) 
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If the model is split, separate alphas are computed: 
 

 
 

For Split Model Only 
 

Correlation Between the Two Parts of the Test 
 

 
Equal Length Spearman-Brown Coefficient 

 

 
 

Guttman Split Half 
 

 
Unequal Length Spearman-Brown 
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Basic Computations—Method 2 
Items with zero variance are deleted from the scale and from , and .  The inverses of 
matrices, when needed, are computed using the sweep operator described by Dempster (1969). If 

, a warning is printed and statistics that require   are skipped. 
 

Covariance Matrix V and Correlation Matrix R 
 
 

  

 
 
Scale Variance 

 
 
 

If the model is split, 

 
if raw data input 

if correlation matrix and SD input 

 

 

 

 

    

 
 

 

 

 

 

 

 
 

where the first   items are in part 1. 
 
Scale Statistics—Method 2 

 
Alpha Model 

 
Estimated Reliability 

 
 
 

where 
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Standardized Item Alpha 

 

Split Model 
 

Correlation between Forms 
 

 
Guttman Split-Half 

 

 

Alpha and Spearman-Brown equal and unequal length are computed as in method 1. 
 

Guttman Model (Guttman 1945) 
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                               where 
 

Parallel Model (Kristof 1963) 
 

Common Variance 
 

 

True Variance 
 

 
Error Variance 

 

 
Common Inter-Item Correlation 

 

 
Reliability of the Scale 
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Unbiased Estimate of the Reliability 
 

 
where A is defined above. 

 

Test for Goodness of Fit 
 

 
where 

 

 

 
 

Log of the Determinant of the Unconstrained Matrix 
 

 
Log of the Determinant of the Constrained Matrix 

 

 
Strict Parallel (Kristof 1963) 

 
Common Variance 

 

 
Error Variance 

 

 
All mean squares are calculated as described in the analysis of variance table. 
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True Variance 
 

 
Common Inter-Item Correlation 

 
 

 
 

 
 
 

Reliability of the Scale 
 

 
 

Unbiased Estimate of the Reliability 
 

 
Test for Goodness of Fit 

 

 
where 

 

 

 

Log of the Determinant of the Unconstrained Matrix 
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Log of the Determinant of the Constrained Matrix 
 

 
Additional Statistics—Method 2 

 

Descriptive and scale statistics and Tukey’s test are calculated as in method 1.  Multiple  if 
an item is deleted is calculated as 

 

 

Analysis of Variance 
Table 

Table 88-3 
Analysis of variance table 

 
Hotelling’s T-Squared (Winer, 1971) 

 

 
where 
 

 
 

Source of 
variation 
 
Between 
people 

Sum of Squares df 

Within 
people 

       
   

   
bet. people 

Between 
measures 

       

Residual    

Total Between SS + Within SS 



 
 
 

 

RELIABILITY Algorithms 
 

where C is an identity matrix of rank augmented with a column of –1 on the right. 
 

 
The test will not be done if or . 

 
The significance level of   is based on 

 
with        

 
Item Mean Summaries 

 

Mean 
 
 

 
 

Variance= 
 

Maximum 
 

Minimum 
 

 
 

Item Variance Summaries 

Same as for item means except that  is substituted for  in all calculations. 
 
Inter-Item Covariance Summaries 

 
 

  

Mean 
 

Variance= 

Maximum 
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Minimum 
 

 
 

Inter-Item Correlations 
Same as for inter-item covariances, with being replaced by . 

 
If the model is split, statistics are also calculated separately for each scale. 

 
Intraclass Correlation Coefficients 

Intraclass correlation coefficients are always discussed in a random/mixed effects model setting. 
McGraw and Wong (1996) is the key reference for this document. See also Shrout and Fleiss 
(1979). 

 
In this document, two measures of correlation are given for each type under each model: single 
measure and average measure. Single measure applies to single measurements, for example, the 
ratings of judges, individual item scores, or the body weights of individuals, whereas average 
measure applies to average measurements, for example, the average rating for k judges, or the 
average score for a k-item test. 

 
One-Way Random Effects Model: People Effect Random 

Let Xji be the response to the ith measure given by the jth person, i = 1, …, k, j = 1, …, W. Suppose 
that Xji can be expressed as Xji = + pj + wji, where pj is the between-people effect which is 
normal distributed with zero mean and a variance of , and wji is the within-people effect which 
is also normal distributed with zero mean and a variance of . 

Let BP and WP be the respective between-people Mean Squares and within-people Mean 
Squares. These two quantities can be computed by dividing the corresponding Sum of Squares 
with its degrees of freedom. For more information, see the topic “Analysis of Variance Table”. 

 
Single Measure Intraclass Correlation 

The single measure intraclass correlation is defined as 
 

 

Estimate 
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The single measure intraclass correlation coefficient is estimated by 
 

   BP WP . 
BP  WP 

In general, 
 

. 
 

Confidence Interval 
 

For 0 < < 1, a (1-   )100% confidence interval for is given by 
 

, 
 

where 
 
 

 
 

  BP 
WP 

 

and is the upper point of a F-distribution with degrees of freedom v1 and v2. 

Hypothesis Testing 

The test statistic   for                  , where is the hypothesized value, is 

                             . 

Under the null hypothesis, the test statistic has an F-distribution with  degrees of 
freedom. 

 
Average Measure Intraclass Correlation 

The average measure intraclass correlation is defined as 
 

. 
 

Estimate 
 

The average measure intraclass correlation coefficient is estimated by 
 

BP  WP . 
BP 

Confidence Interval 
 

A (1-   )100% confidence interval for is given by 
 

. 
 

Hypothesis Testing 
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The test statistic   for                  , where is the hypothesized value, is 

                           . 

Under the null hypothesis, the test statistic has an F-distribution with  degrees of 
freedom. 

 

Two-Way Random Effects Model: People and Measures Effects Random 

Let Xji be the response to the i-th measure given by the j-th person, i = 1, …, k, j = 1, …, W. 
Suppose that Xji can be expressed as Xji = + pj + mi + pmji + eji, where pj is the people effect 
which is normal distributed with zero mean and a variance of , mi is the measures effect which 
is normal distributed with zero mean and a variance of , pmji is the interaction effect which  
is normal distributed with zero mean and a variance of  , and eji is the error effect which is 
again normal distributed with zero mean and a variance of   . 

 
Let BP, BM and Res be the respective between-people Mean  Squares, 
between-measures Mean Squares and Residual Mean Squares. These quantities can be computed 
by dividing the corresponding Sum of Squares with its degrees of freedom. For more information, 
see the topic “Analysis of Variance Table”. 

 
Type A Single Measure Intraclass Correlation 

 
The type A single measure intraclass correlation is defined as 

 
 
 

  

 

Estimate 

if interaction effect is present 
. 

if interaction effect is absent 

 

The type A single measure intraclass correlation coefficient is estimated by 
 

    BP Res  . 
BP Res  BM  

Notice that the same estimator is used whether or not the interaction effect pmji is present. 

Confidence Interval 

A (1-   )100% confidence interval is given by 
 

 
where 
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  BM Res  
  BM Res 

 
 

and 
 

. 
 

Hypothesis Testing 
 

The test statistic   for                        , where is the hypothesized value, is 
 

          BP   
BM  Res 

 

where 
 

 

and 
 

                             . 
 

Under the null hypothesis, the test statistic has an F-distribution with degrees of 
freedom. 

 

 
 

Type A Average Measure Intraclass Correlation 

The type A average measure intraclass correlation is defined as 
 
 

  

 

Estimate 

 
if interaction effect is present 

. 
if interaction effect is absent 

 

The type A average measure intraclass correlation coefficient is estimated by 

   BP Res . 
BP  BM   

Notice that the same estimator is used whether or not the interaction effect pmji is present. 
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Confidence Interval 
 

A (1-   )100% confidence interval is given by 
 

  BP Res  
BM Res BP 

  BP Res  
BM Res BP 

 
where 

 

  BM Res  
  BM Res 

 
 

and 
 

 

Hypothesis Testing 
 

The test statistic for                         , where is the hypothesized value, is 
 

          BP   
BM  Res 

where 
 

 
and 

 

                           . 
 

Under the null hypothesis, the test statistic has an F-distribution with degrees of 
freedom. 

 

 
 

Type C Single Measure Intraclass Correlation 

The type C single measure intraclass correlation is defined as 
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Estimate 

 
if interaction effect is present 

. 
if interaction effect is absent 

 

The type C single measure intraclass correlation coefficient is estimated by 
 

   BP Res . 
BP  Res 

Notice that the same estimator is used whether or not the interaction effect pmji is present. 

Confidence Interval 

A (1-   )100% confidence interval is given by 
 

 

where 
 

 

 
  BP . 

Res 

Hypothesis Testing 
 

The test statistic for                       , where is the hypothesized value, is 

                             . 

Under the null hypothesis,  the test statistic has an F-distribution with 
        degrees of freedom. 

 
Type C Average Measure Intraclass Correlation 

The type C average measure intraclass correlation is defined as 
 

 

 

 

Estimate 

 
if interaction effect is present 

. 
if interaction effect is absent 

 

The type C average measure intraclass correlation coefficient is estimated by 
 

BP Res . 
BP 

Notice that the same estimator is used whether or not the interaction effect pmji is present. 

Confidence Interval 

A (1-   )100% confidence interval is given by 
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. 
 

Hypothesis Testing 
 

The test statistic for                       , where is the hypothesized value, is 

               . 

Under the null hypothesis,  the test statistic has an F-distribution with 
        degrees of freedom. 

 
Two-Way Mixed Effects Model: People Effects Random, Measures Effects Fixed 

Let Xji be the response to the i-th measure given by the j-th person, i = 1, …, k, j = 1, …, W. 
Suppose that Xji can be expressed as Xji = + pj + mi + pmji + eji, where pj is the people effect 
which is normal distributed with zero mean and a variance of , mi is considered as a fixed effect, 
pmji is the interaction effect which is normal distributed with zero mean and a variance of , 
and eji is the error effect which is again normal distributed with zero mean and a variance of  . 
Denote  as the expected measure square of between measures effect mi. 

Let BP and Res be the respective between-people Mean Squares and Residual Mean 
Squares. These quantities can be computed by dividing the corresponding Sum of Squares with its 
degrees of freedom. For more information, see the topic “Analysis of Variance Table”. 

 
Type A Single Measure Intraclass correlation 

The type A single measure intraclass correlation is defined as 
 
 

 

 

 

Estimate 

if interaction effect is present 
. 

if interaction effect is absent 

 

The type A single measure intraclass correlation is estimated by 

    BP Res  . 
BP Res  BM Res  

Notice that the same estimator is used whether or not the interaction effect pmji is present. 

Confidence Interval 

Hypothesis Testing 
 

The test statistic for                          , where is the hypothesized value, is the same 
as that for , with the same distribution under the null hypothesis. 
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Type A Average Measure Intraclass Correlation 

The type A average measure intraclass correlation is defined as 
 

 
 

  

 

Estimate 

if interaction effect is present 
. 

if interaction effect is absent 

 

The type A single measure intraclass correlation is estimated by 

Not estimable if interaction effect is present 
 

 
 

 

Confidence Interval 

   BP Res  
BP  BM  Res )  /  w 

if interaction effect is absent  . 

 

A (1-    )100% confidence interval for is the same as that for , with 
replaced by . Notice that the hypothesis test is not available when 

the interaction effect pmji is present. 

Hypothesis Testing 
 

The test statistic for                        , where is the hypothesized value, is the same 
as that for , with the same distribution under the null hypothesis. Notice that the hypothesis 
test is not available when the interaction effect pmji is present. 

 
Type C Single Measure Intraclass Correlation 

The type C single measure intraclass correlation is defined as 
 
 

 

 

 

Estimate 

if interaction effect is present 
. 

if interaction effect is absent 

 

The type C single measure intraclass correlation is estimated by 
 

   Between people Residual . Between people  Residual 

Notice that the same estimator is used whether or not the interaction effect pmji is present. 

Confidence Interval 

A (1-   )100% confidence interval is given by 
 

 
where 
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  BP . 
Res 

Hypothesis Testing 
 

The test statistic for                        , where is the hypothesized value, is 

                             . 

Under the null hypothesis,  the test statistic has an F-distribution with 
        degrees of freedom. 

 
Type C Average Measure Intraclass Correlation 

 
The type C average measure intraclass correlation is defined as 

 
 

  

 

Estimate 

 
if interaction effect is present 

. 
if interaction effect is absent 

 

The type C average measure intraclass correlation is estimated by 

Not estimable if interaction effect is present 
 

 
 

 

Confidence Interval 

  BP Res 
BP 

if interaction effect is absent  . 

 

A (1-   )100% confidence interval is given by 
 

. 
 

Notice that the confidence interval is not available when the interaction effect pmji is present. 

Hypothesis Testing 

The test statistic for                        , where is the hypothesized value, is 

                          . 

Under the null hypothesis, the test statistic has an F-distribution with 
        degrees of freedom. Notice that the F-test is not   available 

when the interaction effect pmji is present. 
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Estimation of McDonald’s Omega

Introduction

This section discusses the estimation of McDonald’s omega (ω) to evaluate reliability. The algorithm
discussed in the following sections are based on the method proposed by [Hancock and An, 2020]. It assumes
that the model is unidimensional including a single factor with no local item dependence in the form of error
covariances. Thus, the model implies that the covariance of the two different items is the product of their
loadings. The novel statistics and their output are integrated to the RELIABILITY procedure under the
“Omega” model type.

Notations

The following notations, derived from the RELIABILITY algorithm, will be used in the following discussions
unless otherwise stated.

N : Number of cases or persons taking a test.

j: Case index which denotes the j-th person, and j = 1, 2, . . . , N .

k: Number of items in the test.

i: Item index, and i = 1, 2, . . . , k.

r, s: Item index, and r, s ∈ {1, 2, . . . , k}.

Xji: Observed score given to the j-th person on the i-th item.

wj : Frequency weight for the j -th case.

Ti: Total score of the i-th item, and Ti =
∑N

j=1 wjXji.

The following statistics have already been computed by the existing RELIABILITY algorithm.

Mean for the i-th item:

T̄i =
Ti
W

. (0.0.1)

Standard deviation for the i-th item:

Si =

√∑N
j=1 wjX2

ji −WT̄ 2
i

W − 1
. (0.0.2)

Covariance matrix V :

vrs =


1

W − 1

 N∑
j=1

wjXjrXjs −WT̄rT̄s

 if raw data input

rrsSrSs if correlation matrix and SD input

. (0.0.3)

Scale variance:

S2
p =

k∑
r=1

S2
r + 2

k∑
r=1

k∑
∀s>r

vrs . (0.0.4)

Note that those items with zero variance are deleted from the scale and k.
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Omega Model Assumption

Provided that k ≥ 3, [Hancock and An, 2020] suggested estimating λi by

λ̂i =

( ∑k
r=1,r 6=i

∑k
∀s>r,s 6=i virvis∑k

r=1,r 6=i

∑k
∀s>r,s 6=i vrs

)1/2

, (0.0.5)

where v∗∗ is estimated by Equation (0.0.3). By defining that

∑
λ̂ =

k∑
i=1
i 6=r,s

λ̂i , (0.0.6)

where λ̂i is estimated by (0.0.5), we estimate ω by

ω̂ =

(∑
λ̂
)2

S2
p

, (0.0.7)

where S2
p is estimated by Equation (0.0.4); and

∑
λ̂ is estimated by (0.0.6). Note that ω̂ will not be estimated

if k < 3.

Item Deletion

When the model type is “Omega,” we apply the approach in this section if “Scale if item deleted” is also
checked.

Without loss of generality, we suppose that the d-th item, or Xjd, is deleted for a fixed d ∈ {1, 2, . . . , k}.
Provided that k ≥ 4, we first formulate V ′ by eliminating the d-th row and d-th column of the covariance
matrix V as represented by Equation (0.0.3). Note that the dimension of V ′ is (k− 1) by (k− 1). The scale
variance, after the d-th item is deleted, becomes

S̃2
d =

k−1∑
r=1

k−1∑
s=1

v′rs , (0.0.8)

where v′rs denotes the components contained in the newly-constructed V ′. Similarly to Equation (0.0.5) and
(0.0.6), we then estimate

λ̂′i =

( ∑k−1
r=1,r 6=i

∑k−1
∀s>r,s 6=i v

′
irv
′
is∑k−1

r=1,r 6=i

∑k−1
∀s>r,s 6=i v

′
rs

)1/2

, (0.0.9)

where v′∗∗ are the components contained in V ′, and

∑
λ̂′ =

k−1∑
i=1
i 6=r,s

λ̂′i , (0.0.10)

where λ̂′i is estimated by (0.0.9). Finally, we estimate

ω̂d =

(∑
λ̂′
)2

S̃2
d

, (0.0.11)

where S̃2
d is estimated by Equation (0.0.8), and

∑
λ̂′ is estimated by (0.0.10).

The entire Section is repeated for each fixed d = 1, 2, . . . , k with the deletion of each item. Note that ω̂d

will not be estimated if k < 4.
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RMV Algorithms 
Missing values in a time series are estimated. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 89-1 
Notation 
Notation Description 

Original series 

                                         Estimate for spans 

Number of spans 

The number of consecutive missing values 

to                           Set of consecutive missing values 
 
 
Methods for Estimating Missing Values 

The following methods are available. 
 

Linear Interpolation (LINT(X)) 
 

SYSMIS or 
 

If (that is, only one consecutive missing observation), then 
 

SYSMIS or 
 

Mean of p Nearest Preceding and p Subsequent Values (MEAN (X,p)) 

If the number of nonmissing observations in  or is less than p, 
then set       SYSMIS; otherwise, set average of p nonmissing observations preceding 

 and p nonmissing observations following . 

 
Median of p Nearest Preceding and p Subsequent Values (MEDIAN (X,p)) 

If the number of nonmissing observations  in (𝑋𝑋1, … , 𝑋𝑋𝑖𝑖−1) or (𝑋𝑋𝑖𝑖+𝑘𝑘 , … , 𝑋𝑋𝑛𝑛) is less than p, then 
set  = SYSMIS; otherwise, set 𝑋𝑋�𝑖𝑖−1 median of p nonmissing observations preceding  and 
p nonmissing observations following .
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Series Mean (SMEAN (X)) 

      average of all nonmissing observations in the series. 
 

Linear Trend (TREND(X)) 
1. Use all the nonmissing observations in the series to fit the regression line of the form 

 

 

The least squares estimates are 
 
 

 
 
 

2. Apply the regression equation to replace the missing values 
 



 

 

ROC Algorithms 
ROC produces a receiver operating characteristic (ROC) curve. 

 
Notation and Definitions 

Table 90-1 
Notation 
Notation Description 
di Actual state for case i, it is either positive or negative; positive usually means that a test 

detected some evidence for a condition to exist. 
xi Test result score for case i. 

TP Number of true positive decisions 

FN Number of false negative decisions 

TN Number of true negative decisions 

FP Number of false positive decisions 

Sensitivity Probability of correctly identifying a positive 
Specificity Probability of correctly identifying a negative 

Cutoff or criterion value on the test result variable 

Number of cases with negative actual state 
Number of cases with positive actual state 

Number of true negative cases with test result equal to j. 

Number of true positive cases with test result greater than j. 

Number of true positive cases with test result equal to j. 

Number of true negative cases with test result less than j. 

                     The probability that two randomly chosen positive state subjects will both get a more 
positive test result than a randomly chosen negative state subject. 

                     The probability that one randomly chosen positive state subject will get a more positive 
test result than two randomly chosen negative state subjects. 

 
 

Construction of the ROC Curve 
The ROC plot is merely the graph of points defined by sensitivity and (1 – specificity). 
Customarily, sensitivity takes the y axis and (1 – specificity) takes the x axis. 

 

Computation of Sensitivity and Specificity 

The ROC procedure fixes the set of cutoffs to be the set defined by the values half the distance 
between each successive pair of observed test scores, plus max(xi ) + 1 and min(xi ) – 1. 

Given a set of cutoffs, the actual state values, and test result values, one can classify each 
observation into one of TP, FN, TN, and FP according to a classification rule. Then, the 
computation of sensitivity and specificity is immediate from their definitions. 
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Four classification or decision rules are possible: 
Table 90-2 
Classification of decision rules 
ClassificRaetsiounlt 
(1) a test result is positive if the test result value is greater than or equal to and that a test result is 

negative if the test result is less than    ; 
(2) a test result is positive if the test result value is greater than and that a test result is negative if 

the test result is less than or equal to    ; 
(3) a test result is positive if the test result value is less than or equal to and that a test result is 

negative if the test result is greater than     ; and 
(4) a test result is positive if the test result value is less than and that a test result is negative if 

the test result is greater than or equal to    . 
 

Specificity 
 

Specificity is defined by 

   TN   
TN  FP 

Sensitivity 
 

Sensitivity is defined by 

   TP   
TP  FN 

 
Interpolation of the Points 

When the test result variable is a scale variable, the number of distinct test result values and 
thus the number of cutoff points tend to increase as the number of observations (or test results) 
increases. Theoretically, in the “limit” the pairs of sensitivity and (1 – specificity) values form 
a dense set of points in itself and in some continuous curve, the ROC curve. A continuous 
interpolation of the points may be reasonable in this sense. 

 
Note: The domain of the test result variable need only be a positive-measure subset of the real 
line. For example, it could be defined only on (-1, 0] and (1, ). As long as the variable is not 
discrete, the ROC curve will be continuous. 

 
When the test result variable is an ordinal discrete variable, the points never become dense, 
even when there are countably infinite number of (ordinal discrete) values. Thus, a continuous 
interpolation may not be justifiable. But, when it is reasonable to assume there is some underlying 
or latent continuous variable, an interpolation such as a linear interpolation, though imprecise, 
may be attempted. From now on, the test result variable is assumed continuous or practically so. 

 
The problem is related to having ties, but not the same. In the continuous case, when values are 
tied, they are identical but unique. In the ordinal case with the grouped/discretized continuous 
interpretation, values in some underlying continuous scale range may be grouped together and 
represented by a certain value, usually the mid range value. Those values are represented as if they 
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were ties, but in fact they are a collection of unordered values. Now, even if each category/group 
contains only one observation, the problem still exists unless the observation’s latent value is 
identical to the representing value of the observation. 

 
Case 1: No ties between actual positive and actual negative groups 

 
If there are ties within a group, the vertical/horizontal distance between the points is simply 
multiplied by the number of ties. If not, all the points are uniformly spaced within each of the 
vertical and horizontal directions, because as a cutoff value changes, only one observation at a 
time switches the test result. 

 
Case 2: Some ties between actual positive and actual negative groups 

 
For ties between actual positive and actual negative groups, both of the TP and FP change 
simultaneously, and we do not know “the correct path between two adjacent points” (Zweig 
and Campbell, 1993, p.  566).  “It could be the minimal path (horizontal first, then vertical) or 
the maximal path (vice versa). The straight diagonal line segment is the average of the two most 
extreme paths and tends to underestimate the plot for diagnostically accurate test” (Zweig and 
Campbell, 1993, p. 566). But, it is our choice here. In passing, the distance and angle of this 
diagonal line depend on the numbers of ties within D+ and D- groups. 

 

The Area Under the ROC Curve 
Let represent the scale of the test result variable, with its low values suggesting a negative result 
and the high values a positive result. Denote by the values for cases with positive actual 
states.  Similarly, denote by      the values for cases with negative actual states. Then, the “true” 
area under the ROC curve is 

 

    . 
 

The nonparametric approximation of is 
 

    , 
 
 
 

where is the sample size of D+,     is the sample size of D-, and 
 

if    
   if _. 

if    
 

Note that is the observed area under the ROC curve, which connects successive points by a 
straight line, i.e., by the trapezoidal rule. 
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An alternative way to compute is as follows: 
 

                                                                        . 
set of all test 

result values 

When a low value of x suggests a positive test result and a high value a negative test result 
 

If a low value of suggests a positive test result and a high a negative test result, compute as 
above and then 

 
                 , 

 
where   is the estimated area under the curve when a low test result score suggests a positive 
test result. 

 
SE of the area under the ROC curve statistic, nonparametric assumption 

The standard deviation of is estimated by: 
 

SE                                                                             . 
 

where 
 

 

and 
 

                                                                                          . 
 

When a low value of x suggests a positive test result and a high value a negative test result 
 

If we assume that a low value of suggests a positive test result and a high value a negative test 
result, then we estimate the standard deviation of   by SE SE . 

Under the bi-negative exponential distribution assumption, given the number of negative results 
equal number of positive results 

 
Under the bi-negative exponential distribution assumption when , 

 

 
and 

 
              . 



 
 

 

 

SD 

 

 

SD 
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SE   is then computed as before. 
 

When a low value of x suggests a positive test result and a high value a negative test result 

Once again, SE(𝑊𝑊′) = SE(𝑊𝑊). 

The asymptotic confidence interval of the area under the ROC curve 

A 2-sided asymptotic               confidence interval for the true area under the ROC 
curve is 

 

SE . 
 

When a low value of x suggests a positive test result and a high value a negative test result 
 

       SE 
 

Asymptotic P-value 

Since is asymptotically normal under the null hypothesis that , we can calculate the 
asymptotic P-value under the null hypothesis that vs.  the alternative hypothesis that 

       : 
 

Pr Pr 
 
 

In the nonparametric case, 
 

 

because we can deduce that            and        under the null hypothesis that 𝜃𝜃 = 0.5. The 
argument for        is as follows. implies that the distribution of test results of positive 
actual state subjects is identical to the distribution of test results of negative actual state subjects. 
So, the mixture of the two distributions is identical to either one of the distributions. Then, we can 
reinterpret   as the probability that, given three randomly chosen subjects from the (mixture) 
distribution, the subject with the lowest test result was selected, say, first. (One may consider this 
subject as a negative state subject and the other two as positive state subjects.)  From here on, 
we can pursue a purely combinatorial argument, irrespective of the distribution of subjects’ test 
results, because the drawings are independent and given. There are ways to 
order the three subjects, and there are two ways in which the subject with the lowest test result 
comes first. So, if ,                    . The argument for            is similar. 

SD 
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In the bi-negative exponential case, 
 

 

where .  (Note that this formula is identical to the nonparametric one except for the 
sample size restriction.) 

 
When a low value of x suggests a positive test result and a high value a negative test result 

 
The asymptotic P-value under the null hypothesis that             vs.  the alternative hypothesis that 

          , if desired, may be computed, using   and SD SD . 
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ROC Analysis Algorithms

Introduction

Receiver operating characteristic (ROC) curves are frequently used to assess the accuracy of model pre-
dictions by plotting Sensitivity versus (1-Specificity) of a classification test as the threshold varies over an
entire range of diagnostic test results [Lasko et al., 2005]. The full area under a given ROC curve, or AUC,
formulates an important statistic that measures the probability, denoted by ω, that the prediction will be in
the correct order when a test variable is observed for one subject randomly selected from the case group and
the other randomly selected from the control group [DeLong et al., 1988]. The existing ROC procedure in
SPSS Statistics supports the inference about a single AUC, but has not yet offered any features of comparing
two ROC curves. In the later situation, investigators may gain more information in the accuracy resulted
from two comparative diagnostic approaches.

Moreover, we also introduce Precision-Recall (PR) curves to the enhancements of the ROC procedure.
In contrast to ROC curves, PR curves plot Precision versus Recall, and tend to be more informative when
the observed data samples are highly skewed [Davis and Goadrich, 2006]. By supporting this novel feature,
we provide users with an alternative to ROC curves for data with a large skew in the class distribution.

In the following presentation, we describe the method to compare two ROC curves generated from either
independent groups or paired subjects, and demonstrate how to estimate AUC-related statistics. All the
features will be embedded into the existing ROC procedure for SPSS Statistics 26.0 with inclusion of a
grouping variable and paired test variables.

General Notations

The following notations defined in this section will be used for the subsequent sections.

ω: The parameter measures the probability that in randomly paired positive and negative states, the test
results of the two states allow them to be correctly classified.

W : The nonparametric estimation of ω. Its estimated standard error is denoted by SE(W ).

k: k = 1, 2, which is the subscription to denote group index for the independent-group design or test
measurement index for the paired-sample design.

N : A sample of effective subjects undergoing a test for predicting an event of interest or determining the
presence or absence of a medical condition. Note that N is a positive integer.

m: The number within the N subjects truly undergoing the event of interest or with the presence of the
medical condition for the paired-sample design. Note that m < N , and m is a positive integer.

n: The number within the n subjects do not have the event of interest the medical condition for the
paired-sample design. Note that n = N −m.

i: i = 1, 2, . . . ,m, a positive integer to denote the index of the m subjects.

j: j = 1, 2, . . . , n, a positive integer to denote the index of the n subjects.

xik: The observed value of the i-th subject in m for the k-th test variable.

yik: The observed value of the j-th subject in n for the k-th test variable.

Compare the Areas under Two ROC Curves

Independent-group Design

The existing ROC Curve algorithm has already discussed how to estimate ω for a specific ROC curve. The
backbone is based on the distribution-free approach discussed by [Hanley and McNeil, 1982]. A similar idea
may be applied to the independent-group design, but we require an additional grouping variable G, either
string or numeric, to divide the test variables into two groups assumed to be independent of each other.
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Table 1 illustrates the sample data with the independent-group design. For the r-th record (r = 1, 2, . . . , N),
1/0 denotes the positive/negative trait status; tr denotes the test value; and grk denotes the grouping value
of the k-th group. Note that the test variable T must be based on numeric-valued diagnoses, but may not
be necessarily continuous. Strings are not allowed.

Independent-Group Design

subjectID stateVar (D) testVar (T ) groupVar (G)

1 1 t1 g1k
2 0 t2 g2k
...

...
...

...
N 1 tN gNk

Table 1: An Illustrative Data Sample with Independent-Group Design

The grouping variable G is used to define two groups. Each group defined by G must contain at least one
valid observation. Only a single grouping variable is allowed in one procedure. For a string variable G, the
groups are defined by G = gi1 versus G = gi2, where both gi1 and gi2 are required to appear in the sample
data. For a numeric variable G, we allow a single numeric value, a midpoint value M , or a user-specified cut
point value C. The groups are defined by G = gi1 versus G = gi2, G < M versus G ≥ M , or G < C versus
G ≥ C, where both gi1 and gi2 are required to appear in the sample data, and M is computed by taking the
average of the minimum and maximum sample data.

Estimate Sensitivity and Specificity

For the independent-group design, Sensitivity and Specificity are computed by the nonparametric method
for two different portions of data, respectively. The meaningful choices of the cutoff values, denoted by c,
depend on the observed values of the test variable T = t. If there are L distinctive values of T , L+ 1 cutoff
values will be chosen. Suppose we observe that L = 3 unique test values −∞ < ti < tj < tk < +∞ in the
data sample, then we can set 4 cutoff values c = ti − 1, (ti + tj)/2, (tj + tk)/2, and tk + 1. Particularly, if
the test variable is defined on (0, 1) and all the observed test values belong to (0, 1), we set the minimum
and the maximum cutoff value to be 0 and 1, respectively. The following illustrative example will be used
to demonstrate the algorithm. For all the records with G = g1, sort the data by the test variable T . For
instance, suppose there are 10 records belonging to the group defined by G = g1, and a sorted piece of data
may look like Table 2. Since the distinctive observed values are 1.0, 2.0, 3.0, 5.0, 6.0, and 8.0, the cutoff

Data Sample Sorted by T

stateVar (D) testVar (T ) groupVar (G)

0 1.0 g1
1 2.0 g1
0 3.0 g1
0 3.0 g1
1 3.0 g1
0 5.0 g1
1 5.0 g1
0 6.0 g1
1 6.0 g1
1 8.0 g1

Table 2: An Illustrative Data Sample with Records Sorted by T

values are chosen to be 0.0, 1.5, 2.5, 4.0, 5.5, 7.0, and 9.0. Suppose that the decision rule is that a test result
is positive (T+) if the observed test value t ≥ c, and that a test result is negative (T−) if the test result t < c.
We can further summarize these 10 records by using the following Table 3. Note that cutoff-value columns
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Data Sample with Cutoff Values

stateVar (D) testVar (T ) c = 0.0 c = 1.5 c = 2.5 c = 4.0 c = 5.5 c = 7.0 c = 9.0

0 1.0 T+ T− T− T− T− T− T−

1 2.0 T+ T+ T− T− T− T− T−

0 3.0 T+ T+ T+ T− T− T− T−

0 3.0 T+ T+ T+ T− T− T− T−

1 3.0 T+ T+ T+ T− T− T− T−

0 5.0 T+ T+ T+ T+ T− T− T−

1 5.0 T+ T+ T+ T+ T− T− T−

0 6.0 T+ T+ T+ T+ T+ T− T−

0 6.0 T+ T+ T+ T+ T+ T− T−

1 8.0 T+ T+ T+ T+ T+ T+ T−

Table 3: An Illustrative Data Sample with Cutoff Values

are sorted in ascending order from left to right, and T+/T−s are determined by comparing the observed test
value and each cutoff value under the assumption aforementioned. There are four different decision rules,
and users are allowed to make one of them in the same procedure:

1. Larger or higher test result indicates more positive test, and the classification includes the cutoff value
for positive classification (T+ if t ≥ c, and T−, otherwise).

2. Larger or higher test result indicates more positive test, and the classification excludes the cutoff value
for positive classification (T+ if t > c, and T−, otherwise).

3. Smaller or lower test result indicates more positive test, and the classification includes the cutoff value
for positive classification (T+ if t ≤ c, and T−, otherwise).

4. Smaller or lower test result indicates more positive test, and the classification excludes the cutoff value
for positive classification (T+ if t < c, and T−, otherwise).

Based on the test results in Table 3, we can define true positive (TP), false negative (FN), true negative
(TN), and false positive (FP), and convert them into the classification results summarized by Table 4. The

Data Sample with Classification Results

stateVar (D) testVar (T ) c = 0.0 c = 1.5 c = 2.5 c = 4.0 c = 5.5 c = 7.0 c = 9.0

0 1.0 FP TN TN TN TN TN TN
1 2.0 TP TP FN FN FN FN FN
0 3.0 FP FP FP TN TN TN TN
0 3.0 FP FP FP TN TN TN TN
1 3.0 TP TP TP FN FN FN FN
0 5.0 FP FP FP FP TN TN TN
1 5.0 TP TP TP TP FN FN FN
0 6.0 FP FP FP FP FP TN TN
0 6.0 TP TP TP TP TP FN FN
1 8.0 TP TP TP TP TP TP FN

Table 4: An Illustrative Data Sample with Classification Results

definitions are as follows:

TP: For a certain cutoff value c, TP is assigned if a cell is T+ given a positive trait status when D = 1.

FN: For a certain cutoff value c, FN is assigned if a cell is T− given a positive trait status when D = 1.

TN: For a certain cutoff value c, TN is assigned if a cell is T− given a negative trait status when D = 0.

FP: For a certain cutoff value c, FP is assigned if a cell is T+ given a negative trait status when D = 0.

Finally, we count the number of TP, FN, TN, and FP for each cutoff value c in Table 5, and further
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Classification Counts

c = 0.0 c = 1.5 c = 2.5 c = 4.0 c = 5.5 c = 7.0 c = 9.0

Number of TP 5 5 4 3 2 1 0
Number of FN 0 0 1 2 3 4 5
Number of TN 0 1 1 3 4 5 5
Number of FP 5 4 4 2 1 0 0
Sensitivity 1 1 0.8 0.6 0.4 0.2 0
Specificity 0 0.2 0.2 0.6 0.8 1 1
1-Specificity 1 0.8 0.8 0.4 0.2 0 0
Recall 1 1 0.8 0.6 0.4 0.2 0
Precision 0.5 0.56 0.5 0.6 0.67 1.0 NaN

Table 5: Summary of Classification Counts

calculate Sensitivity and Specificity. Note that Sensitivity is defined by

Sensitivity =
Number of TP

Number of TP + Number of FN
, (1)

and Specificity is defined by

Specificity =
Number of TN

Number of TN + Number of FP
. (2)

The same procedure can be repeated to calculate Sensitivity and Specificity of the group defined by G = g2.

Identify and Handle Potential Ties

The ROC curves are generated by plotting Sensitivity values on y-axis versus (1-Specificity) values on x -
axis. For the data with no tie between the D = 1 and D = 0 group, two adjacent points are connected
with horizontal and vertical lines in a unique manner to give a “staircase” plot. If there are ties within the
D = 1 or D = 0 group, two adjacent points can be connected by either a vertical or a horizontal line, and
the distance between the them is simply multiplied by the number of ties.

If there are ties between the D = 1 and D = 0 group, both of Sensitivity and (1-Specificity) values
will change simultaneously if c changes. Although the connection of two adjacent points is not unique, we
simply use a straight diagonal line segment to connect them to represent the average of the minimal path
(horizontal first, and then vertical) and the maximal path (vertical first, and then horizontal). To identify
a tie between the actual positive and negative state within a group for a specific variable, we may seek for
a pair of data observations sharing the same values for the test variable T , but varying the values for the
state variable D. By examining Table 2, we can find out that there are three ties between the D = 1 and
D = 0 group at T = 3.0, T = 5.0, and T = 6.0, respectively. These ties result in the simultaneous changes
in both Sensitivity and (1-Specificity) shown in Table 5 between c = 2.5 and c = 4.0, c = 4.0 and c = 5.5,
and c = 5.5 and c = 7.0. A flag needs to be assigned to the test variable(s) with any ties between the D = 1
and D = 0 group.

Estimate Precision and Recall

We let nk− and nk+ denote, for a specific variable with G = gk, the observed sample size of D = 0 and
D = 1, respectively. In Table 3, for instance, n1− = n1+ = 5. Still considering Table 5, besides Sensitivity
and Specificity, we can also calculate Recall and Precision. Recall is defined by

Recall =
Number of TP

Number of TP + Number of FN
, (3)

which is exactly the same as Sensitivity defined by Equation (1). Precision is defined by

Precision =
Number of TP

Number of TP + Number of FP
. (4)
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The same procedure can be repeated to calculate Recall and Precision of the group defined by G = g2. Note
that Precision is not defined when Number of TP = Number of FP = 0, which occurs for the first point in
Table 5 when c = 0.9. One strategy is to estimate the first point from the second point. Considering the
second point, if its Number of TP 6= 0, we assign Precision of the second point to the first point, which is
equal to drawing a horizontal line from the second point to the y-axis. If it occurs that Number of TP = 0
also for the second point, it is not necessary to estimate the first point since it is (0, 0).

In PR space, unlike a ROC curve, interpolation is not made by simply drawing a straight line connecting
two adjacent points due to the factor that the Precision does not necessarily change linearly as Recall
varies. A simple linear interpolation may mistakenly yield an overly-optimistic estimate of a PR curve
[Davis and Goadrich, 2006]. Here we discuss a method proposed by [Goadrich et al., 2004] to approximate
the interpolation between two adjacent points in a PR curve. Suppose there are two adjacent points A and
B, whose cutoff values, number of TP, FN, TN, and FP, recall and precision are summarized in Table 6.
Without loss of generality, we assume TPB > TPA. If TPB − TPA > 1 and Prec(A) 6= Prec(B), the proper

Points A and B in PR Space

cA cB

Number of TP TPA TPB

Number of FN FNA FNB

Number of TN TNA TNB

Number of FP FPA FPB

Recall Recall(A) Recall(B)
Precision Prec(A) Prec(B)

Table 6: Classfication Counts of Points A and B

interpolation of the intermediate PR pairs will be estimated byTPA + δ

n1+
,

TPA + δ

TPA + δ + FPA +
FPB − FPA

TPB − TPA
δ

 , (5a)

where δ is all the integers such that 1 ≤ δ ≤ TPB − TPA − 1. Note that if TPB − TPA ≤ 1 or Prec(A) =
Prec(B), no interpolation is needed. The same procedure can be repeated to calculate Precision and Recall
of the group defined by G = g2.

Note that Equation (5a) is a stepwise interpolation along TP. We also introduce an alternative way, and
allow users to interpolate two adjacent points along FP [Keilwagen et al., 2014]. Still considering Table 6, if
FPB − FPA > 1 and Prec(A) 6= Prec(B), we interpolate the intermediate PR pairs by computingTPA + δ

n1+
,

TPA + δ

TPA + δ + FPA +
TPB − TPA

FPB − FPA
δ

 , (5b)

where δ is all the integers such that 1 ≤ δ ≤ FPB − FPA − 1. Note that if FPB − FPA ≤ 1 or Prec(A) =
Prec(B), no interpolation is needed. The same procedure can be repeated to calculate Precision and Recall
of the group defined by G = g2.

The PR curves are created by plotting Precision values on y-axis versus Recall values on x -axis. The
coordinate values calculated in Table 5 are plotted together with the the proper interpolation of the inter-
mediate if applicable. Adjacent points are connected with straight lines. The plot range is [0, 1] for both x -
and y-axis. Note that for a point with Precision equal to NaN, this point is omitted, and will not be plotted.

Compute W when a Larger or Higher Test Result Indicates More Positive Test

The nonparametric statistic W is commonly used to estimate ω. For the independent-group design, it is
computed by using two different portions of data. Here we discuss the algorithms to compute W1 by assuming
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that a larger or higher test result indicates more positive test (an option set by default). For all the records
with G = g1, we first sort the data by the state variable D, and then the test variable T , both in ascending
order. For instance, suppose there are 10 records belonging to the group defined by G = g1, and a sorted
piece of data may look like Table 7.

Data Sample Sorted by D and T

stateVar (D) testVar (T ) groupVar (G)

0 1.0 g1
0 3.0 g1
0 3.0 g1
0 5.0 g1
0 6.0 g1
1 2.0 g1
1 3.0 g1
1 5.0 g1
1 6.0 g1
1 8.0 g1

Table 7: An Illustrative Data Sample with Records Sorted by D and T

We can further summarize these 10 records by using Table 8, which contains four rows and the columns of
T = t. The columns are sorted based on t in ascending order from left to right. Particularly, we let (r)t denote

Data Sample with Test Results

T = 1.0 T = 2.0 T = 3.0 T = 5.0 T = 6.0 T = 8.0

(1) Records count with D = 0 and T = t 1 0 2 1 1 0
(2) Records count with D = 1 and T > t 5 4 3 2 1 0
(3) Records count with D = 1 and T = t 0 1 1 1 1 1
(4) Records count with D = 0 and T < t 0 1 1 3 4 5

Table 8: An Illustrative Data Sample with Test Results

the value on the r-th row and the column of T = t, where r ∈ {1, 2, 3, 4} and t ∈ {1.0, 2.0, 3.0, 5.0, 6.0, 8.0}.
Thus, we can estimate W1 based on Table 8 by summing over all T = t

W1 =
1

n1−n1+

∑
T=t

[
(1)t × (2)t +

(1)t × (3)t
2

]
=

1

5× 5

[(
1× 5 +

1× 0

2

)
+

(
0× 4 +

0× 1

2

)
+ · · ·+

(
0× 0 +

0× 1

2

)]
= 0.64 . (6)

W2 can be computed analogously by reconstructing Tables 7 and 8 for all the records with G = g2.

Compute W’ when a Smaller or Lower Test Result Indicates More Positive Test

Note that if a smaller or lower test result indicates more positive test (an option specified by users), we let
ω′1 denote the area under the ROC curve, and it can simply be estimated by

W ′1 = 1−W1 = 1− 0.64 = 0.36 , (7)

where W1 is computed by Equation (6). ω′2 can be estimated analogously by computing W ′2 = 1−W2.
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Compute SE(W ) and SE(W’) under the Nonparametric Assumption

To compute SE(W1) under the nonparametric (distribution-free) assumption (an option set by default) when
a larger or higher test result indicates more positive test, we need to compute two additional quantities1.
Still considering Table 8, define

Q1 =
1

n1−n
2
1+

∑
T=t

(1)t

[
(2)2

t + (2)t × (3)t +
(3)2

t

3

]
=

1

5× 52

[
1×

(
52 + 5× 0 +

02

3

)
+ 0×

(
42 + 4× 1 +

12

3

)
+ · · ·+ 0×

(
02 + 0× 1 +

12

3

)]
≈ 0.467 , (8)

and

Q2 =
1

n2
1−n1+

∑
T=t

(3)t

[
(4)2

t + (4)t × (1)t +
(1)2

t

3

]
=

1

52 × 5

[
0×

(
02 + 0× 1 +

12

3

)
+ 1×

(
12 + 1× 0 +

02

3

)
+ · · ·+ 1×

(
52 + 5× 0 +

02

3

)]
≈ 0.504 . (9)

Thus,

SE(W1) =

[
W1(1−W1) + (n1+ − 1)(Q1 −W 2

1 ) + (n1− − 1)(Q2 −W 2
1 )

n−n+

]1/2

=

[
0.64(1− 0.64) + (5− 1)(0.467− 0.642) + (5− 1)(0.504− 0.642)

5× 5

]1/2

≈ 0.183 . (10)

Note that SE(W ′1) = SE(W1) if a smaller or lower test result indicates more positive test2. SE(W2) and
SE(W ′2) can be computed analogously under the nonparametric (distribution-free) assumption.

Compute SE(W ) and SE(W’) under the Bi-negative Exponential Distribution Assumption

To compute SE(W ) under the bi-negative exponential distribution assumption (an option specified by users),
we have to further assume that n1+ = n1−. In other words, the method discussed in this section only applies
to the scenario in which the number of the nonmissing observations with a positive actual state is equal to
that with a negative actual state. For the independent-group design, since we have two test variables to
compare, we require that n1+ = n1− and n2+ = n2−. If either is violated, both SE(W1) and SE(W2) will be
computed under the nonparametric assumption as previously discussed in Section .

Suppose the aforementioned assumptions are not violated for the bi-negative exponential distribution. To
compute SE(W1) when a larger or higher test result indicates more positive test, we need to define another
two additional quantities.

Q3 =
W1

2−W1
=

0.64

2− 0.64
≈ 0.471 , (11)

Q4 =
2W 2

1

1 +W1
=

2× 0.642

1 + 0.64
≈ 0.500 . (12)

1Q1 asymptotically measures the probability that two randomly chosen positive state subjects will both have a larger or
higher (more positive) test result than a randomly chosen negative state subject. Q2 asymptotically measures the probability
that one randomly chosen positive state subjects will have a larger or higher (more positive) test result than two randomly
chosen negative state subjects.

2Since W ′1 = 1 −W1, which is a random variable, the variance of W ′1 is equal to the variance of (1 −W1), which is also the
variance of W1. So is the standard deviation.
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Thus,

SE(W1) =

[
W1(1−W1) + (n1+ − 1)(Q3 −W 2

1 ) + (n1− − 1)(Q4 −W 2
1 )

n1−n1+

]1/2

=

[
0.64(1− 0.64) + (5− 1)(0.471− 0.642) + (5− 1)(0.500− 0.642)

5× 5

]1/2

≈ 0.183 . (13)

Note that SE(W ′1) = SE(W1) if a smaller or lower test result indicates more positive test. SE(W2) and
SE(W ′2) can be computed analogously under the bi-negative exponential distribution assumption.

Derive the Statistics for Each AUC under the Independent-group Design

Since Wk is asymptotically normal under the null hypothesis that ωk = 0.5, we may estimate the asymptotic
statistics independently for each ROC curve by group. When the null hypothesis is true,

SE(Wk)
∣∣
ωk=0.5

=

[
0.5(1− 0.5) + (nk+ − 1)(1/3− 0.52) + (nk− − 1)(1/3− 0.52)

nk−nk+

]1/2

, (14)

where k = 1, 2. Actually, Equation (14) is a special case of Equation (10) when W1 = 0.5 and Q1 = Q2 =
1/33. Note that (14) follows no matter what kind of distribution is assumed or which test direction is
specified, that is, SE(W ′k)

∣∣
ω′

k=0.5
= SE(Wk)

∣∣
ωk=0.5

.

When a larger or higher test result indicates more positive test, the two-sided asymptotic significance
under the null hypothesis that ωk = 0.5 versus the alternative hypothesis that ωk 6= 0.5 is

2×

[
1− CDFNORM

(∣∣∣∣∣ Wk − 0.5

SE(Wk)
∣∣
ωk=0.5

∣∣∣∣∣
)]

, (15)

where Wk is derived by Section , and SE(Wk) is estimated by Equation (14). The asymptotic 100(1− α)%
confidence interval (CI) for the null hypothesis that ωk = 0.5 is

Wk ± IDF.NORMAL
(

1− α

2
, 0, 1

)
× SE(Wk) , (16)

where 100(1− α) is specified by users. We set α = 0.05 by default.

When a smaller or lower test result indicates more positive test, Equation (15) becomes

2×

[
1− CDFNORM

(∣∣∣∣∣ W ′k − 0.5

SE(W ′k)
∣∣
ω′

k=0.5

∣∣∣∣∣
)]

, (17)

where W ′k is derived by Section , and SE(W ′k)
∣∣
W ′

k=0.5
= SE(Wk)

∣∣
Wk=0.5

. And Equation (16) becomes

W ′k ± IDF.NORMAL
(

1− α

2
, 0, 1

)
× SE(W ′k) , (18)

where 100(1− α) is specified by users. We set α = 0.05 by default.

3Under the null hypothesis that ωk = 0.5, Q1 = Q2 = 1/3. The null hypothesis implies that the distribution of the test
results of the subjects with a positive actual state is identical to that of the test results of the subjects with a negative actual
state. The mixture of the two distributions is actually identical to either one of two. Hence, Q1 may be interpreted as the
probability that, give three randomly chosen subjects from the (mixture) distribution, the subject with the smallest or lowest
test result is selected at first (or at second or third). Since the selections are independent, there are 3! = 6 ways to order
the three subjects, and there are 2 ways in which the subjects with the lowest test result comes first (second or third). Thus,
Q1 = 2/6 = 1/3. The arguments for Q2 = 1/3 is similar.
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Derive the Statistics for the Comparison of Two AUCs under the Independent-group Design

Since the two groups are assumed to be independent, an asymptotic Z-statistic can be formulated by

z =
W1 −W2√

[SE(W1)]
2

+ [SE(W2)]
2

(19)

to test the difference when a larger or higher test result indicates more positive test. Under the null hypothesis
that ω1 = ω2, Z asymptotically follows a standard normal distribution. So, the two-sided significance is

2× [1− CDFNORM (|z|)] , (20)

and the 100(1− α)% asymptotic confidence interval bounds are determined by

(W1 −W2)± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

[SE(W1)]
2

+ [SE(W2)]
2
, (21)

where 100(1− α) is specified by users. We set α = 0.05 by default.
When a smaller or lower test result indicates more positive test, the null hypothesis becomes ω′1 = ω′2.

Equation (19) becomes

z′ =
W ′1 −W ′2√

[SE(W ′1)]
2

+ [SE(W ′2)]
2
. (22)

Equation (20) becomes

2× [1− CDFNORM (|z′|)] . (23)

And Equation (21) becomes

(W ′1 −W ′2)± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

[SE(W ′1)]
2

+ [SE(W ′2)]
2
. (24)

Paired-sample Design

It is not uncommon we may want to compare two ROC curves in a paired-sample scenario that multiple test
values are measured on the same subjects associated with a state variable. In the paired-sample design, we
require two or more than two test measurements. Table 9 illustrates the sample data with the paired-sample
design containing two diagnostic test variables testVar 1 and testVar 2. For the r-th record (r = 1, 2, . . . , N),

Paired-Sample Design

subjectID stateVar testVar 1 testVar 2

1 1 x11 x12

2 1 x21 x22

3 0 y31 y32
4 0 y41 y42
5 1 x51 x52

6 0 y61 y62
...

...
...

...
N 0 yN1 yN2

Table 9: An Illustrative Data Sample with Paired-Sample Design

1/0 denotes the positive/negative trait status; xrk denotes the observed diagnostic test value associated with
a positive (1) trait status under the k-th test measurement; and yrk denotes the observed diagnostic test
value with a negative (0) trait status under the k-th test measurement. So for each test variable, there
supposed to be m observed x’s and n observed y’s, respectively.
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Compute Sensitivity and Specificity

The calculation of Sensitivity and Specificity is repeated for each test variable specified by users. The only 
difference here is that there is no grouping variable to split the observations.

Compute Precision and Recall

The calculation of Precision and Recall is repeated for each test variable specified by users. The only difference here 
is that there is no grouping variable to split the observations.

Derive the Statistics for Each AUC under the Paired-sample Design

The following presentation is based on the empirical or nonparametric methods described by [DeLong et al., 1988]. 
Note that we do not support the method based on the bi-negative exponential distribution assumption in this 
section. Before deriving the statistics, we take into account the following assumptions:

• The test variables are based on numeric-valued diagnoses, but may not be necessarily continuous.
Strings are not allowed.

• A larger or higher test result indicates more positive test. In practice, this assumption can be altered
by a user-specified option such that a smaller or lower test result indicates more positive test.

Define

ψ(X,Y ) =


0 if X < Y

0.5 if X = Y

1 if X > Y

, (25)

when a larger or higher test result indicates more positive test. The empirical estimate of ωk is

Wk =
1

mn

m∑
i=1

n∑
j=1

ψ(xik, yjk) , (26)

where k = 1, 2. To estimate the variance of Wk, define the component of Xk and Yk as

T (k)
x (xik) =

1

n

n∑
j=1

ψ(xik, yjk) and T (k)
y (yjk) =

1

m

m∑
i=1

ψ(xik, yjk) . (27)

Also define the following quantities

S(k)
x =

1

m− 1

m∑
i=1

(
T (k)
x (xik)−Wk

)2

and S(k)
y =

1

n− 1

n∑
j=1

(
T (k)
y (yjk)−Wk

)2

. (28)

Thus, the estimated variance of Wk is

V(Wk) = S(k)
x /m+ S(k)

y /n . (29)

For the scenario in which users specify that a smaller or lower test result indicates more positive test, we
let W ′k denote the estimated area under the ROC curve, and it can be simply computed by

W ′k = 1−Wk , (30)

where Wk is defined by Equation (26). The estimated variance remains the same, since

V(W ′k) = V(1−Wk) = V(Wk) , (31)

where V(Wk) is defined by Equation (29)
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Since Wk is asymptotically normal under the null hypothesis that ωk = 0.5, the two-sided asymptotic
significance under the null hypothesis versus the alternative hypothesis that ωk 6= 0.5 can be estimated by

2×

[
1− CDFNORM

(∣∣∣∣∣ Wk − 0.5√
V(Wk)

∣∣∣∣∣
)]

, (32)

where Wk is computed by Equation (26), and V(Wk) is estimated by Equation (29). The asymptotic
100(1− α)% confidence interval (CI) for the null hypothesis that ωk = 0.5 is

Wk ± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

V(Wk) , (33)

where 100(1− α) is specified by users. We set α = 0.05 by default.
When a smaller or lower test result indicates more positive test, Equation (32) becomes

2×

[
1− CDFNORM

(∣∣∣∣∣ W ′k − 0.5√
V(W ′k)

∣∣∣∣∣
)]

, (34)

where W ′k is computed by Equation (30), and V(W ′k) is estimated by Equation (31). And Equation (33)
becomes

W ′k ± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

V(W ′k) , (35)

where 100(1− α) is specified by users. We set α = 0.05 by default.

Derive the Statistics for the Comparison of Two AUCs under the Paired-sample Design

Since the two ROC curves are correlated due to the paired-sample design, we have to estimate the covariance
between W1 and W2 before constructing the test statistic to compare them. We further define

S(1,2)
x =

1

m− 1

m∑
i=1

(
T (1)
x (xi1)−W1

)(
T (2)
x (xi2)−W2

)
, (36)

and

S(2,1)
y =

1

n− 1

n∑
j=1

(
T (1)
y (yj1)−W1

)(
T (2)
y (yj2)−W2

)
. (37)

When a larger or higher test result indicates more positive test, the covariance between W1 and W2 is

C(W1,W2) = S(1,2)
x /m+ S(2,1)

y /n . (38)

An asymptotic Z-statistic can be formulated by

z =
W1 −W2√

V(W1) + V(W2)− 2C(W1,W2)
(39)

to test the difference. Under the null hypothesis that ω1 = ω2, Z asymptotically follows a standard normal
distribution. So, the two-sided significance is computed by

2× [1− CDFNORM (|z|)] , (40)

and the 100(1− α)% asymptotic confidence interval bounds are determined by

(W1 −W2)± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

V(W1) + V(W2)− 2C(W1,W2) , (41)

where 100(1− α) is specified by users. We set α = 0.05 by default.
When a smaller or lower test result indicates more positive test, the covariance remains the same between

W ′1 and W ′2, since
C(W ′1,W

′
2) = C(1−W1, 1−W2) = C(W1,W2) , (42)
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where C(W1,W2) is estimated by Equation (38). Thus, Equation (39) becomes

z′ =
W ′1 −W ′2√

V(W ′1) + V(W ′2)− 2C(W ′1,W
′
2)
. (43)

Equation (40) becomes

2× [1− CDFNORM (|z′|)] . (44)

And Equation (41) becomes

(W ′1 −W ′2)± IDF.NORMAL
(

1− α

2
, 0, 1

)
×
√

V(W ′1) + V(W ′2)− 2C(W ′1,W
′
2) . (45)

Independent-group Design

The flow of the output design is: “Case Processing Summary” table → “Area Under the ROC Curve” table
→ “Overall Model Quality” chart→ “Independent-Group Area Difference Under the ROC Curves” table→
“Coordinates of ROC Curve” table→ “Coordinates of Precision-Recall Curve” table→ “ROC Curve” chart
plotted separately for each test variable→ “Precision-Recall” chart plotted separately for each test variable.
The details about generating the tables and charts including two test variables are discussed as follows.

Case processing summary

Table 10 is required and always generated, which summarizes the number of effective positive/negative cases.
Note that groupVariableName, stateVariableName, and label value of state variable are specified by users.
The values displayed in the Valid N (listwise) column count the frequencies of positive/negative state by
group determined by the user-specified grouping variable. If there are frequency weights in the analysis, they
are in effect with the counts in the table. A noninteger frequency weight is rounded to the nearest integer.
If either ≤ 0.5 or missing, the corresponding record is counted as missing. Note that frequency weights are
only taken into account for the case processing summary table, but not for the other analyses. For a given
state variable, “positive” is defined by varvalue or ‘varvalue’ in parentheses after varName. All the other
valid state values are assumed to be “negative.” Only nonmissing values are counted in the Valid N (listwise)
column for the positive and negative state. The “Valid” row counts the total number of nonmissing records.
The “Missing” row counts the number of any missing values in the test variables for both groups. Note that
as long as one test variable has a missing value, the entire record will be counted as missing. If there are no
missing values, 0 will be displayed. The “Total” row counts the total number of records in the data sample.

Case Processing Summary

Valid N
groupVariableName stateVariableName (listwise)

group 1 Positivea 158

Negative 100

group 2 Positivea 146

Negative 69

Valid 473

Missing 1

Total 474

Larger values of the test result variable(s)

indicate stronger evidence for a positive actual state.

a. The positive actual state is label value of state variable.

Table 10: Case Processing Summary for Independent-group Design

The display of the group information in Table 10 is determined by the following rules:
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• For a string grouping variable, if it is associated with the predefined value labels, the labels will be
displayed in the table. For instance, group 1 may be “Male” versus group 2 “Female.” If there is no
value label, we will display the conditions such as “= ‘m’” versus “ = ‘f’,” where the string values are
supposed to be in single quotation marks.

• For a numeric grouping variable, depending on how users define the groups, the display may be “=
value1” versus “ = value2,” “≥ midpoint” versus “< midpoint,” or “≥ cutpoint” versus “< cutpoint.”

The display of the static text appended to Table 10 depends on the setting of the test direction. There
are two options:

• By default, if “Larger test result indicates more positive test” is selected, the static text is “Larger
values of the test result variable(s) indicate stronger evidence for a positive actual state.”

• Otherwise, if “Smaller test result indicates more positive test” is toggled by users, the static text is
“Smaller values of the test result variable(s) indicate stronger evidence for a positive actual state.”

Footnote a is always displayed, whose label value of state variable is specified by users.

Area under the ROC curve

Table 11 is required, which summarizes the information about the AUCs of two test variables by group. If
there exist any ties in either group (defined by G) between the actual states, a notice will be appended to
remind users. As long as there exists one tie for a specific test variable, the static text needs to be appended
to the table with the corresponding test variable name(s) included.

Area Under the ROC Curve

Test Result Variable(s) Group Area

testVariable 1 group 1 .827

group 2 .859

testVariable 2 group 1 .538

group 2 .651

The test result variable(s): testVariable 1, testVariable 2

has at least one tie between the positive actual state group

and the negative actual state group. Statistics may be biased.

Table 11: Area under the ROC Curve for Independent-group Design (Truncated)

Note that Table 11 is in a truncated format. In case that “Standard error and confidence interval” is
toggled by users, Table 12 will be displayed instead to include more relevant statistics. The details about
the table contents are as follows:

• Test Result Variable(s) is the test variable(s) specified by users.

• Group information is displayed in the same way as that in Table 10.

• Area is estimated by the method discussed in Section or depending on the test direction specified by
users.

• Std Error is estimated by the method discussed in Section or depending on the distribution assumption
specified by users.

• Asymptotic Significance is converted by Equation (15) or (17) depending on the test direction specified
by users.

• Asymptotic CI bounds are determined by Equation (16) or (18) depending on the test direction specified
by users.

The display of the text static in Table 12 is the same as that in Table 11. The display of footnotes
depends on the computation of SE(W ):
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Area Under the ROC Curve

Asymptotic Asymptotic 95% CI
Test Result Variable(s) Group Area Std. Errora Sig.b Lower Bound Upper Bound

testVariable 1 group 1 .827 .019 .000 .791 .864

group 2 .859 .018 .000 .824 .894

testVariable 2 group 1 .538 .027c .155 .468 .590

group 2 .651 .026c .000 .600 .703

The test result variable(s): testVariable 1, testVariable 2 has at least one tie between the positive actual state

group and the negative actual state group. Statistics may be biased.

a. Under the bi-negative exponential distribution assumption

b. Null hypothesis: true area = 0.5

c. Number of valid observations with the positive actual state is not equal to that with the negative actual state

for at least one group. Therefore, Std Error, Asymptotic Sig., and Asymptotic CI are computed under the

nonparametric distribution.

Table 12: Area under the ROC Curve for Independent-group Design (Complete)

• When users specify “Nonparametric” for the distribution assumption, SE(W ) will be estimated by the
method discussed in Section , and Footnote a will display “Under the nonparametric assumption.”
Footnote c is not appended in this case.

• When users specify “Bi-negative exponential” for the distribution assumption, SE(W ) will be estimated
by the method discussed in Section , and Footnote a will display “Under the bi-negative exponential
distribution assumption.” For any variables with either n1+ = n1− or n2+ = n2− violated, such as
testVariable 2 in Table 12, Footnote c is required, and will display “Number of valid observations with
the positive actual state is not equal to that with the negative actual state for at least one group.
Therefore, Std Error, Asymptotic Sig., and Asymptotic CI are computed under the nonparametric
distribution.”

• Footnote b is always appended.

In addition to the AUC-related statistics, there is an optional model quality specification which produces
a simple horizontal bar chart displaying the value of the lower bound of the asymptotic confidence interval
of the AUC for each variable by group in the independent-group design. Figure 1 illustrates a sketch of a
bar chart containing two test variables by group. The title of the chart is “Overall Model Quality.” The
horizontal axis represents the lower bounds of the asymptotic confidence intervals. The major ticks are from
0.00 to 1.00 with an increment by 0.10. The vertical axis represents the test variables and their group names
in parentheses wrapped in a new line. A vertical reference line (dashed) is superimposed at 0.50 to indicate
a threshold for random prediction. The bars are expressed as proportions on a scale of 0 to 1, and labeled by
the lower bounds of the asymptotic confidence intervals estimated in Table 12. By default, the labels show
a number to two decimal places. For an estimated lower bound equal to 0.00, no bar can be visualized. A
static text is displayed below the plot indicating that “A good model has value above 0.5. A value less than
0.5 indicates the model is no better than random prediction.” A notice will also be appended to the bar
chart which displays “Note: Use caution in interpreting this chart since it only reflects a general measure
of overall model quality. The model quality can be considered ‘good’ even if the correct prediction rate for
positive responses does not meet the specified minimum probability. Use the classification table to examine
correct prediction rates.”

Area difference under the ROC curve

Table 13 is required to compare and summarize the statistical inference about two AUCs under the independent-
group design. Depending on the test direction specified by users, the details about the table contents are as
follows:

• Test Result Variable(s) is the test variable(s) specified by users.

• Asymptotic z is estimated by Equation (19) or (22).



ROC Analysis Algorithms

Figure 1: Over Model Quality for Independent-group Design

• Asymptotic Significance (2-tail) is converted by Equation (20) or (23).

• AUC Difference is computed by W1 −W2 or W ′1 −W ′2, which is the numerator part of Equation (19)
or (22).

• Standard Error Difference is estimated by

√
[SE(W1)]

2
+ [SE(W2)]

2
or
√

[SE(W ′1)]
2

+ [SE(W ′2)]
2
, which

is the denominator part of Equation (19) or (22).

• Asymptotic CI bounds are determined by Equation (21) or (24).

Independent-Group Area Difference Under the ROC Curve

Asymptotic AUC Std. Error Asymptotic 95% CI
Test Result Variable(s) z Sig. (2-tail)a Difference Differenceb Lower Bound Upper Bound

testVariable 1 -2.167 .030 -.167 .077 -.319 -.016

testVariable 2 2.536 .011 .176 .074c .031 .320

a. Null hypothesis: true area difference = 0

b. Under the bi-negative exponential assumption

c. Number of valid observations with the positive actual state is not equal to that with the negative actual state

for at least one group. Therefore, Std Error Difference, Asymptotic Sig., and Asymptotic CI are computed under

the nonparametric distribution.

Table 13: Statistical Inference about the Comparison of Two Independent-group AUCs

The display of footnotes depends on the estimation method of SE(W ):

• Footnote a is always appended.

• When users specify “Nonparametric” for the distribution assumption, SE(W ) will be estimated by the
method discussed in Section , and Footnote b will display “Under the nonparametric assumption.”
Footnote c is not appended in this case.

• When users specify “Bi-negative exponential” for the distribution assumption, SE(W ) will be estimated
by the method discussed in Section , and Footnote b will display “Under the bi-negative exponential
distribution assumption.” For any variables with either n1+ = n1− or n2+ = n2− violated, such as
testVariable 2 in Table 12, Footnote c is required, and will display “Number of valid observations
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with the positive actual state is not equal to that with the negative actual state for at least one
group. Therefore, Std Error Difference, Asymptotic Sig., and Asymptotic CI are computed under the
nonparametric distribution.”

Coordinates of the ROC curve

To display the cutoff values and the information about Sensitivity and (1-Specificity), users may toggle the
option “Coordinate points of the ROC Curve.” In this case, Table 14 will be displayed. The calculation of
the cutoff values, Sensitivity, and (1-Specificity) is discussed in Section . The display of the column title
“Positive if Greater than or Equal To” depends on the settings of classification and test direction, which takes
one of the four possibilities: “Positive if Greater Than or Equal To,” “Positive if Greater Than,” “Positive
if Less Than or Equal To,” and “Positive if Less Than.” The coordinates are summarized and displayed
by group determined by the user-specified grouping variable. The display of the group information is the
same as that in Table 10. If there exist any ties in either group between the actual states, a notice will be
appended to remind users. As long as there exists one tie for a specific test variable, the static text needs
to be appended to the table with the corresponding test variable name(s) included. Footnote a is always
displayed and appended to the table.

Coordinates of the ROC Curve

Positive if
Greater Than

Test Result Variable(s) Group or Equal Toa Sensitivity 1-Specificity

testVariable 1 group 1 $8,999.00 1.000 1.000

$9,375.00 .996 .986

. . . . . . . . .

$79,981.00 .000 .000

group 2 $15,749 1.000 1.000

$15,825.00 1.000 .995

. . . . . . . . .

$135,001.00 .000 .000

testVariable 2 group 1 62.00 1.000 1.000

63.50 .996 .991

. . . . . . . . .

99.00 .000 .000

group 2 -1.00 1.000 1.000

1.00 1.000 .889

. . . . . . . . .

477.00 .000 .000

The test result variable(s): testVariable 1, testVariable 2 has at least one tie

between the positive actual state group and the negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1,

and the largest cutoff value is the maximum observed test value plus 1.

All the other cutoff values are the averages of two consecutive ordered observed

test values.

Table 14: Coordinates under the ROC Curve for Independent-group Design

Coordinates of the PR curve

To display the cutoff values and the information about Precision and Recall, users may toggle the option
“Coordinate points of the Precision-Recall Curve.” In this case, Table 15 will be displayed. The calculation
of the cutoff values, Precision, and Recall is discussed in Section . Since we choose the smallest cutoff
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value as the minimum observed test value minus 1 and the largest the maximum observed test value plus 1,
Precision may not be defined at these two points, and thus a system missing value “.” will be generated in
Table 15. The display of the column title “Positive if Greater than or Equal To” depends on the settings
of classification and test direction, which takes one of the four possibilities: “Positive if Greater Than or
Equal To,” “Positive if Greater Than,” “Positive if Less Than or Equal To,” or “Positive if Less Than.” The
coordinates are summarized and displayed by group. The display of the group information is the same as
that in Table 10. If there exist any ties in either group between the actual states, a notice will be appended
to remind users. As long as there exists one tie for a specific test variable, the static text needs to be
appended to the table with the corresponding test variable name(s) included. Footnote a is always displayed
and appended to the table.

Coordinates of the Precision-Recall Curve

Positive if
Greater Than

Test Result Variable(s) Group or Equal Toa Precision Recall

testVariable 1 group 1 $8,999.00 .544 1.000

$9,375.00 .547 .996

. . . . . . . . .

$79,981.00 . .000

group 2 $15,749 .544 1.000

$15,825.00 .545 1.000

. . . . . . . . .

$135,001.00 . .000

testVariable 2 group 1 62.00 .544 1.000

63.50 .547 .996

. . . . . . . . .

99.00 . .000

group 2 -1.00 .573 1.000

1.00 .573 1.000

. . . . . . . . .

477.00 . .000

The test result variable(s): testVariable 1, testVariable 2 has at least one tie

between the positive actual state group and the negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1,

and the largest cutoff value is the maximum observed test value plus 1.

All the other cutoff values are the averages of two consecutive ordered observed

test values.

Table 15: Coordinates under the PR Curve for Independent-group Design

ROC curve plot

“ROC Curve” is selected by default in the existing ROC procedure, which will generate a plot including all
ROC curves of the test variables. Depending on whether “With diagonal reference line” is checked or not, a
straight reference line connecting (0, 0) and (1, 1) will be superimposed onto the plot. For the independent-
group design, as long as there is a grouping variable specified, ROC curves representing different test variables
are plotted separately. On the same plot, there are only two ROC curves, plus a reference line if applicable,
representing two groups defined by G for a specific test variable. The title of the plot is “ROC Curve,” and
a subtitle “(testVariableName)” is also required to denote the test variable. The legend title is “Grouped
by (groupVariableName),” followed by the two legend lines colored differently with the category labels. The
first category is labeled either by a predefined string or by “= value2,” “< midpoint,” or “< cutpoint.” The
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second category is labeled either by a predefined string or by “= value1,” “≥ midpoint,” or “≥ cutpoint.”
If “With diagonal reference line” is toggled, the third category “Reference Line” will also be appended in a
difference color. In general, the chart looks similar to Figure 3.

PR curve plot

We will add a “Precision-Recall Curve” checkbox to the existing ROC procedure. If it is toggled, PR curves
will also be created. For the independent-group design, as long as there is a grouping variable specified, PR
curves representing different test variables are plotted separately. On the same plot, there are only two PR
curves, representing two groups defined by G for a certain test variable. The title of the plot is “Precision-
Recall Curve,” and a subtitle “(testVariableName)” is also required to denote the test variable. The legend
title is “Grouped by (groupVariableName),” followed by the two legend lines colored differently with the
category labels. The first category is labeled either by a predefined string or by “= value2,” “< midpoint,”
or “< cutpoint.” The second category is labeled either by a predefined string or by “= value1,” “≥ midpoint,”
or “≥ cutpoint.” In general, the chart looks similar to Figure 4. As mentioned in Section , Precision at the
smallest or largest cutoff may be a system missing value. When plotting the PR curve, we simply ignore the
point.

Paired-sample Design

The output of the paired-sample design is similar and compatible to that of the unpaired test design. The flow
of the output design is: “Case Processing Summary” table→ “Area Under the ROC Curve” table→ “Overall
Model Quality” chart → “Paired-Sample Area Difference Under the ROC Curves” table → “Coordinates
of ROC Curve” table → “Coordinates of Precision-Recall Curve” table → “ROC Curve” chart including
all test variables → “Precision-Recall” chart including all test variables. The details about generating the
tables and charts including three test variables are discussed as follows.

Case processing summary

Table 16 is required and always generated, which summarizes the number of effective positive/negative cases.
Actually, the design of this table is similar to the one created by the existing ROC procedure, but adds in
an additional “Total” row. The display of the static text and Foonote a appended to the table is the same
as that to Table 10 discussed in Section . If there are frequency weights in the analysis, they are in effect

Case Processing Summary

Valid N
stateVariableName (listwise)

Positivea 258

Negative 215

Missing 1

Total 474

Larger values of the test

result variable(s) indicate

stronger evidence for a

positive actual state.

a. The positive actual

state is label value of state variable.

Table 16: Case Processing Summary for Paired-sample Design

with the counts in the table.

Area under the ROC curve

Table 17 is required, which summarizes the information about AUCs by test variables. If there exist any
ties between the actual states, a footnote will be appended to remind users.
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Area Under the ROC Curve

Test Result Variable(s) Area

testVariable 1 .827

testVariable 2 .859

testVariable 3 .538

The test result variable(s): testVariable 1,

testVariable 2, testVariable 3 has at least

one tie between the positive actual state

group and the negative actual state group.

Statistics may be biased.

Table 17: Area Under the Curve for Paired-Sample Design (Truncated)

Note that Table 17 is in a truncated format. In case that “Standard error and confidence interval” is
toggled, Table 18 will be displayed instead to include more relevant statistics. Since we only support the
nonparametric-distribution method for the paired-sample design, Footnotes a and b are always displayed
and appended to the table with no variations.

Area Under the ROC Curve

Asymptotic Asymptotic 95% CI
Test Result Variable(s) Area Std. Errora Sig.b Lower Bound Upper Bound

testVariable 1 .827 .019 .000 .791 .864

testVariable 2 .859 .018 .000 .824 .894

testVariable 3 .538 .027 .155 .468 .590

The test result variable(s): testVariable 1, testVariable 2, testVariable 3 has at least one tie between

the positive actual state group, and the negative actual state group. Statistics may be biased.

a. Under the nonparametric assumption

b. Null hypothesis: true area = 0.5

Table 18: Area under the Curve for Paired-sample Design (Complete)

Depending on the test direction specified by users, the details about the table contents are as follows:

• Test Result Variable(s) is the test variable(s) specified by users.

• Area is estimated by Equation (26) or (30).

• Std Error is estimated by
√
V(Wk) or

√
V(W ′k), which is the square root of Equation (29) or (31).

• Asymptotic Significance is converted by Equation (32) or (34).

• Asymptotic CI bounds are determined by Equation (33) or (35).

The display of the text static in Table 18 is the same as that in Table 12. However, the display of
footnotes may be different. Since we only support the nonparametric distribution assumption, Footnote a
always displays “Under the nonparametric assumption.” Both Footnotes a and b are required to be appended.

In addition to the AUC-related statistics, there is an optional model quality specification which produces
a simple horizontal bar chart displaying the value of the lower bound of the asymptotic confidence interval of
the AUC for each variable in the paired-sample design. Figure 2 illustrates a sketch of a bar chart containing
three test variables. The title of the chart is “Overall Model Quality.” The horizontal axis represents the
lower bounds of the asymptotic confidence intervals. The major ticks are from 0.00 to 1.00 with an increment
by 0.10. The vertical axis represents the test variables. A vertical reference line (dashed) is superimposed at
0.50 to indicate a threshold for random prediction. The bars are expressed as proportions on a scale of 0 to
1, and labeled by the lower bounds of the asymptotic confidence intervals estimated in Table 18. By default,
the labels show a number to two decimal places. For an estimated lower bound equal to 0.00, no bar can be
visualized. A static text is displayed below the plot indicating that “A good model has value above 0.5. A
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Figure 2: Over Model Quality for Paired-group Design

value less than 0.5 indicates the model is no better than random prediction.” A notice will also be appended
to the bar chart which displays “Note: Use caution in interpreting this chart since it only reflects a general
measure of overall model quality. The model quality can be considered ‘good’ even if the correct prediction
rate for positive responses does not meet the specified minimum probability. Use the classification table to
examine correct prediction rates.”

Area difference under the ROC curve

To compare two ROC curves under the paired-sample design, Table 19 is required to summarize the inference
about the area difference under the two ROC curves for comparison. Depending on the test direction specified

Paired-Sample Area Difference Under the ROC Curves

Asymptotic AUC Std. Error Asymptotic 95% CI
Test Result Pair(s) z Sig. (2-tail)a Difference Differenceb Lower Bound Upper Bound

testVariable 1 - testVariable 2 -2.167 .030 -.167 .077 -.319 -.016

testVariable 1 - testVariable 3 2.536 .011 .176 .074 .031 .320

testVariable 2 - testVariable 3 2.738 .006 .343 .076 .194 .492

a. Null hypothesis: true area difference = 0

b. Under the nonparametric assumption

Table 19: Statistical Inference about the Comparison of Two Paired-sample AUCs

by users, the details about the table contents are as follows:

• Test Result Pair(s) include all possible pairs of the test variables specified by users.

• Asymptotic z is estimated by Equation (39) or (43).

• Asymptotic Significance (2-tail) is converted by Equation (40) or (44).

• AUC Difference is computed by W1 −W2 or W ′1 −W ′2, where W1 and W2 are computed by Equation
(26), and W ′1 and W ′2 are computed by Equation (30).

• Standard Error Difference is estimated by
√

V(W1) + V(W2)− 2C(W1,W2), which is the denominator

part of Equation (39), or
√
V(W ′1) + V(W ′2)− 2C(W ′1,W

′
2), which is the denominator part of Equation

(43).



ROC Analysis Algorithms

• Asymptotic CI bounds are determined by Equation (41) or (45).

• Both Footnotes a and b are required to be appended. Particularly, the display of Footnote b is always
“Under the nonparametric assumption.”

Coordinates of the ROC curve

To display the cutoff values and the information about Sensitivity and (1-Specificity), users may toggle the
option “Coordinate points of the ROC Curve.” In this case, Table 20 will be displayed. The calculation of
the cutoff values, Sensitivity, and (1-Specificity) is discussed in Section . The display of the column title
“Positive if Greater than or Equal To” depends on the settings of classification and test direction, which takes
one of the four possibilities: “Positive if Greater Than or Equal To,” “Positive if Greater Than,” “Positive
if Less Than or Equal To,” and “Positive if Less Than.” The coordinates are summarized and displayed for
each test variable specified by users. If there exist any ties in any test variables between the actual states, a
notice will be appended to remind users. As long as there exists one tie for a specific test variable, the static
text needs to be appended to the table with the corresponding test variable name(s) included. Footnote a
is always displayed and appended to the table.

Coordinates of the ROC Curve

Positive if
Greater Than

Test Result Variable(s) or Equal Toa Sensitivity 1-Specificity

testVariable 1 $8,999.00 1.000 1.000

$9,375.00 .996 .986

. . . . . . . . .

$79,981.00 .000 .000

testVariable 2 62.00 1.000 1.000

63.50 .996 .991

. . . . . . . . .

99.00 .000 .000

testVariable 3 -1.00 1.000 1.000

1.00 1.000 .889

. . . . . . . . .

477.00 .000 .000

The test result variable(s): testVariable 1, testVariable 2, testVariable 3

has at least one tie between the positive actual state group and the

negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1,

and the largest cutoff value is the maximum observed test value plus 1.

All the other cutoff values are the averages of two consecutive ordered

observed test values.

Table 20: Coordinates under the ROC Curve for Paired-sample Design

Coordinates of the PR curve

To display the cutoff values and the information about Precision and Recall, users may toggle the option
“Coordinate points of the Precision-Recall Curve.” In this case, Table 21 will be displayed. The calculation
of the cutoff values, Precision, and Recall is discussed in Section . Since we choose the smallest cutoff
value as the minimum observed test value minus 1 and the largest the maximum observed test value plus 1,
Precision may not be defined at these two points, and thus a system missing value “.” will be generated in
Table 21. The display of the column title “Positive if Greater than or Equal To” depends on the settings
of classification and test direction, which takes one of the four possibilities: “Positive if Greater Than or
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Equal To,” “Positive if Greater Than,” “Positive if Less Than or Equal To,” or “Positive if Less Than.” The
coordinates are summarized and displayed for each test variable specified by users. If there exist any ties in
either group between the actual states, a notice will be appended to remind users. As long as there exists
one tie for a specific test variable, the static text needs to be appended to the table with the corresponding
test variable name(s) included. Footnote a is always displayed and appended to the table.

Coordinates of the Precision-Recall Curve

Positive if
Greater Than

Test Result Variable(s) or Equal Toa Precision Recall

testVariable 1 $8,999.00 .544 1.000

$9,375.00 .547 .996

. . . . . . . . .

$79,981.00 . .000

testVariable 2 62.00 .544 1.000

63.50 .547 .996

. . . . . . . . .

99.00 . .000

testVariable 3 -1.00 .573 1.000

1.00 .573 .996

. . . . . . . . .

477.00 . .000

The test result variable(s): testVariable 1, testVariable 2, testVariable 3

has at least one tie between the positive actual state group and the

negative actual state group.

a. The smallest cutoff value is the minimum observed test value minus 1,

and the largest cutoff value is the maximum observed test value plus 1.

All the other cutoff values are the averages of two consecutive ordered

observed test values.

Table 21: Coordinates under the PR Curve for Paired-group Design

ROC curve plot

If users toggle “ROC Curve,” the existing ROC procedure will generate a plot including all ROC curves
of the test variables specified by users. Depending on whether “With diagonal reference line” is checked
or not, a straight reference line connecting (0, 0) and (1, 1) will be superimposed onto the plot. For the
paired-sample design, all the plotting features remain the same as those in the existing ROC procedure.
Figure 3 shows an illustrative example of plotting four ROC curves for the paired-group design.

PR curve plot

If users toggle “Precision-Recall Curve,” a PR plot will be created including all PR curves of the test variables
specified by users. The title of the chart is “Precision-Recall Curve.” The PR plot looks quite similar to
Figure 3 with the exception of the title, y-axis labeled by “Precision,” and x -axis labeled by “Recall.” Figure
4 shows an illustrative example of plotting four PR curves for the paired-group design.

Classifier Evaluation Metrics

An optional ”Classifier Evaluation Metrics” table will be added to the output. The table is placed right
after the ”Area Under the ROC Curve” table (if printed).

For the independent-group design, an optional Table 22 will be printed if the classifier evaluation metrics
are requested. The details about the table contents are as follows:
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Figure 3: ROC Curve Plot for Paired-group Design

Figure 4: PR Curve Plot for Paired-group Design

• Test Result Variable(s) is the test variable(s) specified by users.

• Group information is displayed in the same way as that in Table 10.

• Gini Index is estimated by Equation (.0.47).

• Max K-S and Cutoff are estimated by the method discussed in Section .

• Footnote a is required, and always displayed.

• Footnote b is required, and the display depends on the setting of the test direction. By default,
if “Larger test result indicates more positive test” is selected, the text is “In case of multiple cutoff
values associated with Max K-S, the largest one is reported.” Otherwise, if “Smaller test result indicates
more positive test” is toggled by users, the text is “In case of multiple cutoff values associated with
Max K-S, the smallest one is reported.”

For the one-sample or paired-sample design, an optional Table 23 will be printed if the classifier evaluation
metrics are requested. The details about the table contents are as follows:



ROC Analysis Algorithms

Classifier Evaluation Metrics

Gini K-S Statistics
Test Result Variable(s) Group Index Max K-Sa Cutoffb

testVariable 1 group 1 .654 .464 16

group 2 .718 .618 15

testVariable 2 group 1 .076 .032 31

group 2 .302 .295 9

a. The maximum Kolmogorov-Smirnov (K-S) metric.

b. In case of multiple cutoff values associated with Max K-S,

the largest one is reported.

Table 22: Classifier Evaluation Metrics for Independent-group Design

Classifier Evaluation Metrics

Gini K-S Statistics
Test Result Variable(s) Index Max K-Sa Cutoffb

testVariable 1 .654 .464 16

testVariable 2 .302 .295 9

testVariable 3 .302 .295 9

a. The maximum Kolmogorov-Smirnov (K-S) metric.

b. In case of multiple cutoff values associated with Max K-S,

the smallest one is reported.

Table 23: Classifier Evaluation Metrics for One-sample or Paired-sample Design

• Test Result Variable(s) is the test variable(s) specified by users.

• Gini Index is estimated by Equation (.0.46).

• Max K-S and Cutoff are estimated by the method discussed in Section .

• Footnote a is required, and always displayed.

• Footnote b is required, and the display is the same as that in Table 22.
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Per the feedback of SPSS Statistics 26 beta, we decide to include the design of the Gini index and the
Kolmogorov-Smirnov (K-S) statistic in the appendix.

Gini Index

Recall that, in the previous presentation, we have computed W (or W ′) to estimate the AUC. When it
is known a priori that a larger or higher test result indicates more positive (or negative) status, the Gini
index, denoted by GI in this document, is actually a linear function of the AUC [Lee, 1999], which can be
estimated by

GI =

{
2W − 1 when a large or higher test result indicates more positive test

2W ′ − 1 otherwise
, (.0.46)

where W ′ = 1 −W , and GI ∈ [−1, 1]. For the one-sample design and the paired-sample design discussed
in Section , Equation (.0.46) can directly be applied to each test variable. To apply Equation (.0.46) to the
independent-group design as aforementioned in Section , for each group defined by the grouping variable G,
we estimate

(GI)k =

{
2Wk − 1 when a large or higher test result indicates more positive test

2W ′k − 1 otherwise
, (.0.47)

where k = 1, 2 to index the group, and the estimation procedure is repeated for each test variable.

Kolmogorov-Smirnov (K-S) Statistic

The K-S statistic captures the dissimilarity in assessing the binary classification performance [Adeodato and Melo, 2016].
A common single-point estimator, denoted by Max K-S, is the largest difference between the true and false
positive rate at each cutoff value. Recall Table 5 in Section , for each cutoff value, we define one additional
quantity ∆KS, where

∆KS = Sensitivity− (1− Specificity) , (.0.48)

where Sensitivity and Specificity are previously defined by Equation (1) and (2), respectively. For the

Classification Counts

c = 0.0 c = 1.5 c = 2.5 c = 4.0 c = 5.5 c = 7.0 c = 9.0

Number of TP 5 5 4 3 2 1 0
Number of FN 0 0 1 2 3 4 5
Number of TN 0 1 1 3 4 5 5
Number of FP 5 4 4 2 1 0 0
Sensitivity 1 1 0.8 0.6 0.4 0.2 0
Specificity 0 0.2 0.2 0.6 0.8 1 1
1-Specificity 1 0.8 0.8 0.4 0.2 0 0
Recall 1 1 0.8 0.6 0.4 0.2 0
Precision 0.5 0.56 0.5 0.6 0.67 1.0 NaN
∆KS 0 0.2 0 0.2 0.2 0.2 0

Table 24: Summary of Classification Counts for K-S Curve

one-sample design and the paired-sample design discussed in Section , Table 24 and Equation (.0.48) can
directly be applied to each test variable. To apply Equation (.0.48) to the independent-group design as
aforementioned in Section , Table 24 has to be constructed for each group defined by the grouping variable
G. The desired Max K-S is the maximum ∆KS of all the values estimated by Equation (.0.48), depending
on the design, for each cutoff value c based on Table 24, where, for instance, Max K-S = 0.2. We may also
report the cutoff value where Max K-S is reached. If a single c is associated, we simply output it. If multiple
c’s are associated, as c = 1.5, 4.0, 5.5, 7.0 in Table 24, we output the maximum c = 7.0, when a larger or
higher test result indicates more positive test, or the minimum c = 1.5, when a smaller or lower test result
indicates more positive test.



 

 

SAMPLE Algorithms 
SAMPLE permanently draws a random sample of cases for processing in all subsequent 
procedures. 

 
Selection of a Proportion p 

For each case, a random uniform number in the range 0 to 1 is generated. If it is less than p, 
the case is included in the sample. 

 
Selection of a Sample 

(a) 
 

Select a case if its uniform (0,1) number is less than p. If selected, , and return to (a). 
 
Selection of Cases in Nonparametric Procedures 

The sampling procedure is as follows: 
 

Each time a case is encountered after the limit imposed by the size of the workspace has been 
reached, the program decides whether to include it in the sample or not at random. The probability 
that the new cases will enter the sample is equal to the number of cases that can be held in the 
workspace divided by the number of cases so far encountered. 

 
If the program decides to accept a case, it then picks at random one of the cases previously stored 
in the workspace and drops it from the analysis, replacing it with the new case.  Each case has 
the same probability of being in the sample. 

 
If case weighting is used, the nonparametric procedures can use a case more than once. For 
example, if the weight of a case is 2.3, the program will use that case twice, and may choose at 
random, with a probability of 0.3, to use it a third time. If sampling is in effect, each of these 
two or three cases is a candidate for sampling. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 

 

SEASON Algorithms 
 
 
 
Model 

 
 
Based on the multiplicative or additive model, the SEASON procedure decomposes the existing 
series into three components: trend-cycle, seasonal, and irregular. 

 

Multiplicative Model 
 

 
Additive Model 

 

 
where   is the “trend-cycle” component,   is the “seasonal” component, and   is the 
“irregular” or “random” component. 

 
The procedure for estimating the seasonal component is: 

 
(1) Smooth the series by the moving average method; the moving average series reflects the trend-cycle 

component. 
(2) Obtain the seasonal-irregular component by dividing the original series by the smoothed values 

if the model is multiplicative, or by subtracting the smoothed values from the original series if 
the model is additive. 

(3) Isolate the seasonal component from the seasonal-irregular component by computing the medial 
average (average) of the specific seasonal relatives for each unit of periods if the model is 
multiplicative (additive). 

 
 

Moving Average Series 
Based on the specified method and period p, the moving average series   for   is defined 
as follows: 

 
p is even, weight all points equally 
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p is odd 
 

 
 
Ratios or Differences (Seasonal-Irregular Component) 

Multiplicative Model 
 

SYSMIS, if       SYSMIS 
                    otherwise 

 
Additive Model 

 
SYSMIS, if       SYSMIS 

                  otherwise 
 
Seasonal Factors (Seasonal Components) 

Multiplicative Model 
 

 

where 
 

     
 

   

 
 

if is even and all points are weighted equally 
otherwise 

and the medial average of a series is the mean value of the series after the smallest and the largest 
values are excluded.  The seasonal factor is defined as 

 

 
Additive Model 

 
  is defined as the arithmetic average of the series shown above. Then 
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where 
 

 

Seasonally Adjusted Series (SAS) 
 

 
where 

 

 

Smoothed Trend-Cycle Series 
The smoothed trend-cycle series (STC) is obtained by applying a moving average on 
seasonally adjusted series (SAS). Thus, 

 

 
and for the two end points on the beginning and end of the series 

 

 
 
 
 
 
 

Irregular Component 
For 

 
 

 
 
 
 
if model is multiplicative 
if model is additive 
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Data mining problems often involve hundreds, or even thousands, of variables.  As a result, 
the majority of time and effort spent in the model-building process involves examining which 
variables to include in the model. Fitting a computationally intensive model to a set of variables 
this large may require more time than is practical. 

Predictor selection allows the variable set to be reduced in size, creating a more manageable set 
of attributes for modeling. Adding predictor selection to the analytical process has several benefits: 
 Simplifies and narrows the scope of the variables essential to building a predictive model. 
 Minimizes the computational time and memory requirements for building a predictive model 

because focus can be directed to a subset of predictors. 
 Leads to more accurate and/or more parsimonious models. 
 Reduces the time for generating scores because the predictive model is based upon only a 

subset of predictors. 
 
Screening 

This step removes variables and cases that do not provide useful information for prediction and 
issues warnings about variables that may not be useful. 

 
The following variables are removed: 
 Variables that have all missing values. 
 Variables that have all constant values. 
 Variables that represent case ID. 

 
The following cases are removed: 
 Cases that have missing target values. 
 Cases that have missing values in all its predictors. 

 
The following variables are removed based on user settings: 
 Variables that have more than m1% missing values. 
 Categorical variables that have a single category counting for more than m2% cases. 
 Continuous variables that have standard deviation < m3%. 
 Continuous variables that have a coefficient of variation |CV| < m4%. CV = standard 

deviation / mean. 
 Categorical variables that have a number of categories greater than m5% of the cases. 

Values m1, m2, m3, m4, and m5 are user-controlled parameters. 

Ranking Predictors 
This step considers one predictor at a time to see how well each predictor alone predicts the target 
variable. The predictors are ranked according to a user-specified criterion. Available criteria 
depend on the measurement levels of the target and predictor. 
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Categorical Target 

This section describes ranking of predictors for a categorical target under the following scenarios: 
 All predictors categorical 
 All predictors continuous 
 Some predictors categorical, some continuous 

 
All Categorical Predictors 

 
The following notation applies: 
Table 93-1 
Notation 
Notation Description 
X The predictor under consideration with I categories. 
Y Target variable with J categories. 
N Total number of cases. 

                                        The number of cases with X = i and Y = j. 
 

The number of cases with X = i. 
 
 

                                        The number of cases with Y = j. 
 
 

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and  may be 
different for different predictors. 

 
P Value Based on Pearson’s Chi-square 

 
Pearson’s chi-square is a test of independence between X and Y that involves the difference 
between the observed and expected frequencies. The expected cell frequencies under the null 
hypothesis of independence are estimated by                       . Under the null hypothesis, 
Pearson’s chi-square converges asymptotically to a chi-square distribution  with  degrees 
of freedom d = (I−1)(J−1). 

 
The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(  > X2), where 

 
                        . 

 
Predictors are ranked by the following rules. 

1. Sort the predictors by p value in the ascending order 

2. If ties occur, sort by chi-square in descending order. 

3. If ties still occur, sort by degree of freedom d in ascending order. 
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4. If ties still occur, sort by the data file order. 
 

P Value Based on Likelihood Ratio Chi-square 
 

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio 
between the observed and expected frequencies. The expected cell frequencies under the null 
hypothesis of independence are estimated by                    . Under the null hypothesis, the 
likelihood ratio chi-square converges asymptotically to a chi-square distribution  with degrees 
of freedom d = (I−1)(J−1). 

 
The p value based on likelihood ratio chi-square G2 is calculated by p value = Prob( > G2), where 

 
                           , with 

 

   
else. 

 

Predictors are ranked according to the same rules as those for the p value based on Pearson’s 
chi-square. 

 
Cramer’s V 

 
Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is 
defined as 

 

. 
 

Predictors are ranked by the following rules: 

1. Sort predictors by Cramer’s V in descending order. 

2. If ties occur, sort by chi-square in descending order. 

3. If ties still occur, sort by data file order. 
 

Lambda 
 

Lambda is a measure of association that reflects the proportional reduction in error when values of 
the independent variable are used to predict values of the dependent variable. A value of 1 means 
that the independent variable perfectly predicts the dependent variable. A value of 0 means that 
the independent variable is no help in predicting the dependent variable. It is computed as 

 
 

. 
 

Predictors are ranked by the following rules: 

1. Sort predictors by lambda in descending order. 

2. If ties occur, sort by I in ascending order. 

3. If ties still occur, sort by data file order. 



 

SELECTPRE
D 

 
 

 
 

All Continuous Predictors 
 

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a 
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of Y 
have the same mean as X. 

 
The following notation applies: 

Table 93-2 
Notation 

Notation Description 
                                         The number of cases with Y = j. 

                                          The sample mean of predictor X for target class Y = j. 

                                          The sample variance of predictor X for target class Y = j. 

 

 
 

 

 
 

 

The grand mean of predictor X. 
 
 
 

The above notations are based on nonmissing pairs of (X, Y). 

P Value Based on the F Statistic 

The p value based on the F statistic is calculated by p value = Prob{F(J−1, N−J)> F}, where 
 
 

, 
 
 
 

and F(J−1, N−J) is a random variable that follows an F distribution with degrees of freedom J−1 
and N−J. If the denominator for a predictor is zero, set the p value = 0 for the predictor. 

 
Predictors are ranked by the following rules: 

 
1. Sort predictors by p value in ascending order. 

 
2. If ties occur, sort by F in descending order. 

 
3. If ties still occur, sort by N in descending order. 

 
4. If ties still occur, sort by the data file order. 
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Mixed Type Predictors 

If some predictors are continuous and some are categorical, the criterion for continuous predictors 
is still the p value based on the F statistic, while the available criteria for categorical predictors are 
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio 
chi-square. These p values are comparable and therefore can be used to rank the predictors. 

 
Predictors are ranked by the following rules: 

1. Sort predictors by p value in ascending order. 

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors 
separately, then sort these two groups (categorical predictor group and continuous predictor group) 
by the data file order of their first predictors. 

 
Continuous Target 

This section describes ranking of predictors for a continuous target under the following scenarios: 
 All predictors categorical 
 All predictors continuous 
 Some predictors categorical, some continuous 

 
All Categorical Predictors 

If all predictors are categorical and the target is continuous, p values based on the F statistic are 
used. The idea is to perform a one-way ANOVA F test for the continuous target using each 
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y. 

 
The following notation applies: 
Table 93-3 
Notation 
Notation Description 
X The categorical predictor under consideration with I categories. 
Y The continuous target variable. yij represents the value of the continuous 

target for the jth case with X = i. 
The number of cases with X = i. 

                                           The sample mean of target Y in predictor category X = i. 

                                      The sample variance of target Y for predictor category X = i. 

 
                                     

 
 

The above notations are based on nonmissing pairs of (X, Y). 
 

The p value based on the F statistic is p value = Prob{F(I−1, N−I) > F}, where 
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, 
 
 
 

in which F(I−1, N−I) is a random variable that follows a F distribution with degrees of freedom 
I−1 and N−I. When the denominator of the above formula is zero for a given categorical predictor 
X, set the p value = 0 for that predictor. 

 
Predictors are ranked by the following rules: 

 
1. Sort predictors by p value in ascending order. 

 
2. If ties occur, sort by F in descending order. 

 
3. If ties still occur, sort by N in descending order. 

 
4. If ties still occur, sort by the data file order. 

 
All Continuous Predictors 

 
If all predictors are continuous and the target is continuous, the p value is based on the asymptotic 
t distribution of a transformation t on the Pearson correlation coefficient r. 

 
The following notation applies: 
Table 93-4 
Notation 
Notation Description 
X The continuous predictor under consideration. 
Y The continuous target variable. 

                       The sample mean of predictor variable X. 

                        The sample mean of target Y. 

                                     The sample variance of predictor variable X. 

                                           The sample variance of target variable Y. 

 
The above notations are based on nonmissing pairs of (X, Y). 

The Pearson correlation coefficient r is 

. 
 

The transformation t on r is given by 
 

. 
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Under the null hypothesis that the population Pearson correlation coefficient ρ = 0, the p value 
is calculated as 

if   
Prob             else. 

T is a random variable that follows a t distribution with N−2 degrees of freedom. The p value 
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If 
there is some nonlinear relationship between X and Y, the test may fail to catch it. 

 
Predictors are ranked by the following rules: 

1. Sort predictors by p value in ascending order. 

2. If ties occur in, sort by r2 in descending order. 

3. If ties still occur, sort by N in descending order. 

4. If ties still occur, sort by the data file order. 
 

Mixed Type Predictors 

If some predictors are continuous and some are categorical in the dataset, the criterion for 
continuous predictors is still based on the p value from a transformation and that for categorical 
predictors from the F statistic. 

 
Predictors are ranked by the following rules: 

1. Sort predictors by p value in ascending order. 

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors 
separately, then sort these two groups (categorical predictor group and continuous predictor group) 
by the data file order of their first predictors. 

 
Selecting Predictors 

If the length of the predictor list has not been prespecified, the following formula provides an 
automatic approach to determine the length of the list. 

 
Let L0 be the total number of predictors under study. The length of the list L may be determined by 

, 
 

where [x] is the closest integer of x. The following table illustrates the length L of the list for 
different values of the total number of predictors L0. 

 

L0 L L/L0(%) 
10 10 100.00% 
15 15 100.00% 
20 20 100.00% 
25 25 100.00% 

 
2  
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L0 L L/L0(%) 
30 30 100.00% 
40 30 75.00% 
50 30 60.00% 
60 30 50.00% 
100 30 30.00% 
500 45 9.00% 
1000 63 6.30% 
1500 77 5.13% 
2000 89 4.45% 
5000 141 2.82% 
10,000 200 2.00% 
20,000 283 1.42% 
50,000 447 0.89% 



 

 

Simulation algorithms 
Simulation in IBM® SPSS® Statistics refers to simulating input data to predictive models using 
the Monte Carlo method and evaluating the model based on the simulated data. The distribution 
of predicted target values can then be used to evaluate the likelihood of various outcomes. 

 
The algorithms described here are used by the SIMPLAN and SIMRUN commands. 

 
Simulation algorithms: create simulation plan 

Creating a simulation plan includes specifying distributions for all inputs to a predictive model 
that are to be simulated. When historical data are present, the distribution that most closely fits the 
data for each input can be determined using the algorithms described in this section. 

 

Notation   
The following notation is used throughout this section unless otherwise stated: 
Table 94-1 
Notation 
Notation Description 

Value of the input variable in the ith case of the historical data 

Frequency weight associated with the ith case of the historical data 

Total effective sample size accounting for frequency weights 

Sample mean 

                                       Sample variance 

Sample standard deviation 
 
 

Distribution fitting 

The historical data for a given input is denoted by: 

 

     
 

The total effective sample size is: 
 
 

 
 

 
 

The observed sample mean, sample variance and sample standard deviation are: 
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Parameter estimation for most distributions is based on the maximum likelihood (ML) method, 
and closed-form solutions for the parameters exist for many of the distributions. There is no 
closed-form ML solution for the distribution parameters for the following distributions: negative 
binomial, beta, gamma and Weibull. For these distributions, the Newton-Raphson method is used. 
This approach requires the following information: the log-likelihood function, the gradient vector, 
the Hessian matrix, and the initial values for the iterative Newton-Raphson process. 

 
Discrete distributions 

Distribution fitting is supported for the following discrete distributions: binomial, categorical, 
Poisson and negative binomial. 

 
Binomial distribution: parameter estimation 

The probability mass function for a random variable x with a binomial distribution is: 
 

 
where is the probability of success. The binomial distribution is used to describe 
the total number of successes in a sequence of N independent Bernoulli trials. The parameter 
estimates for the binomial distribution using the method of moments (see Johnson & Kotz (2005) 
for details) are: 

 

 
where NaN implies that the binomial distribution would not be an appropriate distribution to fit 
the data under this criterion, and where 

 

 
If  is not an integer, then the parameter estimates are: 
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where    denotes the integer part of   . 
 

Categorical distribution: parameter estimation 
 

The categorical distribution can be considered a special case of the multinomial distribution in 
which N = 1. Suppose , i = 1, 2, …, n, has the categorical distribution and its categorical values 
are denoted as 1, 2, …, J. Then an indicator variable of for category can be denoted as 

 
if 
otherwise 

 
and the corresponding probability is . Then the probability mass function for a random variable 

with the categorical distribution can be described based on and  as follows: 
 

with 
 
 

The parameter estimates for are: 
 
 

 

 
 

 
 

     
 

Poisson distribution: parameter estimation 
 

The probability mass function for a random variable with a Poisson distribution is: 
 

 

where is the rate parameter of the Poisson distribution. The parameter of the Poisson 
distribution can be estimated as: 

 

 
 

Negative binomial distribution: parameter estimation 
 

The distribution fitting component for simulation supports the parameterization of the negative 
binomial distribution that describes the distribution of the number of failures before  the 
th success. For this parameterization, the probability mass function for a random variable is: 

 
for 
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Γ' 
Γ 

 

 
 

where                    are the two distribution parameters.  There is no closed-form solution 
for the parameters r and θ, so the Newton-Raphson method with step-halving will be used. The 
method requires the following information: 

 
(1) The log likelihood function 

 

ln ln ln 
 
 

(2) The gradient (1st derivative) vector with respect to r and θ 
 

ln 
 
 

where is a digamma function, which is the derivative of the logarithm of the gamma 
function, evaluated at α. 

 
(3) The Hessian (2nd derivative) matrix with respect to r and θ (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 
where is the trigamma function, or the derivative of the digamma function. 

 
(4) The initial values of θ and r can be obtained from the closed-form estimates using the method 
of moments: 

 
 

 
 

 

Note 

 
if  
otherwise 

 

An alternative parameterization of the negative binomial distribution describes the distribution of 
the number of trials before the   th success. Although it is not supported in distribution fitting, it is 
supported in simulation when explicitly specified by the user. The probability mass function for 
this parameterization, for a random variable is: 

 
   for  

 
 

where                    are the two distribution parameters. 
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Continuous distributions 
 

Distribution fitting is supported for the following continuous distributions: triangular, uniform, 
normal, lognormal, exponential, beta, gamma and Weibull. 

 
Triangular distribution: parameter estimation 

 
The probability density function for a random variable with a triangular distribution is: 
 

 
 
such that . Parameter estimates of the triangular distribution are: 

 

 

 
 

 
Since the calculation of the mode for continuous data may be ambiguous, we transform the 
parameter estimates and use the method of moments as follows (see Kotz and Rene van Dorp 
(2004) for details): 

 

 

 
 

 
 

From the method of moments we obtain 
 

 
from which it follows that 
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Note: For very skewed data or if the actual mode equals a or b, the estimated mode, , may be 
less than a or greater than b. In this case, the adjusted mode, defined as below, is used: 

 
if 
if 

 
Uniform distribution:  parameter estimation 

The probability density function for a random variable with a uniform distribution is: 
 

 
where is the minimum and    is the maximum among the values of . Hence, the parameter 
estimates of the uniform distribution are: 

 

 

 
Normal distribution:  parameter estimation 

The probability density function for a random variable with a normal distribution is: 
 

 

Here, is the measure of centrality and is the measure of dispersion of the normal distribution. 
The parameter estimates of the normal distribution are: 

 

 

 
Lognormal distribution:  parameter estimation 

The lognormal distribution is a probability distribution where the natural logarithm of a random 
variable follows a normal distribution.  In other words, if has a lognormal distribution, 
then ln(   ) has a normal(ln( ),   ) distribution. The probability density function for a random 
variable with a lognormal distribution is: 
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Note: The form of the probability density function is the same as that used in IBM® SPSS® 
Statistics. 

 
Define  

 

Parameter estimates for the lognormal distribution are: 
 

 

 
Exponential distribution:  parameter estimation 

The probability density function for a random variable with an exponential distribution is: 
 

for     and 
 

The estimate of the parameter for the exponential distribution is: 
 

 
 

Beta distribution:  parameter estimation 

The probability density function for a random variable with a beta distribution is: 
 

 
where, 

 

 

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

ln Γ ln Γ ln Γ 
 
 

 

  
 

 
 

  
 

 

 

 

Γ Γ 
Γ 

B  α β 
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Γ' 
Γ 

 

 
 

(2) The gradient (1st derivative) vector with respect to α and β 
 

 

where is a digamma function, which is the derivative of the logarithm of the gamma 
function, evaluated at α. 

 
(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 

where is the trigamma function, or the derivative of the digamma function. 
 

(4) The initial values of α and β can be obtained from the closed-form estimates using the method 
of moments: 

 

 

 
   

 

 
 

 
Gamma distribution:  parameter estimation 

The probability density function for a random variable with a gamma distribution is: 
 

for      and 
 

If is a positive integer, then the gamma function is given by: Γ  
 

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

lnΓ 
 
 

(2) The gradient (1st derivative) vector with respect to α and β 
 

Γ 



 
 

Γ' 
Γ 

 
 
 

where 
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is a digamma function, which is the derivative of the logarithm of the gamma 

function, evaluated at α. 
 

(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 

where is the trigamma function, or the derivative of the digamma function. 
 

(4) The initial values of α and β can be obtained from the closed-form estimates using the method 
of moments: 

 

 

 

Weibull distribution: parameter estimation 
 

Distribution fitting for the Weibull distribution is restricted to the two-parameter Weibull 
distribution, whose probability density function is given by: 

 
for      and 

 
 

There is no closed-form solution for the parameters β and γ, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

 
 

(2) The gradient (1st derivative) vector with respect to β and γ 
 

ln                            
 

(3) The Hessian (2nd derivative) matrix with respect to β and γ (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 
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where 
 
 
 
 
 

 
 

 
 
 

(4) The initial values of β and γ are given by: 
 

 

 
 
Goodness of fit measures 

Goodness of fit measures are used to determine the distribution that most closely fits the 
data. For discrete distributions, the Chi-Square test is used. For continuous distributions, the 
Anderson-Darling test or the Kolmogorov-Smirnov test is used. 

 
Discrete distributions 

 
The Chi-Square goodness of fit test is used for discrete distributions (Dirk P. Kroese, 2011). The 
Chi-Square test statistic has the following form: 

 

 
 

where, 
Table 94-2 
Notation 
Notation Description 
k The number of classes, as defined in the table below for each discrete distribution 

                                 The total observed frequency for class i 
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Notation Description 
PDF(i) Probability density function of the fitted distribution. For the Poisson and negative 

binomial distributions, the density function for the last class is computed  as 
PDF                                        PDF  

Expected frequency for class i: = W*PDF(i) 

The total effective sample size 
 
 

For large W, the above statistic follows the Chi-Square distribution: 
 

 
where r = number of parameters estimated from the data. The following table provides the values 
of k and r for the various distributions. The value Max in the table is the observed maximum value. 

 
Distribution Notation k (classes) r (parameters) 
Binomial N+1 2 

Categorical 
 

  J J-1 

Poisson 
 

 Pois(x;λ) Max + 1  1 

Negative binomial 
 

   Max + 1  2 

 
This Chi-Square test is valid only if all values of        . 

The p-value for the Chi-Square test is then calculated as: 

 
 

 

   
 

where CDF of the Chi-Square distribution. 
 

Note: The p-value cannot be calculated for the Categorical distribution since the number of 
degrees of freedom is zero. 

 
Continuous distributions 

 
For continuous distributions, the Anderson-Darling test or the Kolmogorov-Smirnov test is used 
to determine goodness of fit. The calculation consists of the following steps: 

1. Transform the data to a Uniform(0,1) distribution 
 

2. Sort the transformed data to generate the Order Statistics 
 

3. Calculate the Anderson-Darling or Kolmogorov-Smirnov test statistic 
 

4. Compute the approximate p-value associated with the test statistic 
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The first two steps are common to both the Anderson-Darling and Kolmogorov-Smirnov tests. 
The original data are transformed to a Uniform(0,1) distribution using the transformation: 

 
 

 
 

where the transformation function is given in the table below for each of the supported 
distributions. 

 
Distribution Transformation F(x) 

 

 
 

 

 
 

    
 
 
 
 

 

 

 

   

 
 

    
 

 

 
 

   
 

Φ  
 

   
 

Φ  
 

  
 

 

 
  

 
  

 
 

B  α β 
 

 
 
 
 

 

Γ 

 

   
 

 

   

 

The transformed data points are sorted in ascending order to generate the Order Statistics: 
 
 

 
 

Define  to be the corresponding frequency weight for . The cumulative frequency up to and 
including is defined as: 

 
 

 

 

 
 
 

and where we define . 
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Anderson-Darling test 
 

The Anderson-Darling test statistic is given by: 
 

 
 
 

 

 
 

 

 
 

For more information, see the topic “Anderson-Darling statistic with frequency weights”. 
 

The approximate p-value for the Anderson-Darling statistic can be computed for the following 
distributions: uniform, normal, lognormal, exponential, Weibull and gamma. The p-value is not 
available for the triangular and beta distributions. 

 
Uniform distribution: p-value 

 
The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by Marsaglia (2004): 

 
   

 
where 

 

 

Normal and lognormal distributions: p-value 
 

The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by D’Agostino and Stephens (1986): 
 

 
 

where 
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Exponential distribution: p-value 

The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by D’Agostino and Stephens (1986): 
 

 
 

   
where 

 

 

Weibull distribution: p-value 

The p-value for the Anderson-Darling statistic is computed based on Table 94-3 below, provided by 
D’Agostino and Stephens (1986). First, the adjusted Anderson-Darling statistic is computed from: 

 

 
If the value of is between two probability levels (in the table), then linear interpolation is used 
to estimate the p-value. For example, if which is between                and               
,then the corresponding probabilities of   and   are p and p respectively. Then 
the p-value of is computed as 

 

 
If the value of is less than the smallest critical value in the table, then the p-value is 0.25; and 
if is greater than the largest critical value in the table, then the p-value is 0.01. 
Table 94-3 
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the Weibull 
distribution 

 

p-value 0.25 0.10 0.05 0.025 0.01 
 

    0.474 0.637 0.757 0.877 1.038 

 
Gamma distribution: p-value 

Table 94-4, which is provided by D’Agostino and Stephens (1986), is used to compute the p-value 
of the Anderson-Darling test for the gamma distribution. First, the appropriate row in the table 
is determined from the range of the parameter α. Then linear interpolation is used to compute 
the p-value, as done for the Weibull distribution. For more information, see the topic “Weibull 
distribution:  p-value”. 
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If the test statistic is less than the smallest critical value in the row, then the p-value is 0.25; and 
if the test statistic is greater than the largest critical value in the row, then the p-value is  0.005. 
Table 94-4 
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the gamma 
distribution with estimated parameter α 

 

p-value 0.25 0.10 0.05 0.025 0.01 0.005 
α  1 0.486 0.657 0.786 0.917 1.092 1.227 

α 1 8  0.473 0.637 0.759 0.883 1.048 1.173 
 

α   0.470 0.631 0.752 0.873 1.035 1.159 

 

Kolmogorov-Smirnov test 
 

The Kolmogorov-Smirnov test statistic, , is given by: 
 

 

 
Computation of the p-value is based on the modified Kolmogorov-Smirnov statistic, which is 
distribution specific. 

 
Uniform distribution: p-value 

 
The procedure proposed by Kroese (2011) is used to compute the p-value of the 
Kolmogorov-Smirnov statistic for the uniform distribution. First, the modified 
Kolmogorov-Smirnov statistic is computed as 

 

 
The corresponding p-value is computed as follows: 

1. Set k=100 

2. Define  

3. Calculate and 

4. If set k=k+1 and repeat step 2; otherwise, go to step 5. 

5. p-value 
 

Normal and lognormal distributions: p-value 
 

The modified Kolmogorov-Smirnov statistic is 
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The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 94-5 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability levels, 
then linear interpolation is used to estimate the p-value. For more information, see the topic 
“Weibull distribution:  p-value”. 

 
If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 
Table 94-5 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Normal and Lognormal distributions 
p-value 0.15 0.10 0.05 0.025 0.01 
D 0.775 0.819 0.895 0.995 1.035 

 
Exponential distribution: p-value 

The modified Kolmogorov-Smirnov statistic is 
 

 
The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 94-6 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability levels, 
then linear interpolation is used to estimate the p-value. For more information, see the topic 
“Weibull distribution:  p-value”. 

 
If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 
Table 94-6 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Exponential distribution 
p-value 0.15 0.10 0.05 0.025 0.01 
D 0.926 0.995 1.094 1.184 1.298 

 
Weibull distribution: p-value 

The modified Kolmogorov-Smirnov statistic is 
 

 
The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 94-7 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability levels, 
then linear interpolation is used to estimate the p-value. For more information, see the topic 
“Weibull distribution:  p-value”. 
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If D is less than the smallest critical value in the table, then the p-value is 0.10; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 

Table 94-7 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Weibull distribution 

 

p-value 0.10 0.05 0.025 0.01 
D 1.372 1.477 1.557 1.671 

 
 

Gamma distribution: p-value 
 

The modified Kolmogorov-Smirnov statistic is 
 

 
 

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 94-8 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability levels, 
then linear interpolation is used to estimate the p-value. For more information, see the topic 
“Weibull distribution:  p-value”. 

 
If D is less than the smallest critical value in the table, then the p-value is 0.25; and if D is 
greater than the largest critical value in the table, then the p-value is 0.005. 

Table 94-8 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Gamma distribution 

 

p-value 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 
D 0.74 0.780 0.800 0.858 0.928 0.990 1.069 1.13 

 
 

Determining the recommended distribution 
 

The distribution fitting module is invoked by the user, who may specify an explicit set of 
distributions to test or rely on the default set, which is determined from the measurement level 
of the input to be fit. For continuous inputs, the user specifies either the Anderson-Darling test 
(the default) or the Kolmogorov-Smirnov test for the goodness of fit measure (for ordinal and 
nominal inputs, the Chi-Square test is always used). The distribution fitting module then returns 
the values of the specified test statistic along with the calculated p-values (if available) for each of 
the tested distributions, which are then presented to the user in ascending order of the test statistic. 
The recommended distribution is the one with the minimum value of the test statistic. 

 
The above approach yields the distribution that most closely fits the data. However, if the p-value 
of the recommended distribution is less than 0.05, then the recommended distribution may not 
provide a close fit to the data. 
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Anderson-Darling statistic with frequency weights 

To obtain the expression for the Anderson-Darling statistic with frequency weights, we first give 
the expression where the frequency weight of each value is 1: 

 

 
If there is a frequency weight variable, then the corresponding four terms of the above expression 
are given by: 

 

 
 
 
 
 
 

 

 
where   and   are defined in the section on goodness of fit measures for continuous 
distributions. For more information, see the topic “Continuous distributions”. 
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Simulation algorithms: run simulation 

Simulation algorithms 

Running a simulation involves generating data for each of the simulated inputs, evaluating the 
predictive model based on the simulated data (along with values for any fixed inputs), and 
calculating metrics based on the model results. 

 
Generating correlated data 

Simulated values of input variables are generated so as to account for any correlations between 
pairs of variables. This is accomplished using the NORTA (Normal-To-Anything) method 
described by Biller and Ghosh (2006). The central idea is to transform standard multivariate 
normal variables to variables with the desired marginal distributions and Pearson correlation 
matrix. 

 
Suppose that the desired variables are ,  , with the desired Pearson correlation 
matrix Σ   , where the elements of Σ are given by . Then the NORTA algorithm is as follows: 

1. For each pair and , where , use a stochastic root finding algorithm (described in the 
following section) and the correlation  to search for an approximate correlation  of standard 
bivariate normal variables. 

2. Construct the symmetric matrix Σ   whose elements are given by , where         and       . 

3. Generate the standard multivariate normal variables with Pearson correlation matrix Σ . 

4. Transform the variables to using 
 

 
where   is the desired marginal cumulative distribution, and is the cumulative standard 
normal distribution function.  Then the correlation matrix of  will be close to the 
desired Pearson correlation matrix Σ  . 

 
Stochastic root finding algorithm 

Given a correlation , a stochastic root finding algorithm is used to find  an approximate 
correlation  such that if standard bivariate normal variables and   have the Pearson 
correlation , then after transforming and  to and  (using the transformation described 
in Step 4 of the previous section) the Pearson correlation between  and  is close to . The 
stochastic root finding algorithm is as follows: 

1. Let and  

2. Simulate N samples of standard normal variables   and  ,   and  , such that the 
Pearson correlation between   and   is LowCorr and the Pearson correlation between 

  and   is HighCorr.  The sample size N is set to 1000. 

3. Transform the variables  ,  ,   and   to the variables  ,  ,   and 
using the transformation described in Step 4 of the previous section. 



 
 

. 
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4. Compute the Pearson correlation between and   and denote it as . Similarly, compute 
the Pearson correlation between   and  and denote it as . 

5. If the desired correlation or then stop and set if or set 
 if Otherwise go to Step 6. 

6. Simulate N samples of standard bivariate normal variables   and   with a Pearson 
correlation of    . As in Steps 3 and 4, transform  and 

to and  and compute the Pearson correlation between   and , which 
will be denoted . 

7. If                          or  where ε is the tolerance level (set to 0.01), then 
stop and set .  Otherwise go to Step 8. 

8. If , set , else set and return to Step 6. 
 

Inverse CDF for binomial, Poisson and negative binomial distributions 

Use of the NORTA method for generating correlated data requires the inverse cumulative 
distribution function for each desired marginal distribution. This section describes the method for 
computing the inverse CDF for the binomial, Poisson and negative binomial distributions. Two 
parameterizations of the negative binomial distribution are supported. The first parameterization 
describes the distribution of the number of trials before the th success, whereas the second 
parameterization describes the distribution of the number of failures before the   th success. 

 
The choice of method for determining the CDF depends on the mean of the distribution. If 

, where Threshold is set to 20, the following approximate normal method will be 
used to compute the inverse CDF for the binomial distribution, the Poisson distribution and the 
second parameterization of the negative binomial distribution. 

 

 
For the first parameterization of the negative binomial distribution, the formula is as follows: 

 

 
The parameters and σ are given by: 
 

 
 
The notation  used above denotes the integer part of    .  

If then the bisection method will be used. 
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Suppose that x and z are the values of X and Z respectively, where X is a random variable with a 
binomial, Poisson or negative binomial distribution, and Z is a random variable with the standard 



 

 

. 

normal distribution.  The objective function to be used in the bisection search method is 
as follows: 
 

 
 
where and are random variables with the beta distribution and gamma 
distribution, respectively, with parameters and . 

 
The bisection method is as follows: 

1. If          then stop and set .  Otherwise go to step 2 to determine two values 
and such that 

2. If        then let and . If then let  μ and , 
where is the minimum integer such that  . 

3. Let 𝑚𝑚 = 1
2

(𝑥𝑥1 + 𝑥𝑥2). If |𝑓𝑓(𝑚𝑚)| < 𝜖𝜖 or |𝑥𝑥1 − 𝑥𝑥2 < 1 where 𝜖𝜖 is a tolerance level, which is set to 
10−6, then stop and set 𝑥𝑥 = [𝑚𝑚 + 0.5]. Otherwise go to step 4. 

4. If 𝑓𝑓(𝑚𝑚) > 0, let 𝑥𝑥2 = 𝑚𝑚, else let 𝑥𝑥1 = 𝑚𝑚 and return to step 3. 

 
Note: The inverse CDF for the first parameterization of the negative binomial distribution is 
determined by taking the inverse CDF for the second parameterization and adding the distribution 
parameter  , where is the specified number of successes. 

 
Sensitivity measures 

Sensitivity measures provide information on the relationship between the values of a target and 
the values of the simulated inputs that give rise to the target. The following sensitivity measures 
are supported (and rendered as Tornado charts in the output of the simulation): 
 Correlation. Measures the Pearson correlation between a target and a simulated input. 
 One-at-a-time measure. Measures the effect on the target of modulating a simulated input 

by plus or minus a specified number of standard deviations of the input. 
 Contribution to variance. Measures the contribution to the variance of the target from 

a simulated input. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 94-9 
Notation 
Notation Description 

Number of records of simulated data 
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Correlation measure 

 
 

 
The correlation measure is the Pearson correlation coefficient between the values of a target 
and one of its simulated predictors. The correlation measure is not supported for targets with a 
nominal measurement level or for simulated inputs with a categorical distribution. For more 
information, see the topic “Pearson Correlation”. 

 
 

One-at-a-time measure 
 

The one-at-a-time measure is the change in the target due to modulating a simulated input by plus 
or minus a specified number of standard deviations of the distribution associated with the input. 
The one-at-a-time measure is not supported for targets with an ordinal or nominal measurement 
level, or for simulated inputs with any of the following distributions: categorical, Bernoulli, 
binomial, Poisson, or negative binomial. 

 
The procedure is to modulate the values of a simulated input by the specified number of standard 
deviations and recompute the target with the modulated values, without changing the values of 
the other inputs. The mean change in the target is then taken to be the value of the one-at-a-time 
sensitivity measure for that input. 

 
For each simulated input for which the one-at-a-time measure is supported: 

 
1. Define the temporary data matrix 

 

2. Add the specified number of standard deviations of the input’s distribution to each value of 
in  . 

 
3. Calculate F 

 
4. Calculate 

 
5. Repeat Step 2, but now subtracting the specified number of standard deviations from each value of 

. Continue with Steps 3 and 4 to obtain the value of in this case. 
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Contribution to variance measure 
 

The contribution to variance measure uses the method of Sobol (2001) to calculate the total 
contribution to the variance of a target due to a simulated input. The total contribution to variance, 
as defined by Sobol, automatically includes interaction effects between the input of interest 
and the other inputs in the predictive model. 

 
The contribution to variance measure is not supported for targets with an ordinal or nominal 
measurement level, or for simulated inputs with any of the following distributions: categorical, 
Bernoulli, binomial, Poisson, or negative binomial. 

 
Let be an additional set of simulated data, in the same form as and with the same number 
of simulated records. 

 
Define the following: 

 
 
 
 
 
 
 
 
 

For each simulated input for which the contribution to variance measure is supported, calculate 
 
 
 
 
 

where: 
      denotes the set of all inputs excluding 
                 is a derived data matrix where the column associated with is taken from 

and the remaining columns (for all inputs excluding ) are taken from 
 

The total contribution to variance from is then given by 
 

 
Note: When interaction terms are present, the sum of the over all simulated inputs for which 
the contribution of variance is supported, may be greater than 1. 
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SPATIAL ASSOCIATION RULES Algorithms 
 

 
1. Introduction 

Since association rule mining (Agrawal and Srikant, 1994) has been proposed, many algorithms have 
emerged and been successfully applied to real-world applications. In recent years, because of the 
importance and necessity of analyzing geospatial data in different industries, spatial data mining 
approaches have gained lots of interests. Among the existing spatial data mining approaches, the spatial 
association rule mining proposed by Koperski and Han (1995) is one of the most typical approaches for 
spatial pattern discovery. 

 
As defined by Koperski and Han (1995), a spatial association rule is a rule that describes the implication of 
one or a set of spatial objects by another set of spatial objects in spatial databases. The spatial objects 
involved therefore can be classified into two groups: the event objects and the geo-context objects. 

 
• The event objects are the research targets of rule mining, which means that the rules discovered are 

about the spatial patterns of the event objects. 
• The geo-context objects are used to describe the patterns of the event objects. 

 
The patterns are represented by spatial relationships (e.g., topological relationships) defined between each 
pair of an event object and a geo-context object. 

 
An example of a spatial association rule, event and geo-context objects, and spatial relationships is given 
below. 

 
Example 1 
Rule: Most crime cases within census tract No. 1 are close to Freya St (street). 

 
This is a spatial association rule discovered in a spatial database containing crime cases and map elements. 
The crime cases are event objects. Census tract No. 1 and Freya St are specific geo-context objects. The 
whole set of geo-context objects may include all the census tracts, streets and roads, and other map 
elements in the database. Within and close to are spatial relationships defined between the crime cases and 
the census tract and the road. 

 
The spatial relationships can be symbolically represented by the spatial predicates of event objects. 

 
Definition 1: Spatial Predicate 
A spatial predicate can be seen as a spatial attribute of an event object. It is defined by an ordered 2-tuple 

<r, o>, where r is a spatial relationship, o is a geo-context object. 
 

By using the spatial predicates, the rule in Example 1 can be written as: 
 

<Within, Tract1>  <Close to, Freya St> (a%, l%) (1) 
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where <Within, Tract1> is the condition of the rule, and <Close to, Freya St> is the prediction of the rule, 
both of which are spatial predicates. In parenthesis, a% denotes condition support, implying how many 
crime cases (in percentage) satisfy the condition of the rule, i.e., <Within, Tract1>. Symbol l% denotes the 
rule lift, implying the ratio of confidence for the rule (the probability that the prediction is true given that 
the condition is true) to the prior probability of having the prediction of the rule. Therefore, lift measures 
the gain in prediction accuracy by using the rule. Rules without sufficiently large a% and l% could not be 
regarded as significant. Besides condition support and lift, there are other statistics controlling the rule 
generation, which will be explained in details in section 2.5. 

 
A spatial association rule describes the spatial distribution pattern of a set of event objects by their spatial 
relationships with the geo-context objects. However, as analyzed by Dong et al. (2012b), existing spatial 
association rule mining approaches have a major limitation that they cannot effectively involve all available 
non-spatial information of the spatial objects. As a result, many interesting rules expressing richer 
information (e.g., the combinations of spatial and non-spatial information) cannot be found even if non- 
spatial information that could be useful for rule discovery is available. 

 
This document describes the Generalized Spatial Association Rule (GSAR) mining algorithm, which 
remedies this significant shortcoming. GSAR is capable of exploiting all available information of the 
spatial objects, including spatial and non-spatial information. 

 
 

2. Generalized Spatial Association Rule (GSAR) 
GSAR combines and extends the merits of the traditional spatial association rule (Koperski and Han, 1995) 
and the generalized association rule (Srikant and Agrawal, 1995, Han and Fu, 1995) so that much more 
information can be involved in analysis than ever before. 

 
The overall flow of the Generalized Spatial Association Rule (GSAR) mining algorithm includes the 
following steps. 

Step 1: User specifies event objects and geo-context objects, as well as spatial predicates and criteria for 
mining association rules. 

Step 2: Compute spatial relationships between event objects and geo-context objects, and construct spatial 
predicate transaction table. 

Step 3: Involve non-spatial attributes of event objects, if provided. 

Step 4: Involve non-spatial attributes of geo-context objects, if provided. 

Step 5: Rule mining, and the output will be GSAR. 

Each of the steps is described in the following subsections. We use the crime analysis in Example 1 as a 
sample scenario to explain each step. 

 
 

2.1. Initialization 
First, the user needs to specify which spatial objects in the inputs are event objects, and which are geo- 
context objects. Suppose we are given a set of crime history, where each crime case has latitude and 
longitude coordinates, and multiple map layers are available. To analyze the crime patterns using the map 
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layers, a user can specify the crime cases as event objects, and all the census tracts (may appear as polygons 
in the database), streets and roads (may appear as polylines) as geo-context objects. Usually, some 
attributes of all these spatial objects are also available (e.g., the type of crime, the population density of 
census tracts, etc.). Such information is important for discovering interesting patterns. Typically, an 
attribute table is associated with each layer of spatial objects. 

 
 
2.2. Construction of Spatial Predicate Transaction Table 

To mine spatial association rules, a spatial predicate transaction table of event objects needs to be 
constructed. Each row of the transaction table contains the spatial predicates of one event object. Let us 
consider the crime analysis scenario in Example 1. A sample spatial predicate transaction table of the crime 
cases is given in Table 1, where the ID column represents crime case identifier. The “close to” relationship 
can be defined by a condition such as a distance less than 500 feet. The spatial relationships “within” and 
“close to” used here are two typical topological relationships. Other types of spatial relationships, such as 
directional relationships, can also be used. 

 
 

Table 1: A Sample Spatial Predicate Transaction Table 
 

ID Spatial Predicates 

1 <Within, Tract1>, <Close to, Freya St>, <Close to, Wellesley Av> 

2 <Within, Tract2> 

3 <Within, Tract1>, <Close to, Freya St> 

 
 

By treating spatial predicates as items1, a traditional association rule mining algorithm, such as Apriori, can 
be applied to the spatial predicate transaction table, producing spatial patterns of crimes as rules. 
Nonetheless, the spatial predicates only express the spatial attributes of event objects. Non-spatial attributes 
of reference and geo-context objects, which can also be useful for finding interesting rules, are not included 
in the transaction table. In fact, involving non-spatial attributes of event objects is straightforward, which is 
done in the next step. 

 
 
2.3. Involving Non-Spatial Attributes of Event objects 

In some cases where non-spatial attributes of event objects are not available, or the user does not want to 
involve them in analysis, this step can be omitted. Otherwise, the information can be involved by 
expanding the transaction table by joining available non-spatial attributes2 of event objects by their unique 

 
 
 
 

1 Items can be flag-type conditions that indicate the presence or absence of a particular thing in a specific 
transaction or simply categories of categorical variables. 
2 The non-spatial information is either categorical, or discretized according to user specified cutpoints, or 
discretized automatically through equal width binning. 
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identifiers. Suppose each crime case has two non-spatial attributes, crime type and day of week on which it 
was reported. After joining, the resulting expanded transaction table will look like Table 2. 

 
 

Table 2: Spatial Predicate Transaction Table Expanded from Table 1 
 

ID Non-spatial Attributes Spatial Predicates 

1 Drugs, Tuesday <Within, Tract1>, <Close to, Freya St>, <Close to, Wellesley Av> 

2 Robbery, Friday <Within, Tract2> 

3 Vehicle Theft, Monday <Within, Tract1>, <Close to, Freya St> 

 
 
2.4. Involving Non-Spatial Attributes of Geo-Context Objects 

Available non-spatial attributes of geo-context objects are also important for finding interesting patterns. 
However, if such non-spatial attributes are involved (as above) and a traditional association rule mining 
algorithm is applied, a large number of redundant patterns that provide nothing interesting can be 
generated. For instance, suppose Freya St has a non-spatial attribute Load=Heavy. If we simply append this 
attribute to Table 2, treat it as a usual item, and run Apriori, the following itemset3 of length two can be 
found as frequent: 

 
{<Close to, Freya St>,  <Close to, Load=Heavy>} 

 
This itemset correlates Freya St with its attribute Load=Heavy. Nonetheless, it provides nothing new to the 
known information and therefore is redundant. Any rule generated from it thus is also meaningless. Ideally, 
such patterns should be prevented from pattern generation. However, traditional association rule mining 
treats items equally and independently. Therefore, in the above case, Freya St and Load=Heavy cannot be 
prevented from appearing within the same itemset or rule. 

 
GSAR supports user-specified pairs of fields to exclude, so that results can be more relevant and 
interesting. After removing those pairs, generalized spatial predicates are inferred from spatial predicates. 
For example, as given in table 3, <Within, POPDEN=Low> and <Within, RMF=Avg> are generalized 
spatial predicates of <Within, Tract1>, and <Close to, Road> is a generalized spatial predicate of <Close to, 
Freya St>. We can find that a non-spatial attribute (or a concept) of a geo-context object can only appear in 
a generalized spatial predicate by replacing the corresponding geo-context object. 

 
Table 3: Transaction Table Further Expanded from Table 2 with Generalized Spatial Predicates 

 
ID Non-spatial Attributes Spatial Predicates Generalized Spatial Predicates 

1 Drugs, Tuesday <Within, Tract1>, <Close to, Freya St>, 
<Close to, Wellesley Av> 

<Within, POPDEN=Low>, <Within, RMF=Avg>, 
<Close to, Road> 

2 Robbery, Friday <Within, Tract2> <Within, POPDEN=VeryHigh>, <Within, RMF=Avg> 

3 Vehicle Theft, Monday <Within, Tract1>, <Close to, Freya St> <Within, POPDEN=Low>, <Within, RMF=Avg>, 
<Close to, Road> 

 
3 An itemset is a group of items which may or may not tend to co-occur within transactions. 
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2.5. Rule Mining 

All the above steps can be regarded as data preparation for Generalized Spatial Association Rules (GSAR) 
mining. Now we give a definition of GSAR. A Generalized Spatial Association Rule (GSAR) extends the 
traditional spatial association rule so that it can contain (1) spatial relationships, (2) non-spatial attributes of 
event objects, and (3) non-spatial attributes of geo-context objects. 

 
As can be seen, in the GSAR mining algorithm, above points (3) are expressed via the generalized spatial 
predicates. As described in previous sections, the expanded spatial predicate transaction table which 
contains non-spatial attributes of event objects (denoted by T), is further expanded with generalized spatial 
predicates and becomes T’. Taking this as input, frequent itemsets are generated from T’, and pruning is 
applied on itemsets with length two. Then rules are generated. Details are summarized in Algorithm 1. 

 
 

Algorithm 1: Finding Generalized Spatial Association Rules (GSAR) 
 

Input: An expanded spatial predicate transaction table T; user input excluded field pairs S, minimum 
condition support amin; minimum lift lmin; minimum rule support smin; minimum confidence cmin; maximum 
rule length L. 

Output: A set of rules 
 
 

// Rule mining with redundant pattern pruning 
1) Start from iteration k=1. Each item is a candidate itemset at this level. 

2) Treat all the elements in T’ as ordinary items, and scan all candidate itemsets of size k to see if there 
are any with frequency exceeding a predetermined threshold of minimum rule support smin. If yes, 
continue; otherwise, the iteration ends. 

3) Find all candidate itemsets of length k+1 (for k=1 the itemsets covered by user input excluded field 
pairs S are pruned). If such candidate itemsets are found, continue; otherwise, the iteration ends. 

4) From candidate itemsets, find frequent itemsets with support above or equal to amin. 

5) Based on the frequent itemsets, generate association rules with lift values above or equal to lmin , and 
condition support above or equal to amin , and confidence values above or equal to minimum 
confidence cmin. 

6) Increase k by one. If 𝑘𝑘 ≤ 𝐿𝐿 then go to step 2); otherwise, the iteration ends. 
 

 
 

Note that GSAR turns to simple Apriori if geo-context objects or pairs of fields to exclude are not given. 
More details of the GSAR algorithm, as well as its time complexity analysis, can be found in Dong et al. 
(2012). 

 
 
2.6. Evaluation Measures 

The different measures emphasize different aspects of the rules. 
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Name Range Comments 
Condition 
support 

[0,100%] Proportion of input transactions that contain 
the condition. 

Rule Support [0,100%] Proportion of input transactions that contain 
the entire rule: conditions, and prediction. 
This indicates what percentage of the 
prediction in the inputs can be predicted 
through the condition. 

Confidence [0,100%] Ratio of rule support to condition support. 
This is the probability of having the prediction 
in the condition population. 

Lift [1.0, infinity) Ratio of confidence for the rule to the prior 
probability of having the prediction. For 
example, if 10% of the entire population buys 
bread, then a rule that predicts whether 
people will buy bread with 20% confidence 
will have a lift of 20/10 = 2. If another rule 
tells you that people will buy bread with 11% 
confidence, then the rule has a lift of close to 
1, meaning that having the condition does not 
make a lot of difference in the probability of 
having the prediction. In general, rules with 
lift different from 1 will be more interesting 
than rules with lift close to 1. The GSAR 
component requires minimum lift to be no 
less than 1. 

Deployability [0,100%] The percentage of the transactions that 
contain the condition but do not contain the 
prediction. In product purchase terms, it 
basically means what percentage of the total 
customer base owns (or has purchased) the 
condition but has not yet purchased the 
prediction. 

 
 
 
 

3. Appendix 
 

3.1. Detection of most interesting rules 

Denote 𝑥𝑥(𝑚𝑚) as the value of rule 𝑖𝑖 (𝑖𝑖 = 1, … , I) along rule measurement dimension 𝑚𝑚 (𝑚𝑚 = 
1, … , 𝑀𝑀). The rule 𝑖𝑖 is considered “interesting” along dimension 𝑚𝑚 if 

𝑥𝑥 (𝑚𝑚)  > �̅�𝑋  (𝑚𝑚)  + 𝑇𝑇 ∗ 𝑆𝑆𝐷𝐷(𝑚𝑚) 

where 𝑇𝑇 is a constant, by default set to 3.  �̅�𝑋  (𝑚𝑚)  and 𝑆𝑆𝐷𝐷(𝑚𝑚)  is the mean and standard deviation for 
dimension 𝑚𝑚, respectively. They are computed using the following steps: 

1. Start with: 𝑊𝑊0
(𝑚𝑚) = 𝑋𝑋�0

(𝑚𝑚) = 0, 
 

2. Compute statistics below for 𝑖𝑖 = 1 to I.   (Skip to next data record when x(m)
 is missing): 
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𝐼𝐼 

i 

i 

 
3. After the last rule 𝑖𝑖 = I has been processed, return the following result 

 
�̅�𝑋  (𝑚𝑚)  = �̅�𝑋  (𝑚𝑚) 

 
 

 
The effect size of interestingness Q(m)  is evaluated by 

 

 

A rule with greater Q(m)  is more interesting. 
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SPATIAL TEMPORAL PREDICTION Algorithms 
 
 
 

1. Introduction 
1.1 Background 

Spatio-temporal statistical analysis has many applications. For example, energy management 
for buildings or facilities, performance analysis and forecasting for service branches, or 
public transport planning. In these applications, measurements such as energy usage are often 
taken over space and time. The key questions here are what factors will affect future 
observations, what can we do to effect a desired change, or to better manage the system. In 
order to address these questions, we need to develop statistical techniques which can forecast 
future values at different locations, and can explicitly model adjustable factors to perform 
what-if analyses. 

 
However, these analytical needs are not the focus of traditional spatio-temporal statistical 
research. In traditional statistical research, spatio-temporal analysis is treated just as an 
extension of spatial analysis and focuses more on looking for patterns in past data rather than 
forecasting future values. The traditional spatio-temporal research targets different 
application areas such as environmental research. There are, however, different types of 
spatio-temporal problems in which time is the key component. We therefore need to treat 
spatio-temporal analysis as a unique type of problem itself, not an extension to spatial 
analysis. Moreover, we need to explicitly model these factors to allow for what-if analysis. 
Although these kinds of problems could be addressed by traditional methods, the emphasis is 
quite different. 

 
This algorithm assumes a fixed set of spatial locations (either point location or center of an 
area) and equally spaced time stamps common across locations. It can issue predicted or 
interpolated values at locations with no response measurements (but with available 
covariates). We call our model spatio-temporal prediction (STP). 

 
The goal of the STP algorithm is to address the needs for solving the spatio-temporal 
problems. STP can generate predictions at any location within a 3D space for any future time. 
It also explicitly models the external factors so we can perform what-if analysis. 

 
1.2 Handling of missing data 
The algorithm is designed to accommodate missing values in the response variable, as well as 
in the predictors. We consider an observation at a given time point and location ‘complete’ if 
all predictors and the response are observed at that time and location. To allow for model 
fitting in spite of missing data, all of the following conditions must be met: 

 
1. At each location, observations need to be complete for at least one sequence of at least 

𝐿𝐿 + 2  consecutive time points. 

2. At each location 𝑠𝑠𝑖𝑖, for any pair of locations 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗, 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑖𝑖, observations must be 
complete at both locations simultaneously for at least two sequences of 𝐿𝐿 + 2 
consecutive time points. 
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3. Overall, at least 𝐿𝐿 sequences of at least 𝐿𝐿 + 2 consecutive time points must be 

present in the data (to allow for estimation of 𝛼𝛼). 

4. The total number of complete samples must be at least equal to  𝐷𝐷 + 𝐿𝐿 + 2, where 𝐷𝐷 
is the number of predictors, including the intercept, and 𝐿𝐿  the user-specified lag. 

5. After removing locations according to the rules above, no more than 5% of the 
remaining records should be incomplete. As an example, if after removing locations, 
𝑛𝑛 locations and 𝑚𝑚 time stamps remain, no more than 𝑛𝑛 × 𝑚𝑚 × .05 records should be 
incomplete. 

The above conditions should be verified in the following order: 

Step 1. Remove locations that do not meet condition 1. 
Step 2. Remove locations that violate condition 2 in the following order: 

(a) Let  ℐ  be the set of points that violate condition 2. 
(b) Eliminate from the data set the observation(s) that violate condition 2 for the 

greatest number of pairs. In case of a tie, remove all observations that are tied. 

(c) Update ℐ by removing any observations that now no longer violate Condition 2. 
That is, remove observation that only violated the condition 2 in a pair with the 
observations that were removed in Step 2b. 

(d) Iterate steps 2b and 2c until  ℐ  is empty. 
Step 3. If after Steps 1 and 2, conditions 3-5 are violated, the model cannot be fit. 

 

2 Model 
2.1  Notation 
The following notation is used for the model inputs: 

 
Name Symbol Type Dimensions 
Number of time stamps 𝑚𝑚 > 𝐿𝐿 integer 1 
Number of measurement locations 𝑛𝑛 ≥ 3 integer 1 
Number of prediction grid points 𝑁𝑁 integer 1 
Number of predictors (including intercept) 𝐷𝐷 integer 1 
Index of time stamps 𝑡𝑡 ∈ {1, … , 𝑚𝑚} integer 1 
Spatial coordinates 𝑠𝑠 ∈ {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}; 𝑠𝑠𝑗𝑗   = (𝑢𝑢𝑗𝑗, 𝑣𝑣𝑗𝑗, 𝑤𝑤𝑗𝑗 )′ vector 3 × 1 
Targets observed at location  𝑠𝑠  and time 𝑡𝑡 𝑌𝑌𝑡𝑡(𝑠𝑠) scalar 1 
Targets observed at location 𝑠𝑠 𝑌𝑌(𝑠𝑠) vector 𝑚𝑚 × 1 
Targets observed at time 𝑡𝑡 𝑌𝑌𝑡𝑡 vector 𝑛𝑛 × 1 
Predictors observed at location  𝑠𝑠  and time 𝑡𝑡 𝑋𝑋𝑡𝑡(𝑠𝑠) = (𝑋𝑋𝑡𝑡,1(𝑠𝑠), … , 𝑋𝑋𝑡𝑡,𝐷𝐷(𝑠𝑠))′ vector 𝐷𝐷 × 1 
Predictors observed at location 𝑠𝑠 𝑋𝑋(𝑠𝑠) = (𝑋𝑋1(𝑠𝑠), … , 𝑋𝑋𝑚𝑚(𝑠𝑠))′ matrix 𝑚𝑚 × 𝐷𝐷 
Predictors observed at time 𝑡𝑡 𝑋𝑋𝑡𝑡   =  (𝑋𝑋𝑡𝑡(𝑠𝑠1), … , 𝑋𝑋𝑡𝑡(𝑠𝑠𝑛𝑛))′ matrix 𝑛𝑛 × 𝐷𝐷 
Maximum autoregressive time lag 𝐿𝐿 > 0 integer 1 
Length of prediction steps 𝐻𝐻 > 0 integer 1 

 
Notes 

i. For a predictor that does not vary over space,  𝑋𝑋𝑡𝑡,𝑑𝑑(𝑠𝑠1) = 𝑋𝑋𝑡𝑡,𝑑𝑑(𝑠𝑠2) = ⋯ =   𝑋𝑋𝑡𝑡,𝑑𝑑(𝑠𝑠𝑛𝑛); 
ii. For a predictor that does not evolve over time,  𝑋𝑋1,𝑑𝑑(𝑠𝑠) = 𝑋𝑋2,𝑑𝑑(𝑠𝑠) = ⋯ =   𝑋𝑋𝑚𝑚,𝑑𝑑(𝑠𝑠). 
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The following notation is used for model definition and computation: 
 

Name Symbol Type Dimension 
Coefficient vector for linear model 𝜷𝜷 = (𝛽𝛽1, … , 𝛽𝛽𝐷𝐷) vector 𝐷𝐷 
Coefficient vector for AR model 𝜶𝜶 = (𝛼𝛼1, … , 𝛼𝛼𝐿𝐿) vector 𝐿𝐿 
Vector of 1’s 1 = (1, … ,1)′ vector variable 
Kronecker product ⊗ operator NA 

 

2.1 Model structure 
 

𝐷𝐷 

𝑌𝑌𝑡𝑡(𝑠𝑠) = ∑ 𝛽𝛽𝑑𝑑 𝑋𝑋𝑡𝑡,𝑑𝑑(𝑠𝑠) + 𝑍𝑍𝑡𝑡(𝑠𝑠) 
𝑑𝑑=1 

 
(1) 

where 𝑍𝑍𝑡𝑡(𝑠𝑠) is mean-zero space-time correlated random process. Users can specify whether 
an “intercept” term needs to be included in the model. The inference algorithm works with 
general “continuous” variables, and with or without intercept. 

• Autoregressive model, AR(𝐿𝐿) for time autocorrelation (Brockwell and Davis, 2002): 
𝐿𝐿 

𝑍𝑍𝑡𝑡(𝑠𝑠) = ∑ 𝛼𝛼𝑙𝑙 𝑍𝑍𝑡𝑡−𝑙𝑙(𝑠𝑠) + 𝜖𝜖𝑡𝑡(𝑠𝑠) 
𝑙𝑙=1 

 
(2) 

Note that users need to specify the maximum AR lag 𝐿𝐿. 

Let 𝜖𝜖𝑡𝑡 = (𝜖𝜖𝑡𝑡(𝑠𝑠1), … , 𝜖𝜖𝑡𝑡(𝑠𝑠𝑛𝑛))′ be the AR residual vector at time 𝑡𝑡. Since the time 
autocorrelation effect has already been removed, 𝜖𝜖𝐿𝐿+1, … , 𝜖𝜖𝑚𝑚   are independent. 

• Parametric or nonparametric covariance model for spatial dependence: 
𝑉𝑉(𝜖𝜖𝑡𝑡) = Σ𝑆𝑆, 𝑡𝑡 = 𝐿𝐿 + 1, … , 𝑚𝑚 (3) 

where  Σ𝑆𝑆   = {𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗)}𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛   is a  𝑛𝑛 × 𝑛𝑛  covariance matrix of spatial covariance functions 
𝑅𝑅(𝑠𝑠, 𝑠𝑠′) = 𝐶𝐶𝐶𝐶𝑣𝑣(𝑌𝑌𝑡𝑡(𝑠𝑠), 𝑌𝑌𝑡𝑡(𝑠𝑠′)) at observed locations. Two alternative ways of modeling the 
spatial covariance function 𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗) are implemented - a variogram-based parametric model 
(Cressie, 1993) and a Empirical Orthogonal Functions (EOF)-based nonparametric model 
(Cohen and Johnes, 1969; Creutin and Obled, 1982). 

Note that users can specify which covariance model to be used. 
• If a “parametric model” is chosen, the algorithm will automatically test for the 

goodness-of-fit. If the test suggests a parametric model is not adequate, the 
algorithm switch to EOF model fitting and issue prediction based on EOF model. 

• If a EOF model is chosen, the switching test part will be skipped, and both 
model fitting and prediction will follow EOF-based algorithm. 

Under this model decomposition, the covariance structure for the spatio-temporal process 
𝑌𝑌 = (𝑌𝑌𝐿𝐿+1

′ , … , 𝑌𝑌𝑚𝑚
′ )′ is of separable form 

 
 

where Σ𝑇𝑇 = {𝛾𝛾𝑇𝑇(𝑡𝑡 − 𝑡𝑡′)}𝑡𝑡=𝐿𝐿+1,…,𝑚𝑚;𝑡𝑡′=𝐿𝐿+1,…,𝑚𝑚 is the (𝑚𝑚 − 𝐿𝐿) × (𝑚𝑚 − 𝐿𝐿) AR(L) covariance 
matrix with the autocovariance function. 

3 Estimation algorithm 
This section provides details on the multi-step procedure to fit the STP model (see Figure 1) 
when the user specifies a “parametric model”. If an “empirical model” is specified, the 

𝑉𝑉(𝑌𝑌) = 𝑉𝑉(𝑍𝑍) = Σ = Σ𝑇𝑇  ⊗  Σ𝑆𝑆 (4) 
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switching test part will be skipped, and both model fitting and prediction follows EOF-based 
algorithm. 

Figure 1. Flowchart of algorithm steps for model fitting when a “parametric model” is specified. 

Step 1: Fit regression model by ordinary least squares (OLS) regression using only 
observations that have no missing values (see Section 3.1). 

We first ignore the spatio-temporal dependence in the data and simply estimate the 
fixed regression part by OLS and obtain the regression residuals 𝑍𝑍𝑡𝑡(𝑠𝑠). 

Step 2:  Fit autoregressive model using only data without missing values (see Section 3.2). 

Ignoring spatial dependence in OLS residuals 𝑍𝑍𝑡𝑡(𝑠𝑠), we estimate autoregressive 
coefficients by fitting the regression model (2) and obtain the AR residuals 𝜖𝜖𝑡𝑡(𝑠𝑠). 

Step 3: Fit spatial covariance model and test for goodness of fit on data without missing 
values (see Section 3.3). 

We fit a parametric spatial covariance model. We perform two Goodness of Fit tests 
to decide whether to continue with the parametric covariance model or the empirical 
covariance matrix. 

Step 4:  Refit autoregressive model using augmented data (see Section 3.4). 
 

We refit autoregressive model accounting for spatial dependence by generalized least 
squares (GLS) and obtain improved AR coefficients 𝛼𝛼. 
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𝑡𝑡= 

Step 5:  Refit Regression model using augmented data (see Section 3.5). 

We obtain improved regression coefficients 𝛽𝛽 by GLS to account for spatio- 
temporal correlation in the data. 

Step 6:  Save the results for use in output and prediction. 
 
3.1 Fit regression model 
We first ignore the spatio-temporal dependence in the data and simply estimate the fixed 

regression part by OLS. Assume that out of 𝑛𝑛𝑚𝑚 location-time combinations, 𝑞𝑞 samples have 
missing values in either  𝑋𝑋  or  𝑌𝑌. Let  𝑌𝑌 = (𝑌𝑌′, … , 𝑌𝑌′ )′, a  (𝑛𝑛𝑚𝑚 − 𝑞𝑞) × 1-vector and 𝑋𝑋 = 
(𝑋𝑋1′ , … , 𝑋𝑋𝑚𝑚 ′ )′, a (𝑚𝑚𝑛𝑛 − 𝑞𝑞) × 𝐷𝐷 matrix, such that 𝑋𝑋 and 𝑌𝑌 contain only complete 
observations, i.e., observations without any missing values. The OLS estimates of the regression 
coefficients are: 
 

 
3.2 Fit autoregressive model 
We estimate autoregressive coefficients by OLS assuming no spatial correlation and AR(L) 
as model for time-series autocorrelation, 

 

�̂�𝑍 𝑡𝑡  = 𝛼𝛼1�̂�𝑍 𝑡𝑡−1  + ⋯ + 𝛼𝛼𝐿𝐿�̂�𝑍 𝑡𝑡−𝐿𝐿  + 𝝐𝝐𝑡𝑡, (7) 

where  �̂�𝑍 𝑡𝑡   is a  𝑛𝑛𝑡𝑡  × 1  vector. Note that due to the existence of missing values, the number 
of locations 𝑛𝑛𝑡𝑡 varies among different time points. Moreover, for each time points t, only 
locations with no missing values at 𝐿𝐿 + 1 consecutive time points, i.e.,  (𝑡𝑡, 𝑡𝑡 − 1, … , 𝑡𝑡 − 𝐿𝐿) 
can be used for model fitting, therefore,  ∑𝑚𝑚 

𝐿𝐿+1 𝑛𝑛𝑡𝑡  ≤ [𝑛𝑛(𝑚𝑚 − 𝐿𝐿) − 𝑞𝑞]. 
Step 1: Construct  𝑛𝑛𝑡𝑡  × 𝐿𝐿  time lag matrix 

 
 

Step 3: Compute the de-autocorrelated AR(L) residuals 
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3.3 Fit model and check goodness of fit for spatial covariance 
structure 

We explicitly model the spatial covariance structure among locations, rather than using 
variogram estimation. 

Under the assumption of the model (stationarity, AR-relationship removed), the mean of the 
residuals is 0 at all locations. We therefore estimate the unadjusted empirical covariances 𝑠𝑠𝑖𝑖𝑗𝑗 
and correlations 𝑟𝑟𝑖𝑖𝑗𝑗  assuming mean 0, i.e., 
 

 

 

where  𝑡𝑡𝑖𝑖𝑗𝑗   is the number of complete residual pairs between locations  𝑠𝑠𝑖𝑖   and  𝑠𝑠𝑗𝑗, and 𝑡𝑡 
indexes these pairs, i.e., the time points for which both  𝜖𝜖�̂�𝑡  (𝑠𝑠𝑖𝑖)  and  𝜖𝜖�̂�𝑡  (𝑗𝑗)  are non-missing. 

𝑠𝑠𝑖𝑖𝑗𝑗 
𝑟𝑟𝑖𝑖𝑗𝑗  = 

√𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗 

 
(13) 

To determine whether to model the spatial covariance structure parametrically or to use the 
nonparametric EOF model, we perform the following two tests sequentially: 

1. Fit parametric model to covariances using the parameter vector  𝝍𝝍 = (𝜎𝜎2, 𝜃𝜃, 𝜏𝜏2) 
(Cressie 1993) 

 

 

where ℎ𝑖𝑖𝑗𝑗 = ‖𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗‖2 is the Euclidean distance between locations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗. Users 
need to specify the values for the order parameter 𝑝𝑝. 
𝑝𝑝 ∈ [1, 2] is a user-defined parameter that determines the class of covariance models 
to be fit. 𝑝𝑝 = 1 corresponds to an exponential covariance model, 𝑝𝑝 = 2 results in a 
Gaussian covariance model and 𝑝𝑝 ∈ (1, 2) belongs to the powered exponential 
family. 

Next, determine if there is a significant decay over space by testing 𝐻𝐻0: − 1⁄𝜃𝜃𝑝𝑝 ≥ 0. 
If we fail to reject 𝐻𝐻0, we conclude that the decay over space is not significant, and 
EOF estimation will be used. If EOF estimation is used, there is not need to calculate 
𝜃𝜃, 𝜎𝜎 or 𝜏𝜏, as we have concluded that they are invalid descriptions of the covariance 
matrix. In fact, there may not be valid solutions for these parameters, therefore they 
should not be estimated. 

2. If the previous test rejects 𝐻𝐻0, test for homogeneity of variances among locations: if 
homogeneity of variances is rejected, EOF estimation will be used. Otherwise, the 
parametric covariance model will be used. 

 
3.3.1  Fit and test parametric model 
a)   Enforce a minimum correlation of +.01: if 𝑟𝑟𝑖𝑖𝑗𝑗  < .01, set 𝑠𝑠𝑖𝑖𝑗𝑗  = .01√𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗  and 𝑟𝑟𝑖𝑖𝑗𝑗  =  .01. 

b) Let 𝒔𝒔 be the vectorized lower triangular of the covariance matrix (excluding the diagonal, 
i.e., excluding variances), 𝒓𝒓 be the vectorized lower triangular of the correlation matrix 
(excl. diagonal), and 𝒉𝒉 the corresponding vector of pairwise distances between the 𝑛𝑛 
locations. 𝒔𝒔, 𝒓𝒓  and 𝒉𝒉  are each vectors of length  𝑛𝑛(𝑛𝑛 − 1)⁄2. 
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𝑡𝑡𝑖𝑖𝑗𝑗 

−1 

𝑖𝑖𝑗𝑗 

𝑖𝑖𝑗𝑗 

𝑛𝑛 

𝑛𝑛 𝑛𝑛 

 
Define  𝜑𝜑 = − 1⁄𝜃𝜃𝑝𝑝. Fit the linear model  ln 𝒔𝒔 = ln 𝜎𝜎2 + 𝜑𝜑𝒉𝒉𝑝𝑝   using a GLS fit: 

 
 
 
 

where𝒃𝒃 = 2𝒓𝒓2⁄(1 − 𝒓𝒓2), 𝒓𝒓2 m 1 = 
diag(𝒃𝒃), and scalar 𝑐𝑐 = 1⁄(1 + 𝟏𝟏′𝑩𝑩−1𝟏𝟏). Also, let 𝑻𝑻 = diag[√𝑡𝑡𝑘𝑘], 𝑘𝑘 = 1, … , 𝑛𝑛(𝑛𝑛 − 1)⁄2, 
where 𝑡𝑡𝑘𝑘 is the number of pairs of de-autocorrelated residuals in the calculation of the 
corresponding element 𝑟𝑟𝑘𝑘 in 𝒓𝒓, i.e., the number of observations pairs that went into 
calculating 𝑟𝑟𝑘𝑘, which may be different for each entry of the covariance matrix, depending 
on missing values. Note that  𝑡𝑡𝑘𝑘   corresponds to the vectorized lower triangular of 
[ ] 

𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 , where 𝑡𝑡𝑖𝑖𝑗𝑗  are as defined in (12). 

Let  𝜼𝜼 = (ln 𝜎𝜎2, 𝜑𝜑), the GLS estimator can be calculated as 

�̂�𝜼 = (𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨) 𝑨𝑨′𝑽𝑽−1ln 𝒔𝒔 
 

The standard error for  �̂�𝜼    will be  𝑠𝑠𝑒𝑒(𝜼𝜼�)= √diag[(𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨)−1]. 
 

Calculate the test statistic . If  𝑧𝑧1  ≥ 𝑧𝑧.05, where  𝑧𝑧.05  is the .05 quantile of the 
standard normal distribution (or critical value for selected level of significance 𝛾𝛾1), then 
all following calculations will be performed using the empirical spatial covariance matrix, 
i.e.,  Σ𝑺𝑺  = 𝑺𝑺, and the nonparametric EOF model will be used for prediction. Equivalently, 
a p-value 𝑝𝑝1 can be calculated by evaluating the standard Normal cumulative distribution 
function (CDF) at 𝑧𝑧1 (i.e., 𝑝𝑝1 = 𝑃𝑃(𝑍𝑍 < 𝑧𝑧1)). If 𝑝𝑝1 ≥ level of significance 𝛾𝛾1, then all 
following calculations will be performed using the empirical covariance matrix. 

c) If the previous test does reject 𝐻𝐻0 (i.e., we have not yet decided to continue with the 
empirical covariance matrix), continue to perform the following test: Let  𝑣𝑣  =    
(𝑠𝑠11, 𝑠𝑠22, … , 𝑠𝑠𝑛𝑛𝑛𝑛)′ be the (𝑛𝑛 × 1)-vector of location-specific variances. Calculate the 
weighted mean variance �̅�𝑣 

 
  

 

where  𝑾𝑾 =  [𝑤𝑤𝑖𝑖𝑗𝑗] =  [𝑠𝑠2 ⁄𝑡𝑡𝑖𝑖𝑗𝑗]  
𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 

is an  𝑛𝑛 × 𝑛𝑛  matrix, where  𝑡𝑡𝑖𝑖𝑗𝑗  is defined as in (12), 
and  𝑾𝑾−1  = [𝑤𝑤∗ ] . 

𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 

Calculate the test statistic  𝑧𝑧2  = (𝒗𝒗 − 𝑣𝑣̅  )′𝑾𝑾−1(𝒗𝒗 − 𝑣𝑣̅  ). If  𝑧𝑧2  ≥ 𝜒𝜒2   
−1,.95   (or critical value for 

[1 − selected level of significance 𝛾𝛾2]), all following calculations will be performed 
using the empirical spatial covariance matrix, i.e., Σ𝑺𝑺 = 𝑺𝑺, and the nonparametric EOF 
model will be used for prediction. Equivalently, one may compute a p-value 𝑝𝑝2 by 
evaluating 1 minus the  𝜒𝜒2

−1  − CDF: 𝑝𝑝2  = 𝑃𝑃(𝜒𝜒2
−1  > 𝑧𝑧2). If  𝑝𝑝2  < level of significance 𝛾𝛾2, 

then all following calculations will be performed using the empirical spatial covariance 
matrix. 

d) If the two tests in b) and c) do not indicate a switch to the EOF model, all following 
calculations will be performed using the parametric covariance model, i.e., the spatial 
covariance matrix 𝛴𝛴𝑆𝑆 is constructed according to (14). Recall that 𝜂𝜂 = (𝑙𝑙𝑛𝑛 𝜎𝜎2, − 1⁄𝜃𝜃𝑝𝑝). 

 

𝑨𝑨  = [1, 𝒉𝒉𝑝𝑝]  (15) 

𝑽𝑽−1 = 
1 

𝑻𝑻(𝑩𝑩−1 − 𝑐𝑐𝑐𝑐𝑐𝑐′)𝑻𝑻 2 
is obtained by squaring each ele 

 
 
e 

(16) 
 
nt of vector  𝒓𝒓, 𝑩𝑩− 
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𝑍𝑍 

 

3.4 Re-fit autoregressive model 
We refit the autoregressive model accounting for spatial dependence using GLS with 
augmented data: 
Step 1: Compute the Cholesky factorization  𝚺𝚺𝑆𝑆  = 𝑯𝑯𝑆𝑆𝑯𝑯′    and the inverse matrix  𝑯𝑯′ . 

𝑆𝑆 𝑺𝑺 

Step 2: Substitute 0 for missing values such that  �̂�𝒁  𝑡𝑡−𝑙𝑙𝑎𝑎𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒   is an  𝑛𝑛 × 𝐿𝐿  matrix and 
�̂�𝒁  𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒   is a vector of length  𝑛𝑛. 

Step 3: Augment predictor matrix as follows. Let  �̂�𝒁  𝑙𝑙𝑎𝑎𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒  =

 

where 𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛(𝑚𝑚 − 𝐿𝐿) × 𝑞𝑞𝑍𝑍 indicator matrix given 𝑞𝑞𝑍𝑍 the total number of rows 
with missing values in either 𝒁𝒁�∗or 𝒁𝒁�𝑙𝑙𝑙𝑙𝑙𝑙. If there is a missing value in the ith row of 
either 𝒁𝒁�∗or 𝒁𝒁�𝑙𝑙𝑙𝑙𝑙𝑙, and if this is the jth out of all 𝑞𝑞𝑍𝑍  rows that have missing values, 
then the jth column of  𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠   is all 0 except for the ith element, which is set to 1. 

 
Step 5: Use the same computational steps as for the linear system in equation (10) to solve the 

linear system 

 
 

  

where 𝜶𝜶𝑎𝑎𝑢𝑢𝑔𝑔 is a vector of length 𝐿𝐿 + 𝑞𝑞𝑍𝑍, and there are 𝐿𝐿∗ + 𝑞𝑞∗ non-redundant 
parameters in above linear system. The AR coefficient estimate �̂�𝜶 is the subvector 
consisting of the first  𝐿𝐿  elements of  �̂�𝜶  𝑎𝑎𝑢𝑢𝑔𝑔, there are  𝐿𝐿∗   non-redundant parameters in 

 

3.5 Re-fit Regression model 
Refit regression model by GLS using augmented data to account for spatio-temporal 
correlation in the data. 

Step 1: Substitute the following for missing values such that 𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒 is a 𝑛𝑛𝑚𝑚 × 𝐷𝐷  matrix 
and 𝒀𝒀𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒 is a vector of length 𝑛𝑛𝑚𝑚: at location 𝑠𝑠𝑖𝑖, use the mean of 𝒀𝒀(𝑠𝑠𝑖𝑖) and the 
mean of each predictor in 𝑿𝑿(𝑠𝑠𝑖𝑖). 

Step 2: Augment predictor matrix as follows. 

𝑿𝑿𝑎𝑎𝑢𝑢𝑔𝑔  = (𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑢𝑢𝑡𝑡𝑒𝑒,  𝑰𝑰𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠) 
where 𝐈𝐈𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛𝑚𝑚 × 𝑞𝑞 indicator matrix given 𝑞𝑞 the total number of rows with 
missing values in either  𝑿𝑿  or 𝒀𝒀. If there is a missing value in ith row of either  𝑿𝑿 or 
𝒀𝒀, and if this is the jth out of all  𝑞𝑞  rows that have missing value, then the jth column 
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3.6 Statistics to display 

3.6.1 Goodness of Fit statistics 
We present statistics referring to the three main elements of the model: the mean structure, 
the spatial covariance structure, and the temporal structure. 

1. Goodness of fit mean structure model 𝑿𝑿𝜷𝜷: 

Let 𝒬𝒬  be the set of observations (𝑌𝑌𝑡𝑡(𝑠𝑠), 𝑿𝑿𝑡𝑡(𝑠𝑠)) that have missing values in  either 
𝑌𝑌𝑡𝑡(𝑠𝑠)  or  𝑿𝑿𝑡𝑡(𝑠𝑠). Note that  𝑞𝑞  has been defined as the number of observations in 𝒬𝒬. 
Calculate the mean squared error (MSE) and an 𝑅𝑅2 statistic based only on complete 
observations: 
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2. Goodness of fit for AR model: 

Present t-tests for AR parameters based on variance estimates in item 3 in Section 
3.6.2. 

3. Goodness of fit of spatial covariance model: 
Present the test statistics listed in item 5 in Section 3.6.2. 

 
3.6.2 Model and parameter estimates 
The following information should be displayed as a summary of the model: 

1. Model coefficients 𝜷𝜷� , 𝜶𝜶� obtained in Sections 3.4 and 3.5 

 
Based on these standard errors, t-test statistics and/or p-values may be computed and 
displayed according to standard definitions and output scheme of linear models (please 
refer to linear model documentation): 
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𝑡𝑡=1 

(1 − 𝑃𝑃(𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝐷𝐷∗  ≤ |𝑡𝑡𝑗𝑗|)). 

 
Based on these standard errors, t-test statistics and/or p-values may be computed and 
displayed according to standard definitions and output scheme of linear models. 
 

 
(1 − 𝑃𝑃(𝑡𝑡∑𝑚𝑚 𝑛𝑛𝑡𝑡−𝐿𝐿∗  ≤ |𝑡𝑡𝑗𝑗|)). 

4. Indicator of which method has been automatically chosen to model spatial 
covariances, either empirical covariance (EOF) or parametric variogram model. 

5. Test statistics from goodness of fit tests for parametric model: 

- Test statistic 𝑧𝑧1, p-value 𝑝𝑝1, level of significance 𝛾𝛾1 used for automated test for fit 
of slope parameter 

- Test statistic 𝑧𝑧2, p-value 𝑝𝑝2, level of significance 𝛾𝛾2 used for testing homogeneity 
of variances 

6. Parametric covariance parameters  �̂�𝝍 if parametric model has been chosen 

3.6.3 Tests of effects in Mean Structure Model (Type III) 
For each effect specified in the model, type III test matrix L is constructed and 𝐻𝐻0: 𝐿𝐿𝑖𝑖𝛽𝛽 = 0 
is tested. Construction of type III matrix L as well as generating estimable function (GEF) is 
based on the generating matrix 𝐻𝐻, which is the upper 𝐷𝐷 × 𝐷𝐷  submatrix  of 
(𝑋𝑋�𝑙𝑙𝑎𝑎𝑙𝑙

′ 𝑋𝑋�𝑙𝑙𝑎𝑎𝑙𝑙)−1𝑋𝑋�𝑙𝑙𝑎𝑎𝑙𝑙
′ 𝑋𝑋�𝑙𝑙𝑎𝑎𝑙𝑙, such that 𝐿𝐿𝑖𝑖𝛽𝛽 is estimable. It involves parameters only for the

 𝑖𝑖 
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given effect. For type III analysis, L does not depend on the order of effects specified in the 
model. If such a matrix cannot be constructed, the effect is not testable. 

Then the L matrix is then used to construct the test statistic 
�̂�𝛽 ′𝐿𝐿′(𝐿𝐿𝛴𝛴𝐿𝐿′)−1𝐿𝐿�̂�𝛽 

 
 
where 

𝐹𝐹 = 
𝑟𝑟𝑐𝑐 

• �̂�𝛽  is the subvector of the first D elements of  �̂�𝛽 𝑎𝑎𝑢𝑢𝑔𝑔 obtained in Step 5 of Section 3.5, 
• 𝑟𝑟𝑐𝑐      = 𝑟𝑟𝑎𝑎𝑛𝑛𝑘𝑘(𝐿𝐿𝛴𝛴𝐿𝐿′), 
• 𝛴𝛴  is the covariance matrix of  �̂�𝛽 , which is the upper  𝐷𝐷 × 𝐷𝐷  submatrix of  𝑉𝑉(�̂�𝛽 𝑎𝑎𝑢𝑢𝑔𝑔) 

defined in equation (25). 
 
The statistic has an approximate F distribution. The numerator degrees of freedom 𝑑𝑑𝑓𝑓1 is 𝑟𝑟𝑐𝑐 
and the denominator degrees of freedom  𝑑𝑑𝑓𝑓2  is 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝐷𝐷∗, where  𝐷𝐷∗ is the number of 
non-redundant parameters in the first 𝐷𝐷 parameters of refitted regression model obtained in 
Section 3.5. Then the p-values can be calculated accordingly. 
An additional test also should be computed, which is similar to “corrected model” if there is 
an intercept or “model” if there is no intercept in ANOVA table in linear regression. 
Essentially, the null hypothesis is regression parameters (except intercept if there is on) are 
zeros. The test statistic would be the same as the above F statistic except the L matrix is from 
GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L 
matrix is GEF without the first row which corresponds to the intercept. 

Statistics saved for Test of effects in Mean Structure Model (including corrected model or 
model): 

• F statistics 
• 𝑑𝑑𝑓𝑓1 
• 𝑑𝑑𝑓𝑓2 
• p-value 

 
3.6.4 Location clustering for spatial structure visualization 
Large spatial covariance matrix or correlation matrix are not suitable to demonstrate the 
relation among the locations. Grouping method, also called community detection or position 
analysis (Wasserman, 1994), can be used to identify some representative location clusters. To 
simplify the implementation, hierarchical clustering (Johnson, 1967) is used to detect clusters 
among locations based on STP model spatial statistics. 

Please note location clustering is only supported when empirical nonparametric covariance 
model is used. 

Given a set of n locations {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} in STP to be clustered, and their corresponding spatial 
correlation matrix  𝑅𝑅, a n*n matrix, as the similarity matrix 

 
𝑅𝑅 = [𝑟𝑟𝑖𝑖𝑗𝑗]𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 
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𝑖𝑖𝑗𝑗 

𝑖𝑖𝑗𝑗 

𝑖𝑖𝑗𝑗 

𝑖𝑖𝑗𝑗 

 
Given similarity threshold 𝛼𝛼 with default value 0.2, and 𝑁𝑁𝐶𝐶 with default value 10, the 
process of location clustering is described in following steps, which is based on the basic 
process of hierarchical clustering. 
Step 1. Initialize the clusters and similarities: 

• Assign each location 𝑠𝑠𝑖𝑖 to a cluster 𝐶𝐶𝑖𝑖 (𝑖𝑖 = 1, … , 𝑛𝑛). So that for n locations, the total 
number of clusters  𝑛𝑛𝐶𝐶  = 𝑛𝑛  at the beginning, and each cluster has just one location, 

• Define the set of clusters: 𝐶𝐶, 
• Define similarity matrix 

𝑅𝑅𝐶𝐶  = [𝑟𝑟𝐶𝐶]  
𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 

where the similarity 𝑟𝑟𝐶𝐶  between the clusters 𝐶𝐶𝑖𝑖    and 𝐶𝐶𝑗𝑗    is the similarity 𝑟𝑟𝑖𝑖𝑗𝑗  between 
location 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗. 

Step 2. Find 2 clusters 𝐶𝐶𝑖𝑖  and 𝐶𝐶𝑗𝑗  in 𝐶𝐶 with largest similarity max (𝑟𝑟𝑖𝑖𝑖𝑖
𝑐𝑐 ), 

If  𝑚𝑚𝑎𝑎𝑥𝑥(𝑟𝑟𝐶𝐶) > 𝛼𝛼: 

• Merge 𝐶𝐶𝑖𝑖  and 𝐶𝐶𝑗𝑗    into a new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉  to include all locations in 𝐶𝐶𝑖𝑖  and 𝐶𝐶𝑗𝑗, 
• Compute similarities between the new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉  and other clusters 𝐶𝐶𝑘𝑘  , 𝑘𝑘 ≠ 

𝑖𝑖 𝑎𝑎𝑛𝑛𝑑𝑑 𝑗𝑗 
 

 
 

• Update 𝐶𝐶 by adding 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉, discarding 𝐶𝐶𝑗𝑗      and 𝐶𝐶𝑖𝑖. So  𝑛𝑛𝐶𝐶  = 𝑛𝑛𝐶𝐶 − 1. 
• Update similarity matrix 𝑅𝑅𝐶𝐶 by adding 𝑟𝑟<𝑖𝑖,𝑖𝑖>,𝑘𝑘

𝑐𝑐 , discarding 𝑟𝑟𝑖𝑖𝑘𝑘
𝑐𝑐  and 𝑟𝑟𝑖𝑖𝑘𝑘

𝑐𝑐 , go to step 3.
 

If  𝑚𝑚𝑎𝑎𝑥𝑥(𝑟𝑟𝐶𝐶) ≤ 𝛼𝛼, go to step 4. 

   

 

Step 3. Repeat step 2. 
Step 4. For all the detected clusters with more than 1 location, compute following statistics: 

• Cluster size: 𝑛𝑛𝐶𝐶𝑖𝑖  is the number of locations in 𝐶𝐶𝑖𝑖, 
• Closeness: 

 
 

Step 5. Define clusters for interactive visualization: 

• 𝐶𝐶𝑐𝑐𝑙𝑙𝐶𝐶𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠: The first 𝑁𝑁𝐶𝐶   clusters sorted by descending closeness 𝑑𝑑𝑖𝑖, 
• 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒: The first 𝑁𝑁𝐶𝐶   clusters sorted by descending cluster size 𝑛𝑛𝐶𝐶𝑖𝑖. 

Step 6. Output the union for location cluster visualization: 

𝐶𝐶∗  = 𝐶𝐶𝑐𝑐𝑙𝑙𝐶𝐶𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠  ∪ 𝐶𝐶𝑠𝑠𝑖𝑖𝑧𝑧𝑒𝑒 

Statistics saved for spatial structure visualization including: 

4. Number of excluded locations during handling of missing data 
5. Spatial correlation matrix  𝑹𝑹 =  [𝑟𝑟𝑖𝑖𝑗𝑗]𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 

6. Statistics of each output location cluster in 𝐶𝐶∗: 
• Closeness 𝑑𝑑𝑖𝑖 

• Cluster size 𝑛𝑛𝐶𝐶𝑖𝑖 

• Coordinates of locations in this cluster 
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𝑆𝑆 

 

3.7 Results saved for prediction 
1. Model coefficients 𝜷𝜷� , 𝜶𝜶� the covariance estimate 𝑉𝑉(𝜷𝜷�) as defined in (25). 

2. Transformed regression residuals and predictors of 𝐿𝐿 most recent observations for 
prediction: 

 
  

 
 

 
 

 
3. Indicator of which method has been chosen to model spatial covariances, either 

empirical covariance (EOF) or parametric variogram model. 

4. Parametric covariance parameters �̂�𝜓 if parametric model has been chosen. 

5. Coordinates of locations 𝑠𝑠. 

6. Number of unique time points used for model build, 𝑚𝑚. 

7. Number of records with missing values in the data set used in model building, 𝑞𝑞. 

8. Spatial covariance matrix 𝛴𝛴𝑆𝑆. 
9. 𝐻𝐻−1, inverse of Cholesky factor of spatial covariance matrix. 

4 Prediction 
We perform the following procedure to issue predictions for future time 𝑚𝑚 + 1, … , 𝑚𝑚 + 𝐻𝐻 at 
prediction locations 𝑮𝑮 = (𝒈𝒈1, … , 𝒈𝒈𝑁𝑁) using the results saved in the output file (see Figure 2). 
The input data set format should include location  𝑮𝑮, predictors  𝑿𝑿  for 𝑡𝑡 = 𝑚𝑚 + 1, … , 𝑚𝑚 + 𝐻𝐻. 
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Figure 2. Flowchart of algorithm steps for model prediction 

 
4.1 Point prediction 

Step 1: Construct the 𝑁𝑁 × 𝑛𝑛 spatial covariance matrix to capture the spatial dependence 
between prediction grids  𝒈𝒈 ∈ 𝑮𝑮  and original sample locations 𝒔𝒔. 

• If variogram-based spatial covariance matrix 

and 

according to (14) for all locations 𝒈𝒈 (whether locations were included in the model 
build or not). 

• If EOF-based spatial covariance function is used: 

For locations gi  that are included in the original sample locations 𝑠𝑠, 
𝐶𝐶𝐶𝐶𝑣𝑣𝐸𝐸𝐸𝐸𝐹𝐹(𝜖𝜖𝑡𝑡(𝑔𝑔𝑖𝑖), 𝜖𝜖𝑡𝑡(𝑠𝑠)) is equal to the row corresponding to location 𝑔𝑔𝑖𝑖 in the 
empirical covariance matrix 𝛴𝛴𝑆𝑆 and 𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is equal to the empirical variance at 
that location, i.e., the diagonal element of  𝛴𝛴𝑆𝑆 corresponding to that location. 

𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉(𝜖𝜖𝑡𝑡(𝒈𝒈)) = 𝜎𝜎2  +  𝜏𝜏2 (29) 
 

𝑪𝑪𝑆𝑆(𝑮𝑮) = {𝐶𝐶𝐶𝐶𝑣𝑣(𝜖𝜖𝑡𝑡(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑡𝑡(𝒔𝒔𝑗𝑗); �̂�𝜓 )} 
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛 (30) 
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For locations 𝑔𝑔𝑖𝑖 that were not included in the model build, calculate the spatial 
covariance in the following way: 
(a) Perform eigendecomposition on the empirical covariance matrix 

𝑺𝑺 = 𝚽𝚽𝚽𝚽𝚽𝚽′ 

where 𝚽𝚽 = (𝜙𝜙1, … , 𝜙𝜙𝑛𝑛) with  𝛷𝛷𝑘𝑘  = (𝜙𝜙𝑘𝑘(𝑠𝑠1), … , 𝜙𝜙𝑘𝑘(𝑠𝑠𝑛𝑛))′ is the  𝑛𝑛 × 𝑛𝑛  matrix 
of eigenvectors and 𝚽𝚽 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) is the 𝑛𝑛 × 𝑛𝑛  matrix of eigenvalues. 

(b) Apply inverse distance weighting (IDW) (Shepard 1968) to interpolate 
eigenvectors to locations with no observations. 

  
 
 
 
 
is an Inverse Distance Weighting (IDW) function with 𝜌𝜌 ≤ 𝑑𝑑 for d- 
dimensional space and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖) may be any distance function. As a default 
value, use Euclidean distance with 𝜌𝜌 = 2  and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖)2  = (𝒈𝒈 − 𝒔𝒔𝑖𝑖)′(𝒈𝒈 − 
𝒔𝒔𝑖𝑖). 

(c) The EOF-based spatial variance-covariance functions are 
 

𝑛𝑛 

𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉(𝜖𝜖𝑡𝑡(𝒈𝒈)) = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙2(𝒈𝒈) 
𝑘𝑘 

𝑘𝑘=1 

 
(31) 

and 
 

𝑛𝑛 

𝐶𝐶𝐶𝐶𝑣𝑣 (𝜖𝜖𝑡𝑡(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑡𝑡(𝒔𝒔𝑗𝑗)) = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑘𝑘(𝒈𝒈𝑖𝑖)𝜙𝜙𝑘𝑘(𝒔𝒔𝑗𝑗) 
𝑘𝑘=1 

 
(32) 

and the corresponding  𝑁𝑁 × 𝑛𝑛  spatial covariance matrix 
 

Note that under the EOF model, we allow for space-varying variances. 

Step 2: Spatial interpolation to prediction locations g  for the most recent L  time units, 
𝑍𝑍𝑚𝑚−𝐿𝐿+1, … , 𝑍𝑍𝑚𝑚 

 

Step 3: Iteratively forecast for future time m + 1, … , m + H  at prediction locations 𝑮𝑮. 

 
 

𝑪𝑪𝑆𝑆(𝑮𝑮) = {𝐶𝐶𝐶𝐶𝑣𝑣𝐸𝐸𝐸𝐸𝐹𝐹 (𝜖𝜖𝑡𝑡(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑡𝑡(𝒔𝒔𝑗𝑗))} 
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛 

(33) 
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where  𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮), ℎ = 1, … , 𝐻𝐻 are vectors of length 𝑁𝑁. 

Step 4: Incorporate predicted systematic effect 
 

  

where 𝒀𝒀�𝑚𝑚+𝐻𝐻(𝑮𝑮), ℎ = 1, … , 𝐻𝐻 are vectors of length 𝑁𝑁. 

4.2 Prediction intervals 
Under the assumption of Gaussian Process and known variance components, the prediction 
error 𝑌𝑌�𝑚𝑚+𝐻𝐻(𝒈𝒈𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) comes from two sources: 

• The prediction error that would be incurred even if regression coefficients 𝜷𝜷 were 
known. 

• The error in estimating regression coefficients 𝜷𝜷 
The variance of prediction error is thus 

 

  

  

  

Expression (39) arises from the variance expression for universal kriging, while (40) is 
the variance of a predicted random effect with known variance of the random effects 
(McCulloch et al. 2008, p.171). 

• 𝐶𝐶𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) ⊗ 𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) is the covariance vector of length nm between the 
prediction 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)  and measurements 𝑌𝑌1(𝑠𝑠), … , 𝑌𝑌𝑚𝑚(𝑠𝑠). Note that 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ)  = 
{𝛾𝛾𝑇𝑇(𝑚𝑚 + ℎ − 𝑡𝑡)}𝑡𝑡=1,…,𝑚𝑚   is the AR(L) covariance vector of length m and 𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) = 
{𝐶𝐶𝐶𝐶𝑣𝑣 (𝑌𝑌𝑡𝑡(𝑔𝑔𝑖𝑖), 𝑌𝑌𝑡𝑡(𝑠𝑠𝑗𝑗))} is the spatial covariance vector of length 𝑛𝑛. 

𝑗𝑗=1,…,𝑛𝑛 

• The nm × nm covariance matrix 𝛴𝛴 is defined as to 𝛴𝛴 = 𝛴𝛴𝑇𝑇  ⊗ 𝛴𝛴𝑆𝑆   and 𝛴𝛴𝑇𝑇  = 
{𝛾𝛾𝑇𝑇|𝑡𝑡 − 𝑡𝑡′|}𝑡𝑡,𝑡𝑡′=1,…,𝑚𝑚. Note that ΣS is a quantity stored after the model build step. 

•   𝑉𝑉𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝑉𝑉(𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)) = 𝛾𝛾𝑇𝑇(0)𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is the variance of  𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖). 
 

• Note that expressions (39) and (40) are not computed explicitly, but instead are 
implemented as described in the following. 

 
Computational process: 

 
Step 1: Compute the error in estimating regression coefficients 𝛽𝛽 in (39). 

For 𝑙𝑙 = 1, … , 𝐿𝐿, interpolate 𝑿𝑿 to prediction locations 𝒈𝒈 for the most recent 𝐿𝐿 time 
units 

  
 

where  𝑷𝑷𝑚𝑚+1−𝑙𝑙(𝒈𝒈𝑖𝑖)  is a vector of dimension  𝐷𝐷 × 1. Define 
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For 𝑡𝑡 = 𝑚𝑚 − 𝐿𝐿 + 1, … , 𝑚𝑚 (ℎ ≤ 𝑙𝑙), we only have 𝑋𝑋  at sample locations 𝑠𝑠, so 
�̂�𝑋  𝑡𝑡(𝑔𝑔𝑖𝑖) = 𝑃𝑃𝑡𝑡(𝑔𝑔𝑖𝑖), the interpolated values from  𝑋𝑋𝑡𝑡(𝑠𝑠); for  𝑡𝑡 > 𝑚𝑚  (or  ℎ > 𝑙𝑙), we 
already input 𝑋𝑋  at prediction locations 𝑔𝑔, so there is no need to interpolate and 
�̂�𝑋  𝑡𝑡(𝑔𝑔𝑖𝑖) = 𝑋𝑋𝑡𝑡(𝑔𝑔𝑖𝑖). 

Then, for  ℎ = 1, … , 𝐻𝐻, recursively compute the  𝐷𝐷 × 1  vectors 𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) 
 

  

where 

 

The prediction error in estimating 𝛽𝛽, that is, expression (39) is thus 

 

 where  𝑉𝑉(�̂�𝛽)   is computed in (25). 

Step 2: Compute the prediction error that would be incurred if regression coefficients 𝛽𝛽 were 
known, i.e., equation (40). 

 
• Compute 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) by AR(L) autocovariance function 𝛾𝛾𝑇𝑇(𝑘𝑘) (McLeod 1975). 
First, compute 𝛾𝛾𝑇𝑇(0), … , 𝛾𝛾𝑇𝑇(𝐿𝐿)  by solving a linear system 𝐴𝐴𝑋𝑋 =  𝑐𝑐, 

 

  

Note that the first element of the vector on the right hand side (the variance of the 
measurement error) is fixed to be one, to account for the normalization through the 
spatial variance-covariance structure. 

For 𝑘𝑘 = 𝐿𝐿 + 1, … , 𝑚𝑚 + 𝐻𝐻 − 1, recursively compute  

Remark: To construct the  (𝐿𝐿 + 1) × (𝐿𝐿 + 1)  matrix 𝐴𝐴, 

 
where 
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• Compute the approximated factorization of Σ−1 such that 𝑅𝑅′𝑅𝑅 ≈ Σ−1, where 𝑅𝑅 is 
𝑇𝑇 𝑇𝑇 

a (𝑚𝑚 − 𝐿𝐿) × 𝑚𝑚 matrix (follows from Cholesky or Gram-Schmidt orthogonalization, 
see for example Fuller 1975): 
 

 

  

• Compute the value of expression (40): 

 
 

 

 

where  𝐶𝐶′
𝑆𝑆(𝑔𝑔𝑖𝑖)  is a the row of  𝐶𝐶𝑆𝑆(𝐺𝐺)  corresponding to location 𝑔𝑔𝑖𝑖. 

Step 3: The (1 − α%)  prediction interval is 

 
 

  

where  𝑉𝑉[�̂�𝑌  𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)]  is the sum of equations (39) and (40) as computed in 
expressions (45) and (51), respectively.  𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝐷𝐷,𝛼𝛼/2   is defined as 𝑃𝑃(𝑋𝑋 ≤ 
𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝐷𝐷∗,𝛼𝛼/2) = 1 − 𝛼𝛼/2  where 𝑋𝑋 follows t-distribution with degree freedom 𝑛𝑛𝑚𝑚 − 
𝑞𝑞 − 𝐷𝐷∗. The default value for 𝛼𝛼 is 0.05. 

As final output from the prediction step, point prediction, variances of point predictions and 
prediction interval (lower and upper bounds) are issued for each specified (location, time). 

 
We remark that to perform what-if-analysis, a set of 𝑿𝑿 variables under the new settings need 
to be provided. Then we re-run the prediction algorithm described in Section 4 to obtain 
prediction results under adjusted settings. 
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SPCHART Algorithms 
Nine types of Shewhart control charts can be created. In this chapter, the charts are grouped 
into five sections: 
 X-Bar and R Charts 
 X-Bar and s Charts 
 Individual and Moving Range Charts 
 p and np Charts 
 u and c Charts 

 
For each type of control chart, the process, the center line, and the control limits (upper and 
lower) are described. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Table 95-1 
Notation 

 
 

Weight 

Weights can be used when the data organization is Cases are units. 
 Each value for weight must be a positive integer. 
 Cases with either non-positive or fractional weights are dropped. 
 When weight is in effect, is a weighted sum for all the units in subgroup i and and x 

are weighted means. 
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X-Bar and R Charts 
When X-Bar and R charts are paired, the sample range statistic R is used to construct the control 
limits for the X-Bar chart. 

 
Note: Subgroups whose sample sizes are less than the specified minimum value are dropped. 

 
Equal Sample Sizes 

Assume that for . The process for the X-Bar chart is                      . The 
center line for an X-Bar chart is the grand mean statistic: 

 

and the control limits are 

LCL 
UCL 

where 
 

is the mean range statistic.  The process for an R chart is                     . The center line 
for an R chart is  and the control limits are 

LCL 
UCL 

The auxiliary functions are 
 

 

 

 
Unequal Sample Sizes 

The processes for X-Bar and R charts are the same as described in the section “Equal Sample 
Sizes” above. The center line for an X-Bar chart is the grand mean statistic (numerically identical 
to that in the section “Equal Sample Sizes”): 

 



 
 

. 
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and the control limits for subgroup i are 

LCL 
UCL 

 
The center line for an R chart for subgroup i is                  for where 

 

 

and the control limits for subgroup i are 

LCL 
UCL 

 
X- Bar and s Charts 

When X-Bar and s charts are paired, the sample standard deviation is used to construct the 
control limits for the X-Bar chart. 

 
Equal Sample Sizes 

Assume . The process for the X-Bar chart is                      . The center line for an 
X-Bar chart is  and the control limits are 

LCL 
UCL 

The process for an s chart is                      . The center line for an s chart is 
 

and the control limits are 

LCL 

UCL 
 

The auxiliary function is 
 

where Γ(.) is the complete Gamma function. 
 

Note: When , can be approximated by , can be 

approximated by  , and c4(n) can be approximated by 
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Unequal Sample Sizes 
The processes for X-Bar and s charts are the same as the processes in the section “Equal Sample 
Sizes” above. The center line for an X-Bar chart is and the control limits are 

LCL 
UCL 

or 

LCL 
UCL 

where 
 

However, the center line for an s chart for subgroup i is                 for i=1,...,K and the control 
limits are 

 
LCL 

 

UCL  
 

or 

LCL 

UCL  
 

Individual and Moving Range Charts 
When a weight variable is specified, each unit of the process is expanded to multiple units 
based on the case weight associated with this particular unit.  The span (specified by the user)  
is associated with the expanded process. If the span is greater than N (the total number of units 
of the expanded process), an error message is displayed and neither an Individual nor a Moving 
Range chart is generated. 

Since each subgroup has only one unit, the process for an Individual chart is 
                            where is the ith unit of the expanded process.  For a span of length m, 

the moving ranges, are 

if 
if 

The average moving range is 
 

The center line for an Individual chart is and the control limits for an Individual chart are 

 
SYSMIS 
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LCL 
UCL 

The process for a moving range chart is { , i = m,..., N}. The center line for a moving range chart 
is .  The control limits for a moving range chart are 

LCL 
UCL 

 
p and np Charts 

The data for p and np charts are attribute data. Each measurement is either 0 or 1, where 1 
indicates a non-conforming measurement. Therefore, 

 

 

is the count of non-conforming units for subgroup i. When a weight variable is specified, is 
a weighted sum of non-conforming units. If the data are aggregated and the value of the count 
variable is greater than the total number of units for any subgroup, this subgroup is dropped. 

 
Equal Sample Sizes 

Assume . The process for a p chart is                      where . The center 
line for a p chart is 

 

 

and the control limits are 

LCL 

UCL 
 

The process for an np chart is                     . The center line for an np chart is 
 

and the control limits are 

LCL 

UCL 
 

Unequal Sample Sizes 

The process for a p chart is where . The center line for a p chart is 
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and the control limits for subgroup i are 
 

LCL 

UCL 

The process for an np chart is                     . However, the center line for an np chart for 
subgroup i is . The control limits for subgroup i are 

 
LCL 

UCL 

Note: A warning message is issued when an np chart is requested for subgroups of unequal 
sample sizes. 

 
u and c Charts 

Measurements show the number of defects for the jth unit for subgroup i. Hence, 
 

is the total number of defects for subgroup i. When a weight variable is used, is a weighted 
sum of defects. 

 
Equal Sample Size 

Assume . The process for a u chart is                      where . The center 
line for a u chart is 

 

 

and the control limits are 
 

LCL 
UCL 

The process for a c chart is                      . The center line for a c chart is 
 

and the control limits for a c chart are 
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LCL 
UCL 

 

Unequal Sample Size 
 

The process for a u chart is                       where . The center line for a u chart is 
 

and the control limits are 

LCL 
UCL 

 

The process for a c chart is                      .  The center line for subgroup i is and the 
control limits are 

 
LCL 
UCL 

 

Note: A warning message is issued when a c chart is requested for subgroups of unequal sample 
sizes. 

 

Statistics 

This section discusses the capability and performance statistics that can be requested through 
SPCHART, and uses the following notation. 

Table 95-2 
Notation 

Notation Description 
the total sample mean. 

s the total sample/process standard deviation. 
the estimated sigma in the Process Capability Indices. 

the nominal or the target value, given by the user. 

LSL the lower specification limit, given by the user. 
USL the upper specification limit, given by the user. 

 
 

Assumptions 
 The process is in control.  (   and s are finitely estimated.) 
 The measured variable is normally distributed. 
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Prerequisites 
 For the Process Capability Indices except CpK and the Process Performance Indices except 

PpK, both LSL and USL must be specified by the user, satisfying LSL < USL. For CpK and 
PpK, at least one of LSL and USL must be specified by the user. 

 A target value such that LSL USL must be given by the user for CpM and PpM to 
be computed. 

 
Process Capability Indices 

The estimated capability sigma may be computed in one of four ways. 

(1).  If it is to be based on the sample within-subgroup variance, 

 
 

 
(2). If it is to be based on the mean range, 

 

 

where                                                                  with 
 

 

Note that may or may not be equal for different subgroups. If they are all equal, we may write 
 

where , the mean range. 
 

(3). If it is to be based on the mean standard deviation, 
 

 

where , with the complete Gamma function Γ(). 
 

Note that may or may not be equal for different subgroups. If they are all equal, we may write 
 

(4). If it is to be based on the mean moving range, 
 



 
 
 

 

SPCHART Algorithms 
 

where 

if 

 

and n is the total sample size, m is the user-given length of span, and   is the ith moving 
range for the data. 

 
All of the capability indices, except K, require   , and in order to define them, we must have   >0. 

 
CP: Capability of the process 

USL  LSL 
 

 
CpL: The distance between the process mean and the lower specification limit 

scaled by capability sigma 
 

 
CpU: The distance between the process mean and the upper specification limit 

scaled by capability sigma 
 

 
K: The deviation of the process mean from the midpoint of the specification limits 

USL   LSL         | 
USL  LSL 

Note this is computed independently of the estimated capability sigma, so it does not need to 
be greater than 0 or even specified. 

 
CpK: Capability of process related to both dispersion and centeredness 

 

If only one specification limit is provided, we compute and report a unilateral CpK instead of 
taking the minimum. 

 
CR: The reciprocal of CP 

 

 
CpM: An index relating capability sigma and the difference between the process 

mean and the target value 

  USL   LSL  
 

    LSL 

USL  

 
sysmis, if 
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must be given by the user. 
 

Z-lower (Cap): The number of capability sigmas between the process mean and the 
lower specification limit 

    LSL 
 

 
Z-upper (Cap): The number of capability sigmas between the process mean and the 

upper specification limit 

USL  
 

 
Z-min (Cap): The minimum number of capability sigmas between the process mean 

and the specification limits 
 

Note that unlike CpK, this index is undefined unless both specification limits are given and valid. 
 

Z-max (Cap): The maximum number of capability sigmas between the process mean 
and the specification limits 

 

 

Note that unlike CpK, this index is undefined unless both specification limits are given and valid. 
 

The estimated percentage outside the specification limits (Cap) 
 

where is the cumulative distribution function of the standard normal distribution. 
 

Process Performance Indices 

The estimated performance sigma is always the process standard deviation s. None of the indices 
in this chapter is defined unless s>0. 

 
PP: Performance of the process 

USL   LSL 
 

 
PpL: The distance between the process mean and the lower specification limit 

scaled by process standard deviation 
 

    LSL 
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PpU: The distance between the process mean and the upper specification limit 
scaled by process standard deviation 

USL  
 

 
PpK: Performance of process related to both dispersion and centeredness 

 

If only one specification limit is provided, we compute and report a unilateral PpK instead of 
taking the minimum. 

 
PR: The reciprocal of PP 

 

 
PpM: An index relating process variance and the difference between the 

process mean and the target value 

  USL   LSL  
 

must be given by the user. 
 

Z-lower (Perf): The number of standard deviations between the process mean and 
the lower specification limit 

    LSL 

 
Z-upper (Perf): The number of standard deviations between the process mean and 

the upper specification limit 

USL  

 
Z-min (Perf): The minimum number of standard deviations between the process 

mean and the specification limits 
 

Note that unlike PpK, this index is undefined unless both specification limits are given and valid. 
 

Z-max (Perf): The maximum number of standard deviations between the process 
mean and the specification limits 

 

 

Note that unlike PpK, this index is undefined unless both specification limits are given and valid. 
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The estimated percentage outside the specification limits (Perf) 
 

 
where is the cumulative distribution function of the standard normal distribution. 

 

Measure(s) for Assessing Normality: The observed percentage outside the 
specification limits 

This is the percentage of individual observations in the process which lie outside the specification 
limits.  A point is defined as outside the specification limits when its value is greater than the 
USL or is less than the LSL. 
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SPECTRA Algorithms 
SPECTRA plots the periodogram and spectral density function estimates for one or more series. 

 
Univariate Series 

For all t, the series  can be represented by 
 

 

where 
 

 
   

    
 
 

 

 
  

 

 

 

  
 

 

 
  

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

if is even 
if is odd 

 
The following statistics are calculated: 

 

Frequency 
 

 
Period 

 

 

Fourier Cosine Coefficient 
 

 
  



 
 

   

 
 

SPECTRA Algorithms 
 
Fourier Sine Coefficient 

 

 
Periodogram 

 

 
spectral density estimate 

 
                                 where (number of spans) 

 
 

and 
 

 

for 
 

are the periodogram weights defined by different data windows. 
 
Bivariate Series 

For the bivariate series   and  
 

 

 
 

  
 

  
 

 

Cross-Periodogram of X and Y 
 
 
 
Real 

 



 

 

 
 
Imaginary 

 

 
Cospectral Density Estimate 
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Quadrature Spectrum Estimate 
 

 
 

Cross-amplitude Values 
 

 
Squared Coherency Values 

 

 

Gain 
Values 

 

 
 

 
 

Phase Spectrum Estimate 
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Data Windows 
The following spectral windows can be specified. Each formula defines the upper half of the 
window. The lower half is symmetric with the upper half. In all formulas, p is the integer part 
of the number of spans divided by 2.  To be concise, the formulas are expressed in terms of  
the Fejer kernel: 

 

otherwise 

 
and the Dirichlet kernel: 

 

otherwise 

 
where is any positive real number. 

 

HAMMING 

Tukey-Hamming window.  The weights are 
 

 

for . 
 
TUKEY 

 

Tukey-Hanning window.  The weights are 
 

 

for . 
 
PARZEN 

 

Parzen window.  The weights are 
 

 
for . 



 

 
 
BARTLETT 

Bartlett window.  The weights are 
 

 
for . 

 

DANIELL UNIT 

Daniell window or rectangular window.  The weights are 
 

 
for . 

 

NONE 
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No smoothing. If NONE is specified, the spectral density estimate is the same as the periodogram. 
It is also the case when the number of span is 1. 

 

 
User-specified weights. If the number of weights is odd, the middle weight is applied to the 
periodogram value being smoothed and the weights on either side are applied to preceding and 
following values. If the number of weights are even (it is assumed that  is not supplied), the 
weight after the middle applies to the periodogram value being smoothed. It is required that the 
weight   must be positive. 

 
References 
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SURVIVAL Algorithms 
Although life table analysis may be useful in many differing situations and disciplines, for 
simplicity, the usual survival-time-to-death terminology will be used here. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

                                         Time from starting event to terminal event or censoring for case j 

Weight for case j 

k Total number of intervals 
Beginning time for ith interval 

Width of interval i 

Sum of weights of cases censored in interval i 

                                           Sum of weights of cases experiencing the terminal event in interval i 
 
 
 

Construction of Life Table (Gehan, 1975) 

The following sections detail the construction of the life table. 
 
 
Computation of Intervals 

 
The widths of the intervals for the actuarial calculations must be defined by the user. In addition to 
the last interval specified, an additional interval is automatically created to take care of any times 
exceeding the last. If the upper limits are not in ascending order, a message is printed and the 
procedure stops. If the interval width does not divide the time range into an integral number of 
intervals, a warning is printed and the interval width is reset so that the number of intervals will be 
the nearest integer to that resulting from the user specification. 

 
 
Count of Events and Censoring 

 
For each case, the interval i into which the survival time falls is determined. 

 
 

 
If  exceeds , the starting time for the last interval, it is included in the last interval. The status 
code is examined to determine whether the observed time is time to event or time to censoring. 
If it is time to censoring, that is, the terminal event did not occur, is incremented by the case 
weight. If it is time to event,  is incremented by the case  weight. 
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Calculation of Survival Functions 

For each interval, the following are calculated. 
 

Number Alive at the Beginning 
 

 
where   is the sum of weights of all cases in the table. 

 

Number Exposed to Risk of an Event 
 

 
Proportion Terminating 

 

 
Proportion Surviving 

 

 
Cumulative Proportion Surviving at End of Interval 

 

 
where 

 

 
Probability Density Function 

 

 
Hazard Rate 

 

 
Standard Error of Probability Surviving 
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Standard Error of Probability Density 
 

For the first interval 
 

 

Standard Error of the Hazard Rate 
 

If , the standard error for interval i is set to 0. 
 

Median Survival Time 
 

If           the value printed for median survival time is 
 
 

Otherwise, let i be the interval for which            and          . The estimate of the median 
survival time is then 

 

 
Comparison of Survival Distributions 

The survival times from the groups to be compared are jointly sorted into ascending order. If 
survival times are equal, the uncensored is taken to be less than the censored. When approximate 
comparisons are done, they are based on the lifetables, with the beginning of the interval 
determining the length of survival for cases censored or experiencing the event in that interval. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 

N Number of cases 
                                       Survival time for case k, where times are sorted into ascending order so that 

case 1 has the shortest time and case N the longest 
Weight for case k 

g Number of nonempty groups in the comparison 
                                           Sum of weights of cases in group j 

Sum of weights of censored cases 
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Sum of weights of uncensored cases 

W Sum of weights of all cases 
 
 
Computations 

For each case the following are computed: 
  : Sum of weights of uncensored cases with survival times less than or equal  to that 

of case k. 
  :  Same as above, but for censored cases. 
  : Sum of weights of uncensored cases with survival times equal to that of case k. 
  :  Same as above, but for censored cases. 

 

The score for case k is: 
 

where 
 

 

 

 

 
 
if  is censored 
if  is uncensored 

 
 

uncensored cases surviving shorter than case 
censored cases surviving longer than or equal to case 
uncensored cases surviving longer than case 

 

Test Statistic and Significance (Wilcoxon (Gehan)) 

The test statistic is 
 

where 
 

      the sum of scores of cases in group 

  
 

Under the hypothesis that the groups are samples from the same survival distribution, D is 
asymptotically distributed as a chi square with (g−1) degrees of freedom. 
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T Test Algorithms 
The T Test procedure compares the means of two groups or (one-sample) compares the means 
of a group with a constant. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 98-1 
Notation 
Notation Description 

Value for ith case of group k 

Weight for ith case of group k 

Number of cases in group k 

Sum of weights of cases in group k 
 
 
Basic Statistics 

The following statistics are computed. 
 

Means 
 

 

Variances 
 

 

Standard Errors of the Mean 
 

 
Differences of the Means for Groups 1 and 2 

 

 
Unpooled (Separate Variance) Standard Error of the Difference 
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The 95% confidence interval for mean difference is 

where   is the upper 2.5% critical value for the t distribution with   degrees of freedom. 

Pooled Standard Error of the Difference 

where the pooled estimate of the variance is 

The 95% confidence interval for mean difference 
 

where df is defined in the following. 
 
The t Statistics for Equality of Means 

Separate Variance 
 

where 
 

 
Pooled Variance 

The two-tailed significance levels are obtained from the t distribution separately for each of 
the computer t values. 

 
The Test for Equality of Variances 

The Levene statistic is used and defined as 
 

where 
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The t Test for Paired Samples 
The following notation is used throughout this section unless otherwise stated: 
Table 98-2 
Notation 
Notation Description 

Value of variable X for case i 

Value of variable Y for case i 

Weight for case i 

W Sum of the weights 
N Number of cases 

 
 
Means 

 

 

 

Variances 
 

 

Similarly for . 
 
Covariance between X and Y 
 

 

Difference of the Means 
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Standard Error of the Difference 

 

 
t statistic for Equality of Means 

 

with (W−1) degrees of freedom. A two-tailed significance level is printed. 
 

95% Confidence Interval for Mean Difference 
 

 
Correlation Coefficient between X and Y 

 

 

The two-tailed significance level is based on 
 

 

with (W−2) degrees of freedom. 
 
One-Sample t Test 

The following notation is used throughout this chapter unless otherwise stated: 
Table 98-3 
Notation 
Notation Description 
N Number of cases 

Value of variable X for case i 

Weight for case i 

v Test value 
 
 
Mean 

 

 
where is the sum of the weights. 
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Variance 
 

 
Standard Deviation 

 

 
Standard Error of the Mean 

 

 

Mean Difference 
 

 
The t value 

 

with (W−1) degrees of freedom. A two-tailed significance level is printed. 
 

100p% Confidence Interval for the Mean Difference 

CI 
 

where is the % percentile of a Student’s t distribution with (W−1) 
degrees of freedom. 

 
References 
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Effect Size for t-Test

Effect size constitutes one of the major findings in a quantitative research study [Sullivan and Feinn, 2012].
It could be measured by the magnitude of group difference, strength of association, corrected estimates, or
risk estimates [Ferguson, 2009]. In this document, we focus on the group difference indices, and present
the methods to estimate the effect size in t-test. The following sections cover both point and interval
estimation of the Cohen’s d, Hedges’ g, and Glass’s ∆. Furthermore, we desire to add a novel feature to
the T-Test procedure which automates the effect size computation in the one-sample, related-sample, and
independent-sample t-test.

To facilitate the following discussion, we define J(k), a factor proposed by [Hedges, 1981],

J(k) =
Γ(k/2)√

k/2 Γ((k − 1)/2)
, (0.0.1)

where k > 1, and Γ(·) denotes the gamma function. To estimate J(k) in practice, we may first evaluate

log J(k) = log Γ

(
k

2

)
− 0.5 log

k

2
− log Γ

(
k − 1

2

)
, (0.0.2)

and then exponentiate it to obtain J(k).

Notations

The following notations will be used in Section ?? unless otherwise stated.

xi: Observed value of variable X for the i -th case.

N : Number of cases in the data set.

wi: Frequency weight for the i -th case. A noninteger frequency weight is rounded to the nearest integer.
For wi < 0.5 or missing, the corresponding case will not be used.

W : Effective sample size W =
∑N

i=1 wi. W = N if no weights are present.

ν: Test value formulated by the null hypothesis.

α: The significance level to reflect the type I error. Note that the /CRITERIA = CI(value) in the
existing T-TEST procedure resets the value of the confidence interval. Here, α = 1 − value, where
value = 0.95 by default in the syntax.

The following statistics should have already been computed by the existing T-Test procedure for the
one-sample t-test.

Sample mean:

x̄ =
1

W

∑N

i=1
wixi . (0.0.3)

Mean difference:
D = x̄− ν . (0.0.4)

Sample variance:

s2
x =

1

W − 1

∑N

i=1
wi (xi − x̄)

2
. (0.0.5)

Sample standard deviation:
sx =

√
s2
x . (0.0.6)

Standard error of the mean:
sx̄ =

sx√
W

. (0.0.7)

The t statistic:

t =
D

sx̄
. (0.0.8)
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Point Estimation

The Cohen’s d is estimated by

d =
D

sx
, (0.0.9)

where D and sx are estimated by Equation (0.0.4) and (0.0.6), respectively.
The Hedges’ g is estimated by

g = d ∗ J(W − 1) , (0.0.10)

where d is estimated by Equation (0.0.9), and J(W − 1) is Equation (0.0.1) evaluated at k = W − 1.

Interval Estimation

Note that the Cohen’s d follows a noncentral t-distribution with the noncentrality parameter, denoted by λ,
estimated by

λ̂ = d
√
W . (0.0.11)

The lower and upper confidence limit of λ are

λ̂l = FindNCParamT(funArg = |t|,df = W − 1,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |t|,df = W − 1,prob = α/2) , (0.0.12)

respectively1, where t is estimated by Equation (0.0.8). Thus, the lower and upper confidence limit for the
Cohen’s d are

dl =

{
λ̂l/
√
W if t ≥ 0

−λ̂u/
√
W otherwise

and du =

{
λ̂u/
√
W if t ≥ 0

−λ̂l/
√
W otherwise

, (0.0.13)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.12), and t is estimated by Equation (0.0.8).
The lower and upper confidence limit for the Hedges’ g are

gl = dl ∗ J(W − 1) and gu = du ∗ J(W − 1) , (0.0.14)

respectively, where dl and du are computed by Equation (0.0.13), and J(W −1) is Equation (0.0.1) evaluated
at k = W − 1.

Effect Size for Related-Sample t-Test

Notations

The following notations will be used in Section unless otherwise stated.

xi: Observed value of variable X for the i -th case.

yi: Observed value of variable Y for the i -th case, which is paired by xi.

N : Number of cases in the data set.

wi: Frequency weight for the i -th case. A noninteger frequency weight is rounded to the nearest integer.
For wi < 0.5 or missing, the corresponding case will not be used.

W : Effective sample size W =
∑N

i=1 wi. W = N if no weights are present.

α: The significance level to reflect the type I error. The definition of α is the same as aforementioned in
Section .

1 FindNCParamT finds the noncentrality parameter NC from the equation NonCentralCdfT(funArg, df, NC) = prob, where
NonCentralCdfT is cumulative t-distribution function; funArg is the function argument; df is the degrees of freedom; and prob
is the probability. Source code link: https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/
shared/cpp/src/mcmath/mcdistfun.h

https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
https://github.ibm.com/SPSS/corecomponents/blob/branch-9100/analytic_components/shared/cpp/src/mcmath/mcdistfun.h
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The following statistics should have already been computed by the existing T-Test procedure for the
related-sample t-test.

Sample mean:

x̄ =
1

W

∑N

i=1
wixi and ȳ =

1

W

∑N

i=1
wiyi . (0.0.15)

Mean difference:
D = x̄− ȳ . (0.0.16)

Sample variance:

s2
x =

1

W − 1

[∑N

i=1
wix

2
i −

(∑N

i=1
wixi

)2

/W

]
and

s2
y =

1

W − 1

[∑N

i=1
wiy

2
i −

(∑N

i=1
wiyi

)2

/W

]
. (0.0.17)

Sample standard deviation:

sx =
√
s2
x and sy =

√
s2
y . (0.0.18)

Sample covariance:

sxy =
1

W − 1

[∑N

i=1
wixiyi −

(∑N

i=1
wixi

)(∑N

i=1
wiyi

)
/W

]
. (0.0.19)

Correlation coefficient between X and Y :
r =

sxy
sxsy

. (0.0.20)

Standard error of the difference:

sD =
√

(s2
x + s2

y − 2sxy)/W . (0.0.21)

The t statistic:

t =
D

sD
. (0.0.22)

Point Estimation

Similar to the one-sample t-test, the Cohen’s d for the related-sample t-test is estimated by

dz =
D√

(s2
x + s2

y − 2sxy)
, (0.0.23)

where D, sx, sy, and sxy are estimated by Equation (0.0.16), (0.0.18), and (0.0.19), respectively. Note
that Equation (0.0.23) is commonly used in power analysis, but may not be a popular metric reported
in comparing two dependent groups. To prevent inflating effect size unintentionally, [Dunlap et al., 1996]
pointed out that the following metric should be estimated and reported in meta-analysis:

drm =
D√

(s2
x + s2

y − 2sxy)

√
2 (1− r) , (0.0.24)

where D, sx, sy, sxy, and r are estimated by Equation (0.0.16), (0.0.18), (0.0.19), and (0.0.20), respectively.
There is also an alternative way to estimate the Cohen’s d by simply using the average of the variance while
ignoring the correlation between the measures:

dav =
D√

(s2
x + s2

y)/2
, (0.0.25)
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where sx and sy are estimated by Equation (0.0.18). The Hedges’ g is estimated by

gz = dz ∗ J(2W − 2) , grm = drm ∗ J(2W − 2) , and gav = dav ∗ J(2W − 2) , (0.0.26)

where dz, drm, and dav are estimated by one of Equations (0.0.23), (0.0.24), and (0.0.25), respectively, and
J(2W − 2) is Equation (0.0.1) evaluated at k = 2W − 2.

Interval Estimation

If dz is estimated by using Equation (0.0.23), its interval estimation is similar to the one-sample t-test. The
noncentrality parameter is estimated by

λ̂ = dz
√
W . (0.0.27)

The lower and upper confidence limit of λ are

λ̂l = FindNCParamT(funArg = |t|,df = W − 1,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |t|,df = W − 1,prob = α/2) , (0.0.28)

respectively, where t is estimated by Equation (0.0.22). Thus, the lower and upper confidence limit for the
Cohen’s d are

dzl =

{
λ̂l/
√
W if t ≥ 0

−λ̂u/
√
W otherwise

and dzu =

{
λ̂u/
√
W if t ≥ 0

−λ̂l/
√
W otherwise

, (0.0.29)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.28), and t is estimated by Equation (0.0.22).
Correspondingly, the lower and upper confidence limit for the Hedges’ g are

gzl = dzl ∗ J(2W − 2) and gzu = dzu ∗ J(2W − 2) , (0.0.30)

where dzl and dzu are computed by Equation (0.0.29), and J(2W − 2) is Equation (0.0.1) evaluated at
k = 2W − 2.

If drm is estimated by using Equation (0.0.24), the asymptotic estimate of the standard error, suggested
by [Dunlap et al., 1996] and [Nakagawa and Cuthill, 2007], is

se(drm) =

[
2(1− r)
W

+
d2
rm

2(W − 1)

]1/2

, (0.0.31)

where r and drm are estimated by Equation (0.0.20) and (0.0.24), respectively. Thus, the lower and upper
confidence limit for the Cohen’s d are

drml
= drm − IDF.T (1− α/2,W − 1) ∗ se(drm) and drmu = drm + IDF.T (1− α/2,W − 1) ∗ se(drm) ,

(0.0.32)
respectively, where se(drm) is estimated by Equation (0.0.31). Correspondingly, the lower and upper
confidence limit for the Hedges’ g are

grml
= drml

∗ J(2W − 2) and grmu
= drmu

∗ J(2W − 2) , (0.0.33)

where drml
and drmu

are computed by Equation (0.0.32), and J(2W − 2) is Equation (0.0.1) evaluated at
k = 2W − 2.

Analogously, if dav is estimated by using Equation (0.0.25), the noncentrality parameter is estimated by

λ̂ = dav
√
W . (0.0.34)

The lower and upper confidence limit of λ are

λ̂l = FindNCParamT(funArg = |tav|,df = W − 1,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |tav|,df = W − 1,prob = α/2) , (0.0.35)
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respectively, where

tav =
D√

(s2
x + s2

y)/2/
√
W

, (0.0.36)

where sx and sy are estimated by Equation (0.0.18). Thus, the lower and upper confidence limit for the
Cohen’s d are

davl =

{
λ̂l/
√
W if tav ≥ 0

−λ̂u/
√
W otherwise

and davu =

{
λ̂u/
√
W if tav ≥ 0

−λ̂l/
√
W otherwise

, (0.0.37)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.35), and tav is estimated by (0.0.36). Correspondingly,
the lower and upper confidence limit for the Hedges’ g are

gavl
= davl

∗ J(2W − 2) and gavu = davu
∗ J(2W − 2) , (0.0.38)

where davl and davu are computed by Equation (0.0.37), and J(2W − 2) is Equation (0.0.1) evaluated at
k = 2W − 2.

Additional Settings

We will add an additional user-control to the existing related-sample t-test. The setting determines the
method used in calculating the point and interval estimates in Section and . Users can control whether to
estimate dz and gz, drm and grm, or dav and gav, as well as the corresponding confidence limits. The setting
will be exposed to both syntax and user-interface.

Effect Size for Independent-Sample t-Test

Notations

The following notations will be used in Section unless otherwise stated.

k: Group index to define the two independent groups, and k = 1, 2.

xki: Observed value of variable X for the i -th case of group k. Note that x1i and x2i are independent.

Nk: Number of cases in the group k.

wki: Frequency weight for the i -th case of group k. A noninteger frequency weight is rounded to the nearest
integer. For wi < 0.5 or missing, the corresponding case will not be used.

Wk: Effective sample size Wk =
∑Nk

i=1 wki. Wk = Nk, for k = 1, 2, if no weights are present.

α: The significance level to reflect the type I error. The definition of α is the same as aforementioned in
Section .

The following statistics should have already been computed by the existing T-Test procedure for the
independent-sample t-test. For k = 1, 2,

Group mean:

x̄k =
1

Wk

∑Nk

i=1
wkixki . (0.0.39)

Group mean difference:
D = x̄1 − x̄2 . (0.0.40)

Group variance:

s2
k =

1

Wk − 1

[∑Nk

i=1
wkix

2
ki −

(∑Nk

i=1
wkixki

)2

/Wk

]
, (0.0.41)

Group standard deviation:

sk =
√
s2
k . (0.0.42)
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Pooled estimation of sample variance:

s2
p =

(W1 − 1)s2
1 + (W2 − 1)s2

2

W1 +W2 − 2
. (0.0.43)

Pooled standard error of the difference:

s′D = sp

√
1

W1
+

1

W2
. (0.0.44)

The t statistic based on the pooled variance:

t′ =
D

s′D
. (0.0.45)

Point Estimation

The issue is open to debate of which standard deviation to use in estimating the Cohen’s d for the independent-
sample t-test. [Coe, 2002] suggested citing both methods including using the pooled standard deviation and
the standard deviation of the “control” group. The statistic estimated by using the latter mentioned method
is also called Glass’s ∆, which assumes that an experimental design with a default control group that is
representative of the population from which the samples are drawn [Ferguson, 2009]. More details are given
in the following discussions.

By using the pooled standard deviation, the Cohen’s d is estimated by

d =
D√
s2
p

, (0.0.46)

where D and s2
p are estimated by Equation (0.0.40) and (0.0.43), respectively.

By using the standard deviation of the “control” group, the Glass’s ∆ is estimated by

∆ =
D

s2
, (0.0.47)

where D and s2 are estimated by Equation (0.0.40) and (0.0.42), respectively.
The Hedges’ g is estimated by

g = d ∗ J(W1 +W2 − 2) , (0.0.48)

where d is estimated by Equation (0.0.46), and J(W1 + W2 − 2) is Equation (0.0.1) evaluated at k =
W1 +W2 − 2.

Interval Estimation

Note that the Cohen’s d follows a noncentral t-distribution with the noncentrality parameter estimated by

λ̂ = d
√
W̃ , (0.0.49)

where

W̃ =

(
1

W1
+

1

W2

)−1

, (0.0.50)

The lower and upper confidence limit of λ are

λ̂l = FindNCParamT(funArg = |t′|,df = W1 +W2 − 2,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |t′|,df = W1 +W2 − 2,prob = α/2) , (0.0.51)

respectively, where t′ is estimated by Equation (0.0.45). Thus, the lower and upper confidence limit for the
Cohen’s d are

dl =

λ̂l/
√
W̃ if t′ ≥ 0

−λ̂u/
√
W̃ otherwise

and du =

λ̂u/
√
W̃ if t′ ≥ 0

−λ̂l/
√
W̃ otherwise

, (0.0.52)
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respectively, where λ̂l and λ̂u are computed by Equation (0.0.51), W̃ is defined by Equation (0.0.50), and t′

is estimated by Equation (0.0.45).
The Glass’s ∆ also follows a noncentral t-distribution with the noncentrality parameter estimated by

λ̂ = ∆
√
W̃ , (0.0.53)

where W̃ is defined by Equation (0.0.50). The lower and upper confidence limit of λ are

λ̂l = FindNCParamT(funArg = |ts|,df = W2 − 1,prob = 1− α/2) and

λ̂u = FindNCParamT(funArg = |ts|,df = W2 − 1,prob = α/2) , (0.0.54)

respectively, where

ts =
D

s2/
√
W̃

, (0.0.55)

where D and s2 are estimated by Equation (0.0.40) and (0.0.42), respectively, and W̃ is defined by Equation
(0.0.50). Thus, the lower and upper confidence limit for the Glass’s ∆ are

∆l =

λ̂l/
√
W̃ if ts ≥ 0

−λ̂u/
√
W̃ otherwise

and ∆u =

λ̂u/
√
W̃ if ts ≥ 0

−λ̂l/
√
W̃ otherwise

, (0.0.56)

respectively, where λ̂l and λ̂u are computed by Equation (0.0.54), W̃ is defined by Equation (0.0.50), and ts
is estimated by Equation (0.0.55).

The lower and upper confidence limit for the Hedges’ g are

gl = dl ∗ J(W1 +W2 − 2) and gu = du ∗ J(W1 +W2 − 2) , (0.0.57)

respectively, where dl and du are computed by Equation (0.0.52), and J(W1 + W2 − 2) is Equation (0.0.1)
evaluated at k = W1 +W2 − 2.
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Temporal Causal Modeling Algorithms 
 
1. Introduction 
Forecasting and prediction are important tasks in real world applications that involve decision making. In such 
applications, it is important to go beyond discovering statistical correlations and unravel the key variables that 
influence the behaviors of other variables using an algebraic approach. Many real world data, such as stock price 
data, are temporal in nature; that is, the values of a set of variables depend on the values of another set of variables at 
several time points in the past. Temporal causal modeling, or TCM, refers to a suite of methods that attempt to 
discover key temporal relationships in time series data. This chapter describes a particular method to discover 
temporal relationships using a combination of Granger causality and regression algorithms for variable selection. 
Although this treatment strives to be self-contained, a minimal set of papers describing the design principles behind 
the  method can be found in [Lozano et  al., 2011, Lozano et  al., 2009, Arnold et  al., 2007]1. 

 
The rest of the chapter is organized as follows. Section 2 lays the groundwork for the TCM algorithm (notation and 
brief history) and explains the greedy orthogonal matching pursuit (GOMP) [Lozano et al., 2011] algorithm that is 
used. Section 3 describes the techniques used to fit and forecast time series and compute approximated forecasting 
intervals. Section 4 describes scenario analysis, which refers to a capability of the TCM product to “play-out” the 
repercussions of artificially setting the value of a time series. Section 5 describes the detection of outliers, and 
Section 6 discusses how potential causes for outliers can be established using root cause analysis. 

 
2. Model 
Introduced by Clive Granger [Granger, 1980], Granger causality in time series is based on the intuition that a cause 
should necessarily precede its effect, and that if time series 𝑎𝑎 causally affects time series 𝑏𝑏, then the past values of 𝑎𝑎 
should be useful in predicting the future values of 𝑎𝑎. More specifically, time series 𝑎𝑎 is said to “Granger cause” time 
series 𝑏𝑏 if the accuracy of regressing for 𝑏𝑏 in terms of past values of both 𝑎𝑎 and 𝑏𝑏 is statistically significantly better 
than regressing just with past values of 𝑏𝑏. If the time series have T time points and are denoted by {𝑎𝑎𝑡𝑡}𝑡𝑡=1𝑇𝑇  and 
{𝑏𝑏𝑡𝑡}𝑡𝑡=1𝑇𝑇 , then the following regressions are performed: 

 
  

 
  

 
Here 𝐿𝐿 is the number of lags; that is, the value of 𝑏𝑏 at time t can only be determined by values of other time series at 
times {𝑡𝑡 − 1, 𝑡𝑡 − 2, … , 𝑡𝑡 − 𝐿𝐿}. If Equation (1) is statistically more significant (using some test for significance) than 
Equation (2), then 𝑎𝑎 is deemed to Granger cause 𝑏𝑏. 

 
1 The methods described in this chapter are particularly useful for under-determined systems, where the number of time 

series (n) far exceeds the number of samples (m); that is n >> m. Although these methods function for both over-    
determined (m >> n) and fully-determined (n == m) systems, there are other approaches to pursue for such systems. 
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2.1 Graphical Granger Modeling 
 

The classical definition of Granger causality is defined for a pair of time series. In the real world, we are interested 
in finding not one, but all the significant time series that influence the target time series. In order to accomplish this, 
we use group greedy (ℓ0) regression algorithms with variable selection (see Section 2.3). An important feature of 
our TCM algorithm is that it groups influencer/predictor variables; that is, we are interested in predicting whether 
time series    as a whole −{𝛼𝛼𝑡𝑡−1,𝛼𝛼𝑡𝑡−2, … ,𝛼𝛼𝑡𝑡−𝐿𝐿} has influence over time series 𝑏𝑏. Such grouping is a more natural 
interpretation of causality and also helps sparsify the solution set. For example, without such grouping we may 
select the time-lagged series 𝛼𝛼𝑡𝑡−2 to model 𝑏𝑏𝑡𝑡 but not select any other value of 𝑎𝑎, which increases the number of 
choices for variable selection L-fold, where L is the number of lags that is allowed. 

 
2.2 Notation 

 
The following notation is used throughout this chapter unless otherwise stated: 

Table 1: Notation 

 
 
In this section, we introduce the algorithm that is used to construct the temporal causal model. The list of symbols 
used in the rest of this chapter is summarized in Table 1. Most of the symbols are self-explanatory; however, the 
function G, which stands for grouping, requires some additional explanation. G is a function that takes a matrix 
(𝑅𝑅𝑚𝑚×𝑛𝑛), a set of column indices J, and a lag value L and constructs a lag matrix that has (𝑚𝑚 − 𝐿𝐿) rows and (|J|L) 
columns. Basically, for every column index 𝑗𝑗 ∈ 𝐽𝐽,𝐺𝐺 constructs a (𝑚𝑚 − 𝐿𝐿)×𝐿𝐿 lag matrix by carefully unrolling the 
jth  column of the input matrix. An example of G’s action is shown below: 
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In this example, the input matrix 𝑿𝑿 ∈ 𝑅𝑅5×4 has 4 time series (𝑛𝑛 = 4) and five time points per time series (𝑚𝑚 = 5). 
The lag matrix associated with the time series in column 1, when L (lag) is 2, is produced by invoking 𝐺𝐺(𝑿𝑿, {1}, 2). 
Note that the lag matrix consists of the lag-1 vector X of as the first column, the lag-2 vector as the second column, 
up to the lag-L vector as the Lth column. Similarly, the functions (M,S) accept any input matrix and compute the 
mean and the standard deviation, respectively, of the matrix’s columns. For purposes of numerical stability, and to 
increase interpretability during modeling, columns of the lagged matrix are both centered by the column means and 
scaled by the column standard deviations 2. On the other hand, the target y is only centered. An example of mean 
centering and scaling for the lagged matrices is shown below: 

 

 
 

Here, (𝛼𝛼𝜇𝜇 ,𝛼𝛼𝜎𝜎) and (𝑏𝑏𝜇𝜇 , 𝑏𝑏𝜎𝜎) are the means and standard deviations of the first and the second columns, (𝑎𝑎, 𝑏𝑏) 
respectively. 

 
2.3 Group Orthogonal Matching Pursuit (GOMP) 

Algorithm 1: GOMP 

 
2 Although each column of the lagged matrix has a different mean and standard deviation, due to the structure of these 

columns, it is possible to compute the mean and the standard deviation of the time series itself and use those to center and 
scale the lagged columns. 
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We begin by describing Algorithm 1: GOMP, which will be used to establish causality of time-series data. This 
algorithm receives the variables 𝑿𝑿,𝒚𝒚,𝐺𝐺,𝑀𝑀, 𝑆𝑆, 𝐿𝐿, 𝜖𝜖,𝐾𝐾∗(described in Table 1) as input. Briefly, 𝒚𝒚 ∈ 𝑹𝑹(𝑚𝑚−𝐿𝐿)×1 is a 
target vector for which we want to establish the Granger causality (note that we have excluded the first L values of 
y). In contrast, 𝑿𝑿 ∈ 𝑹𝑹𝑚𝑚×𝑛𝑛 is the input unlagged time series data. L is the number of lags for each predictor in each 
target series, 𝐾𝐾∗ is the maximum number of predictors to be selected per-target, and 𝜖𝜖 determines whether a new 
predictor needs to be added. In addition, 𝐺𝐺,𝑀𝑀 and 𝑆𝑆 are grouping, centering, and scaling functions which have 
been described in Section 2.2. 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  is the set of pre-selected predictor indices for 𝒚𝒚, and always contains the lagged 
𝒚𝒚. 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠~  is the set of forbidden predictors, if any, for 𝒚𝒚. If there are no forbidden predictors, then 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠~ = ∅. Given 
these, the goal is to greedily find predictors that solve the system 𝑿𝑿𝑿𝑿 = 𝒚𝒚 subject to sparsity constraints. 

 
The greedy algorithm approximates an ℓ0–sparse solution by iteratively choosing the best predictor for addition at 
each iteration. We use superscripts to denote the iteration number in Algorithm 1. For example, 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  represents the 
initial values of 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠  at the 0th iteration (before the actual iteration starts). The first part of the algorithm (lines 1 – 4) 
constructs and solves a linear system consisting of the predictors in 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  to obtain 𝑿𝑿∗0, the coefficient vector for 
predictors on the transformed scale. At the end of this first part, we have 𝒓𝒓0, the initial residual. Then check whether 
there are redundant predictor series in 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0 . If yes, then delete them. If the number of predictor series in the (updated) 
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  is equal to or larger than the maximum number of iterations (i.e., |𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0 | ≥ 𝐾𝐾∗) then keep the first 𝐾𝐾∗ predictor 
series in 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0 , update 𝑿𝑿∗0, return 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  and 𝑿𝑿∗0, and stop the process (line 6); otherwise (i.e., |𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0 | < 𝐾𝐾∗), update 𝑿𝑿∗0    

and 𝒓𝒓0 (line 7) if any redundant predictor series were deleted. Then start the iterative process to add one predictor 
series at a time (line 8). The first step in predictor selection (line 9) consists of an argmin function that 
systematically goes over each eligible predictor and evaluates its goodness (see Algorithm 2). This step is the 
performance critical portion of the algorithm and can be searched in parallel. At the end of the step, 𝑗𝑗𝑘𝑘, the index 
corresponding to the best predictor is available. However, if no suitable predictor is found in the argmin function 
(i.e., 𝑗𝑗𝑘𝑘 = −1), then return 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘−1 and 𝑿𝑿∗(𝑘𝑘−1) and stop (line 10). The next part (lines 11 – 14) re-estimates the 
model coefficients by adding 𝑗𝑗𝑘𝑘 to the model. Line 15 updates the residual, 𝒓𝒓𝑘𝑘, for this model and line 16 adds 𝑗𝑗𝑘𝑘 
to the model. Finally, if the ℓ2 norm of the current residuals is equal to or smaller than the tolerance value (i.e., 
(||𝒓𝒓𝑘𝑘||2 ≤ 𝜖𝜖)), then the iterative process is terminated. 

 
Note that if the tolerance 𝜖𝜖 is achieved by adding 𝑗𝑗𝑘𝑘, then no new iterations are required and the iterative process 
is terminated. Thus the actual number of predictors selected, K, can be less than the maximum number of 
iterations, (i.e., 𝐾𝐾 ≤ 𝐾𝐾∗). However, if the tolerance 𝜖𝜖 is set very small, then it is highly unlikely that such a 
situation will happen. 

 
Algorithm 2: argmin 

 

Input:                                            
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Output: 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠: Selected group index.  

 
The implementation of the argmin function (line 8, Algorithm 1) is shown in Algorithm 2. The algorithm first 
assigns the initial cost to be the square of the ℓ2 norm of the current residuals, and the selected group index to be 
−1 (line 1). Then it loops over each series group, first checking if the time series being considered for addition (j) 
has already been added to the solution 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠  or if it is a forbidden predictor (line 3). If the current group (j) is not yet 
selected, the lagged transformed matrix corresponding to this time series (𝑿𝑿𝐺𝐺𝑗𝑗) is constructed using the G, M and S  

functions (lines 4 and 5). After grouping and transforming 𝑿𝑿𝐺𝐺𝑗𝑗, the residual (𝒓𝒓𝑗𝑗) corresponding to the candidate time 

series j is computed by first regressing 𝒓𝒓 on 𝑿𝑿𝐺𝐺𝑗𝑗 (line 6), and then computing the residual (line 7). Finally, the 

current time series is selected as the leading candidate if the square of the ℓ2 norm of its residual (𝒓𝒓𝑗𝑗) is lower than 

the previous estimate minus a threshold value, 𝜖𝜖2. Including such a threshold value prevents selecting an (almost) 
identical series. 

 
The loop in Algorithm 2 (line 2) can be thought of as iterating over all candidate series. For each candidate series, 
the following computations are carried out: (1) a filter is applied in line 3 to ensure that it is a valid candidate; (2) 
lines 4 and 5 map the current candidate to the transformed matrix (𝑿𝑿𝐺𝐺𝑗𝑗) that represents the lag matrix to be used; (3) 

lines 6 and 7 evaluate the goodness of the current candidate by first solving a dense linear system and then 
computing the residual; (4) line 8 applies a predicate to check if the current candidate series is better than previously 
evaluated candidates. Notice that the predicate (line 8) is associative and commutative; therefore, Algorithm 2 can 
be parallelized by dividing the iteration space ([1,n]) into chunks and executing each chunk in parallel. To get the 
globally best group, it is sufficient to reduce the groups that were selected by each parallel instance in a tree-like 
fashion by applying the predicate in line 8. 

 
2.4 Selecting L  

 
Both Algorithms 1 and 2 accept L as an input parameter which can be specified by user. If L is not explicitly 
specified then the following heuristic approach can be used to determine L based on (# of time points) and s 
(periodicity or seasonal length): 
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2.5 AR(L) Model 
 

Out of the n series in the data, some series may be used as predictors only, so no TCM models are built for them. 
However, if they are selected as predictors for some target series, then simple models need to be built for them in 
order to do forecasting. For example, suppose that time series 1 is a selected predictor for time series 2, but there is 
no model built for time series 1. While a model for time series 1 is not needed in order to forecast time series 2 at 
time (t + 1) (where t is the latest time in the data), forecasts for time (t + 2) require values of time series 1 for time  
(t + 1), which then requires a model for time series 1. 

 
Hence, for each predictor-only series, a simple auto-regressive (AR) model is built using the same lag, L, as used 
for the target series. This model, called an AR(L) model, can be constructed using Algorithm 1 by specifying 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠0  to 
be the target itself and setting the maximum number of predictors to be 1. 

 
2.6 Post-estimation steps 

Algorithm 1 selects the best predictors (time series) to model a target series y. Without loss of generality, we 
assume that the model for y is 𝒚𝒚 = 𝒚𝒚� + 𝑿𝑿𝐺𝐺∗ 𝑿𝑿� + 𝒓𝒓 = 𝒚𝒚� + 𝒓𝒓, where 𝑿𝑿𝐺𝐺∗  is the selected predictor series matrix with the 
lagged terms on the transformed scale, 𝑿𝑿�∗ is the estimated standardized coefficient vector, and 𝒓𝒓 = 𝒚𝒚 − 𝒚𝒚� is the 
residual vector. 

 
However, this is not the end of modeling. Several post processing steps are needed in order to complete the 
modeling process for 𝒚𝒚. The steps include three parts: (1) coefficients and statistics inference; (2) tests of model 
effects; (3) model quality measures. 

 
2.6.1 Coefficients and statistical inference 

 
The results of Algorithm 1 include 𝑿𝑿�∗ and (𝑿𝑿∗𝑇𝑇𝑿𝑿∗)− (by solving the linear system from Cholesky decomposition), 
where superscript T means the transpose of a matrix or vector, and (𝒛𝒛)− is a generalized inverse of the 𝒛𝒛 matrix. 
Based on these quantities, the first step is to compute coefficient estimates, their standard errors, and statistical 
inference on the original scale. 

 
Table 2: Additional notation 

 

 

http://www.google.com/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0CDQQFjAA&amp;url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&amp;ei=Xm5qU6W-O8SZyAT-sIHoCA&amp;usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&amp;sig2=eNA7O9dKOI53vqHQqWUE8w
http://www.google.com/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0CDQQFjAA&amp;url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&amp;ei=Xm5qU6W-O8SZyAT-sIHoCA&amp;usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&amp;sig2=eNA7O9dKOI53vqHQqWUE8w
http://www.google.com/url?sa=t&amp;rct=j&amp;q&amp;esrc=s&amp;source=web&amp;cd=1&amp;ved=0CDQQFjAA&amp;url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&amp;ei=Xm5qU6W-O8SZyAT-sIHoCA&amp;usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&amp;sig2=eNA7O9dKOI53vqHQqWUE8w
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2.6.2 Tests of model effects 

 
For each selected predictor series for y, there are L lagged columns associated with it. The columns can be grouped 
together, considered as an effect, and tested with a null hypothesis of zero for all coefficients. This is similar to the 
test of a categorical effect with all dummy variables in a (generalized) linear model setting. Only type III tests are 
conducted here. For each selected predictor series 𝑿𝑿𝐺𝐺 ,𝑖𝑖, the type III test matrix 𝑳𝑳𝑖𝑖 is constructed and 𝐻𝐻0: 𝑳𝑳𝑖𝑖𝑿𝑿 = 𝟎𝟎 is 
tested based on an F-statistic. 

 

• F-statistics for effects 
             

  
      

 

where 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑎𝑎𝑛𝑛𝑟𝑟(𝑳𝑳𝑖𝑖𝚺𝚺𝑳𝑳𝑖𝑖𝑇𝑇). The statistic follows an approximate F distribution with the numerator degrees 
of freedom 𝑟𝑟𝑖𝑖 and the denominator degrees of freedom 𝑑𝑑𝑓𝑓𝑠𝑠. Then the p-value is computed as follows: 

 

                 
 
2.6.3 Model quality measures 

 
In addition to statistical inferences, the goodness of the model can be evaluated. The following model quality 
measures are provided: 
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3. Scoring 
Once the models (𝑿𝑿� , 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠) for all the required targets (y) are built and post-estimation statistics are computed, the 
next task is to use these models to do scoring. There are two types of scoring: (1) fit: in-sample prediction for the 
past and current values of the target series; (2) forecast: out-of-sample prediction for future values of the target 
series. 

 
3.1 Fit 

 
Without loss of generality, we assume 𝑿𝑿 and 𝑿𝑿𝐺𝐺  are the selected predictor series matrices without lagged terms and with 
lagged terms, respectively; and 𝑿𝑿� is the coefficient estimates vector for the target y, so 𝑿𝑿 = [𝑿𝑿1, … ,𝑿𝑿𝐾𝐾],𝑿𝑿𝐺𝐺 =
[𝟏𝟏,𝑿𝑿𝐺𝐺11 , … ,𝑿𝑿𝐺𝐺1𝐿𝐿 , … ,𝑿𝑿𝐺𝐺𝐾𝐾1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾𝐿𝐿] and 𝑿𝑿 � = [�̂�𝛽0, �̂�𝛽11, … , �̂�𝛽1𝐿𝐿 , … , �̂�𝛽𝐾𝐾1, … , �̂�𝛽𝐾𝐾𝐿𝐿]𝑇𝑇 . Given that all series have m time 
points, in-sample prediction of y is one-step ahead prediction and can be written as 
 

 
 

3.2 Forecast                         
 

Given that data is available up to time interval m, the one-step ahead forecast for y is 
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where 

 
Thus, forecasting the value of 𝑦𝑦𝑚𝑚+2 requires us to first forecast the values of all the predictors up to time (m + 
1). Forecasting the values of all the predictors up to time (m + 1) requires us to use Equation (19) on all the 
predictors 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 . Similarly, to predict the value of 𝑦𝑦𝑚𝑚+3, we need to forecast the values of predictors 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠  at 
time (m + 2) by using Equation (20). This task poses a bigger problem; to forecast the values of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at 
time (m + 2), we first need to forecast the values of the predictors of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at time (m + 1). That is, as we 
increasingly look into the future, we need to forecast more and more values to determine the value of 𝑦𝑦𝑚𝑚+ℎ. 

 
3.3 Approximated forecasting variances and intervals 

 
In this subsection, we outline how forecasting variances and intervals can be computed for TCM models. We start 
by using the following representation for the linear model built by TCM for target 𝑦𝑦𝑚𝑚+ℎ: 
 

                         

where 𝜀𝜀𝑚𝑚+ℎ~𝑁𝑁(0,𝜎𝜎2) and 𝜎𝜎2 is estimated as 𝜎𝜎�2 (computed in Section 2.6.1). Please note that we don’t include 
parameter estimation error when defining forecasting error in TCM. 

 
The forecasting error at m + 1 is defined as the difference between 𝑦𝑦𝑚𝑚+1 and 𝑦𝑦�𝑚𝑚(1), which can be written as 

 
                               

  
The forecasting variance for one-step ahead forecasts is computed as 𝜎𝜎2. For multi-step ahead forecasts, the 
forecasting error at m + h is 
 

                               

 
 

In general, 𝑒𝑒𝑋𝑋𝑗𝑗,𝑚𝑚
(1), … , 𝑒𝑒𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) are not independent of each other. The larger the h is, the more complex the 

dependence is. In addition, 𝑒𝑒𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) and 𝑒𝑒𝑋𝑋𝑗𝑗,𝑚𝑚
(ℎ − ℓ) might not be independent for 𝑗𝑗, 𝑖𝑖 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 . In order to fully 

consider the dependence, we need to write all time series in vector autoregressive (VAR) format. Since we assume 
the number of series n is usually large, the parameter matrix, which is an 𝑛𝑛×𝑛𝑛 matrix, might be too large to handle 
in computation of the forecasting variances. Therefore, we make the assumption that all forecasting error terms in 
Equation (23), 𝑒𝑒𝑋𝑋𝑗𝑗,𝑚𝑚

(ℎ − ℓ), 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 , ℓ = 1, … , 𝐿𝐿, are independent, so it is easier to compute the forecasting 

variances. 
 

Based on the above independence assumption, the approximated variance of the forecasting error, 𝑒𝑒𝑦𝑦,𝑚𝑚(ℎ), is 
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where 𝜎𝜎�𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚,ℎ−ℓ
2  is the variance of the forecasting error in the series 𝑋𝑋𝑗𝑗 at 𝑚𝑚 + ℎ − ℓ. 

 
Then the corresponding 100(1 − 𝛼𝛼)% approximated forecasting interval of 𝑦𝑦𝑚𝑚+ℎ can be expressed  as 
 

 
                                                                

4. Scenario analysis 
Scenario analysis refers to a capability of TCM to “play-out” the repercussions of artificially setting the value of a 
time series. A scenario is the set of forecasts that are generated by substituting the values of a root time series by a 
vector of substitute values, as illustrated in Figure 1. 

 
Figure 1: Causal graph of a root time series and the specification of the vector of substitute values 

 

During scenario analysis, we specify the targets that we want to analyze as a response to changes in the values of the 
root series (“a” in Figure 1), along with the time window. In Figure 1, we are interested in the behavior of time 
series “c”, “d”, “g”, “h”, and “j” only. The rest of the time series are ignored. The figure also depicts the vector aW      
of  values  for  “a”  that  should  be  used  instead  of  the  observed  or  predicted  values  of  “a”.  The values 
(𝒕𝒕𝒃𝒃, 𝒕𝒕𝒆𝒆,𝑻𝑻,𝑻𝑻𝒔𝒔) specify the beginning and end of the replacement values for the root series, the current time, and the 
farthest time for analysis, respectively. 

 
The partial Granger causal graph of time series “a” is shown in Figure 1. That is, “a” is the parent of itself, “b”, “c”, 
and “d”. Similarly, it is the grand-parent of “e”, “f”, “g”, “h”, “i”, and “j”. Further descendents are possible, but only 
two generations suffice for the sake of explanation. Figure 1 also displays the specification of the vector aW, of 
length W, that contains the replacement values of the root series. In the example shown in the figure, aW starts at 
time 𝑡𝑡𝑏𝑏 < 𝑇𝑇, where T is the current time, and ends at 𝑡𝑡𝑠𝑠 > 𝑇𝑇, which is in the future. We are also given 𝑇𝑇𝑠𝑠, the last 
time point (𝑡𝑡𝑠𝑠 ≤ 𝑇𝑇𝑠𝑠) for which we want to perform scenario analysis on the target variables. Finally, we are given a 
set of time series for which the scenario predictions are carried out.  In the figure, these are “c”, “d”, “g”, “h”, and 
“j”, which are marked with a thick red border. Since “b” is required to model “g”, “b” is marked with a thick blue 
border to signify that it is an induced target. Given this information, the goal of scenario analysis is to forecast the 
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values of the target time series (“c”, “d”, “g”, “h”, and “j”) up to time 𝑇𝑇𝑠𝑠, based on the values of the root time series aW. 
 

Notice that we have to predict values of targets up to time 𝑇𝑇𝑠𝑠, where 𝑇𝑇𝑠𝑠 can be > (𝑇𝑇 + 1) or ≤ (𝑇𝑇 + 1). When 𝑇𝑇𝑠𝑠 = (𝑇𝑇 +
2), we need to compute the values of the predictors of the target time series at time (𝑇𝑇 + 1). Similarly, when 𝑇𝑇𝑠𝑠 = (𝑇𝑇 +
3), we need to compute the values of the predictors’ predictors at time (𝑇𝑇 + 1) and the values of the predictors at time 
(𝑇𝑇 + 2) before predicting the values of the target time series at time (𝑇𝑇 + 3). 

 
Figure 2: Scenarios with and without predicting future values 

 

 
The left-hand panel in Figure 2 depicts a scenario where the values of ancestors of targets of interest also have to be 
predicted. In this particular case, 𝑻𝑻𝒔𝒔 = (𝑻𝑻 + 𝟑𝟑) and therefore it is necessary to predict the values of the predictors 
of the targets at (𝑻𝑻 + 𝟏𝟏) and (𝑻𝑻 + 𝟐𝟐), and values of the predictors’ predictors at time (𝑻𝑻 + 𝟏𝟏). The right-hand panel 
depicts a scenario where the entire period of prediction is earlier than the current time T (i.e., 𝑻𝑻𝒔𝒔 < 𝑻𝑻). In this case, 
all the values of the predictors and their ancestors are readily available. 

 
Determining aW  

 
In the discussion above, we have neglected the issue of aW, the substitute values for time series “a”, which is the 
root time series. For purposes of scenario analysis, it is sufficient to consider that aW is readily available. In a 
typical use case for scenario analysis, aW will come from the values specified by the user’s direct input, although 
its values could also come as input from a calling meta-process (as is the case with the use of scenario analysis as a 
sub- procedure in root cause analysis, as shown in Section 6). 

 
Caveat on scenario analysis 

 
It is possible to carry out scenario analysis for a time period that is entirely in the future; that is 𝑡𝑡𝑏𝑏 > 𝑇𝑇. However, 
forecasting errors in the remaining predictors may make such scenario analysis inherently low-precision. That is, if 
𝜃𝜃 = 𝑡𝑡𝑏𝑏 − 𝑇𝑇 and 𝑡𝑡𝑏𝑏 > 𝑇𝑇, then the precision of scenario analysis decreases with an increase in 𝜃𝜃. 

 
4.1 SA, the scenario analysis algorithm 

 
Input: 

 
The inputs to SA are: (1) 𝒓𝒓: the root time series; (2) 𝒓𝒓𝑊𝑊: the vector of replacement values for time series 𝒓𝒓; (3) 
(𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑠𝑠,𝑇𝑇,𝑇𝑇𝑠𝑠): the beginning and end time for the modified values of 𝒓𝒓, the current time, and the last time point for 
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which target values need to be predicted, respectively; (4) D: a set of descendant target time series of interest along 
with their relation to 𝒓𝒓 (which may be input as the Granger causal graph, G). Notice that the length of 𝒓𝒓𝑊𝑊 is 𝑡𝑡𝑠𝑠 −
𝑡𝑡𝑏𝑏 + 1 and 𝑡𝑡𝑠𝑠 ≤ 𝑇𝑇𝑠𝑠. Furthermore, it is erroneous to have a target 𝒅𝒅 ∈ 𝐷𝐷, where 𝒓𝒓 is not an ancestor of d. 

 
Output: 

 
For each 𝒅𝒅 in 𝐷𝐷, we output a vector 𝒅𝒅𝑠𝑠𝑠𝑠 containing values that pertain to the scenario analysis of these time 
series and the corresponding confidence intervals (when 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇) or apprxomiated forecasting intervals (when 
𝑇𝑇𝑠𝑠 > 𝑇𝑇). Please note that the time period for the children series in 𝐷𝐷 is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠], for the grand-children 
series is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠], etc. 

 
Preparation: 

 
To prepare for SA, we first calculate the closure on the set of targets 𝐷𝐷∗ that need to be predicted, which is 
determined by the relationship between 𝒓𝒓 and each of the targets in 𝐷𝐷. Essentially, 𝐷𝐷∗ is computed by iteratively 
looking at the path from each 𝒅𝒅 ∈ 𝐷𝐷 and adding all those intermediate nodes that are ancestors of 𝒅𝒅 and are also 
descendents of 𝒓𝒓. In the example shown in Figure 1, the time series “b” is itself not of primary interest, but since it 
is a parent of “g”, which is of interest, “b” is also added as a target of interest to the set {“c”, “d”, “g”, “h”, “j”}. 

 
Next, we compute M, the set of models that need to be included in order to perform scenario analysis on 𝐷𝐷∗. 
Obviously, M contains the models for each of the series in  𝐷𝐷∗, i.e., 𝐷𝐷∗ ⊂ 𝑀𝑀; however, depending on the time span 
of the scenario analysis, additional models of some time series might have to be brought in (see Figure 2). 
Basically, depending on how far ahead 𝑇𝑇𝑠𝑠 is from T, we may need to compute the values of the ancestors (other than 
𝒓𝒓) of the targets of interest at time points (𝑇𝑇 + 1), … , (𝑇𝑇𝑠𝑠 − 1). That is, the set {𝑀𝑀 − 𝐷𝐷∗}(which may be ∅) contains 
all series that are needed for scenario analysis and are not descendants of 𝒓𝒓. 

 
At the end of the preparation phase we have 𝐷𝐷∗ and M, which allows us to predict all the time series of interest. 

 
Computation: 

 
The computation in scenario analysis is exactly that of scoring the values of a set of time series (see Section 3). For 
each target in 𝐷𝐷∗, we have a range of time points for which we need to fit/forecast values. For example, for 
immediate children of the root (“c”, “d”, and the induced child “b” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠]. Similarly, 
for grand-children (“g”, “h”, and “j” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠]. Using the models in M and substituted 
values 𝒓𝒓𝑊𝑊 for 𝒓𝒓, this task can be carried out. 

 
5. Outlier detection 
One of the advantages of building TCM models is the ability to detect model-based outliers. Outliers can be defined 
in several ways. For now, we shall define an outlier in a time series to be a value that strays too far from its expected 
(fitted) value based on the TCM models. The detection process is based on the normal distribution assumption for 
series 𝒚𝒚. Consider the value of a time series 𝒚𝒚 at time t. Let 𝑦𝑦𝑡𝑡  and 𝑦𝑦�𝑡𝑡 be the observed and expected values of 𝒚𝒚 at 
time t, respectively; and 𝜎𝜎�2 be the variance of 𝒚𝒚 from the TCM model (based on residuals). Given these inputs, we 
call 𝑦𝑦𝑡𝑡  an outlier if the likelihood of 𝑦𝑦𝑡𝑡  when modeled as a normal random variable with mean 𝑦𝑦�𝑡𝑡 and variance 𝜎𝜎�2 is 
below a particular threshold. 
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Input: 

 
The inputs to OD (outlier detection) are: (1) 𝑦𝑦𝑡𝑡 ,∀ 𝑡𝑡; (2) 𝑦𝑦�𝑡𝑡 ,∀ 𝑡𝑡; (3) 𝜎𝜎�2; (4) the outlier threshold value 𝜅𝜅 ∈ (0,1] 
(the default is 0.95). 

 
Computation: 

 
a) Under the assumption that the observed value 𝑦𝑦𝑡𝑡  is a normal random variable with mean 𝑦𝑦�𝑡𝑡 and variance 

𝜎𝜎�2, compute the square score at time t as 
 

 
 

b) Compute the outlier probability as 
 

 
                               

where 𝜒𝜒12 is a random variable with a chi-squared distribution with 1 degree of freedom. 
 

c) Flag 𝑦𝑦𝑡𝑡  as an outlier if 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡 ≥ 𝜅𝜅. 
 
Output: 

 
The output to OD for series y is a set of time points with their corresponding outlier probabilities. 

 
6. Outlier root cause analysis 
In Section 5, we saw how to detect outliers. The next logical step is to find the likely causes for a time series whose 
value has been flagged as an outlier. Outlier root cause analysis refers to the capability to explore the Granger causal 
graph in order to analyse the key/root values that resulted in the outlier under question. To formalize this notion, 
consider a time series y, whose observed value at time t (that is, 𝑦𝑦𝑡𝑡) has been flagged as an outlier due to its 
abnormal deviation from its expected value 𝑦𝑦�𝑡𝑡. The goal of outlier root cause analysis (ORCA) is to output the set of 
time series 𝒜𝒜 that can be considered as root causes of the anomalous value of 𝑦𝑦𝑡𝑡 . The idea is that setting the values 
of time series in the predictor set X to their normal/expected values, instead of their observed values, will bring the 
outlying 𝑦𝑦𝑡𝑡  back to normal. The normal value of 𝑦𝑦𝑡𝑡  is unknown so we specify it with the expected value of y at time 
t as predicted by y’s univariate model, which is an AR(L) model, and denoted as 𝑦𝑦�𝑡𝑡. 

The result of ORCA has the following objective function with a constraint as follows: 

 
 

  

 
 

where 𝒜𝒜𝑦𝑦 corresponds to the set of ancestors of y according to the Granger causal graph G. The quantity 𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� 
should be interpreted as the likely predicted value of y at time t had the value of its ancestor x been set to its 
expected value of 𝑥𝑥�. We see that Equation (28) is made up of two parts: (1) the portion |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡|, which is the 
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degree of “outlier-ness” of y at t as predicted by the “Granger model”, where the outlier-ness is judged based on 
what is expected from the history of  y; (2) the portion |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|, which is the degree of “outlier-ness” of y at t 
as predicted by the “Granger model”, if x was corrected. In other words, Equation (28) amounts to replacing the 
observed value 𝑦𝑦𝑡𝑡  by its “expected” value, given by a simpler, univariate model. Therefore Equation (28) 
expresses the reduction in the degree of outlier-ness in 𝑦𝑦𝑡𝑡  brought about by correcting x. 

6.1 ORCA, the outlier root cause analysis algorithm 
 
Input: 

 
The inputs to ORCA are: (1) y, the anomalous time series; (2) t, the time at which the anomaly was detected; (3) 𝑦𝑦𝑡𝑡 , 
the anomalous value; (4) 𝑦𝑦�𝑡𝑡, the expected value of 𝑦𝑦𝑡𝑡; (5) k, the oldest generation of ancestors to search based on the 
Granger causal graph, G. 

 
Output: 

 
ORCA outputs the set of root causes 𝒜𝒜 of the anomaly in 𝑦𝑦𝑡𝑡 , where each 𝒙𝒙 ∈ 𝒜𝒜 maximizes the objective function in 
Equation (28) by the same amount. 

 
Preparation: 

 
To prepare for ORCA, we first compute 𝒜𝒜𝑦𝑦, the set of ancestors that need to be examined as the potential root 
causes of the anomaly in 𝑦𝑦𝑡𝑡 . 

Figure 3:  Outlier root cause analysis for a time series 
 

 
In the example shown in Figure 3, assuming that y=“a” and 𝑟𝑟 = 2, then 𝒜𝒜𝑦𝑦 = { “b”, “c”, “d”, “e”, “f”, “g”, “h”, 
“i”, “j”}. 𝒜𝒜𝑦𝑦 can be computed by performing a reverse breadth-first search from y to k levels. 

 
Second, each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦 is prepped for scenario analysis by computing the vector of substitute 
values of x to be used during scenario analysis. Note that the length of this substitute vector is L, the lag. For 
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example, consider 𝒃𝒃𝐿𝐿 , the substitute for time series “b” in Figure 3. As “b” is a parent of “a”, we need to compute 
the fits of “b” from (𝑡𝑡 − 𝐿𝐿) to (𝑡𝑡 − 1). On the other hand, as “g” is a grand-parent of “a”, 𝒈𝒈𝐿𝐿 contains the fits for 
“g” from the time (𝑡𝑡 − 𝐿𝐿 − 1) to (𝑡𝑡 − 2) (see Section 3.1 for computation of fits). Please note that this approach 
assumes that any anomalies are purely in “b” (the parent series) or “g” (the grandparent series). In particular, it is 
assumed that anomalies in “b” are not caused by values in the grandparent series, including anomalous values in the 
grandparent series. 

 
Third, for each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦, scenario analysis is carried out (see Section 4) using the substitute 
values computed in the previous step. For the example in Figure 3, scenario analysis is called for series “b” with the 
parameters (𝒓𝒓 − 𝒃𝒃, 𝒓𝒓𝑊𝑊 = 𝑏𝑏𝐿𝐿 , 𝑡𝑡𝑏𝑏 = (𝑡𝑡 − 𝐿𝐿), 𝑡𝑡𝑠𝑠 = (𝑡𝑡 − 1),𝑇𝑇 = 𝑡𝑡,𝐷𝐷 = {𝒂𝒂},𝑇𝑇𝑠𝑠 = 𝑡𝑡). And the result of scenario analysis 
is 𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥�. 

 
Computation: 

 
The process of ORCA is as follows: 
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TREE Algorithms 
The TREE procedure creates a tree-based classification model using the CART, CHAID, or 
QUEST algorithm. 

 
CART Algorithms 

The CART algorithm is based on Classification and Regression Trees by Breiman et al (1984). A 
CART tree is a binary decision tree that is constructed by splitting a node into two child nodes 
repeatedly, beginning with the root node that contains the whole learning sample. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Y The dependent, or target, variable. It can be ordinal categorical, nominal 
categorical or continuous. If Y is categorical with J classes, its class takes 
values in C = {1, …, J}. 

, m=1,...,M The set of all predictor variables. A predictor can be ordinal categorical, 
nominal categorical or continuous. 
The whole learning sample. 

 

The learning samples that fall in node t. 

The case weight associated with case n. 

                                           The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer. 

π(j), j=1,...,J Prior probability of Y = j, j = 1, …, J. 
p(j,t), j=1,...,J The probability of a case in class j and node t. 
p(t) The probability of a case in node t. 
p(j|t), j=1,...,J The probability of a case in class j given that it falls into node t. 
C(i|j) The cost of miss-classifying a class j case as a class i case. C(j|j)=0 

 
 
Tree Growing Process 

The basic idea of tree growing is to choose a split among all the possible splits at each node so that 
the resulting child nodes are the “purest”. In this algorithm, only univariate splits are considered. 
That is, each split depends on the value of only one predictor variable. All possible splits consist 
of possible splits of each predictor. If X is a nominal categorical variable of I categories, there are 

        possible splits for this predictor. If X is an ordinal categorical or continuous variable with 
K different values, there are K−1 different splits on X. A tree is grown starting from the root node 
by repeatedly using the following steps on each node. 

1. Find each predictor’s best split. 

For each continuous and ordinal predictor, sort its values from the smallest to the largest. For the 
sorted predictor, go through each value from top to examine each candidate split point (call it v, 
if x≤v, the case goes to the left child node, otherwise, it goes to the right) to determine the best. 
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The best split point is the one that maximize the splitting criterion the most when the node is split 
according to it. The definition of splitting criterion is in a later section. 

For each nominal predictor, examine each possible subset of categories (call it A, if , the 
case goes to the left child node, otherwise, it goes to the right) to find the best split. 

2. Find the node’s best split. 

Among the best splits found in step 1, choose the one that maximizes the splitting criterion. 

3. Split the node using its best split found in step 2 if the stopping rules are not satisfied. 

 
Splitting Criteria and Impurity Measures 

At node t, the best split s is chosen to maximize a splitting criterion . When the impurity 
measure for a node can be defined, the splitting criterion corresponds to a decrease in impurity. 

is referred to as the improvement. 
 

Categorical Dependent Variable 

If Y is categorical, there are three splitting criteria available: Gini, Twoing, and ordered Twoing 
criteria. At node t, let probabilities p(j,t), p(t) and p(j|t) be estimated by 

 

 

 

 

 
 

 

 
 

where 
 

 

 
with I(a=b) being the indicator function taking value 1 when a=b, 0 otherwise. 

 
Gini Criterion 

The Gini impurity measure at a node t is defined as 
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The Gini splitting criterion is the decrease of impurity defined as 
 

 
where  and are probabilities of sending a case to the left child node and to the right child 
node respectively. They are estimated as and  . 

 
Note: When user-specified costs are involved, the altered priors can optionally be used to replace 
the priors. When altered priors are used, the problem is considered as if no costs are involved. The 
altered prior is defined as  = , where . 

 
 

Note: When the Gini index is used to find the improvement for a split during tree growth, only 
those records in node t and the root node with valid values for the split-predictor are used to 
compute Nj(t) and Nj, respectively. 

 
Twoing Criterion 

 

 
Ordered Twoing Criterion 

Ordered Twoing is used only when Y is ordinal categorical. Its algorithm is as follows: 

1. First separate the class C = {1, …, J} of Y as two super-classes C1 and C2 = C−C1 such that C1 is 
of the form C1 = {1, …, j1}, j1 = 1, …,  J−1. 

2. Using the 2-class measure i(t) = p(C1 | t)p(C2 | t), find the split s*(C1) that maximizes 

3. Find the super-class C*1 of C1 which maximizes . 
 

Continuous Dependent Variable 
 

When Y is continuous, the splitting criterion is used with the 
Least Squares Deviation (LSD) impurity measures 
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where 
 

                      ,                      ,   
 
 

 

Stopping Rules 

Stopping rules control if the tree growing process should be stopped or not. The following 
stopping rules are used: 
 If a node becomes pure; that is, all cases in a node have identical values of the dependent 

variable, the node will not be split. 
 If all cases in a node have identical values for each predictor, the node will not be split. 
 If the current tree depth reaches the user-specified maximum tree depth limit value, the tree 

growing process will stop. 
 If the size of a node is less than the user-specified minimum node size value, the node will 

not be split. 
 If the split of a node results in a child node whose node size is less than the user-specified 

minimum child node size value, the node will not be split. 
 If for the best split s* of node t, the improvement is smaller than 

the user-specified minimum improvement, the node will not be split. 

 
Surrogate Splits 

Given a split , its surrogate split is a split using another predictor variable X, (or 
), such that this split is most similar to it and is with positive predictive measure of 

association. There may be multiple surrogate splits. The bigger the predictive measure of 
association is, the better the surrogate split is. 

 
Predictive measure of association 

Let (resp. ) be the set of learning cases (resp. learning cases in node t) that has 
non-missing values of both X* and X. Let be the probability of sending a case in 

  to the same child by both and , and be the split with maximized probability 
. 

The predictive measure of association between s* and at node t is 
 

where (resp. ) is the relative probability that the best split s* at node t sends a case with 
non-missing value of X* to the left (resp. right) child node. And where 
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and being the indicator function taking value 1 when both splits s* and send 
the case n to the same child, 0 otherwise. 

 
Missing Value Handling 

If the dependent variable of a case is missing, this case will be ignored in the analysis. If all 
predictor variables of a case are missing, this case will also be ignored. If the case weight is 
missing, zero, or negative, the case is ignored. If the frequency weight is missing, zero, or 
negative, the case is ignored. 

 
The surrogate split method is otherwise used to deal with missing data in predictor variables. 
Suppose that X* < s* is the best split at a node. If value of X* is missing for a case, the best 
surrogate split (among all non-missing predictors associated with surrogate splits) will be used 
to decide which child node it should go. If there are no surrogate splits or all the predictors 
associated with surrogate splits for a case are missing, the majority rule is used. 

 
Variable Importance 

The Measure of Importance M(X) of a predictor variable X in relation to the final tree T is defined 
as the (weighted) sum across all splits in the tree of the improvements that X has when it is used 
as a primary or surrogate (but not competitor) splitter. That is, 

 

 

If, for a given t, the rank of the surrogate is larger than the maximum number of surrogates to 
keep in each node, then the contribution of that split is set to 0. 



 
 
 

 

TREE Algorithms 
 

The Variable Importance VI(X) of X is expressed in terms of a normalized quantity relative to 
the variable having the largest measure of importance. It ranges from 0 to 100, with the variable 
having the largest measure of importance scored as 100. That is, 
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CHAID and Exhaustive CHAID Algorithms 

The CHAID algorithm is originally proposed by Kass (1980) and the Exhaustive CHAID is by 
Biggs et al (1991). Algorithm CHAID and Exhaustive CHAID allow multiple splits of a node. 

 
Both CHAID and exhaustive CHAID algorithms consist of three steps: merging, splitting and 
stopping. A tree is grown by repeatedly using these three steps on each node starting from the 
root node. 

 
 
Notation 

 
The following notation is used throughout this chapter unless otherwise stated: 

 
Y The dependent variable, or target variable.  It can be ordinal categorical, 

nominal categorical or continuous. If Y is categorical with J classes, its 
class takes values in C = {1, …, J}. 

, m=1, ..., M The set of all predictor variables. A predictor can be ordinal categorical, 
nominal categorical or continuous. 
The whole learning sample. 

 

The case weight associated with case n. 

                                          The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer. 

 
 
CHAID Algorithm 

 
The following algorithm only accepts nominal or ordinal categorical predictors. When predictors 
are continuous, they are transformed into ordinal predictors before using the following algorithm. 
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Binning Continuous Predictors 

For a given set of break points (in ascending order), a given x is mapped into 
category C(x) as follows: 

 

 
If K is the desired number of bins, the break points are computed as follows: 

 
Calculate the rank of  . Frequency weights are incorporated when calculating the ranks. If there 
are ties, the average rank is used. Denote the rank and the corresponding values in ascending 
order as . 

 
For k =0 to (𝐾𝐾 − 1), set 𝐼𝐼𝑘𝑘 = �𝑖𝑖: �𝑟𝑟(𝑖𝑖)

𝐾𝐾
𝑁𝑁𝑓𝑓+1

� = 𝑟𝑟� where ⌊𝑥𝑥⌋ denotes the floor integer of 𝑥𝑥. If 𝐼𝐼𝑘𝑘 is 

not empty, 𝑖𝑖𝑘𝑘 = max {𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼𝑘𝑘}. The break points are set equal to the 𝑥𝑥 values corresponding to the 
𝑖𝑖𝑘𝑘, excluding the largest. 

 
Merging 

For each predictor variable X, merge non-significant categories. Each final category of X will 
result in one child node if X is used to split the node. The merging step also calculates the adjusted 
p-value that is to be used in the splitting step. 

1. If X has 1 category only, stop and set the adjusted p-value to be 1. 

2. If X has 2 categories, go to step 8. 

3. Else, find the allowable pair of categories of X (an allowable pair of categories for ordinal 
predictor is two adjacent categories, and for nominal predictor is any two categories) that is least 
significantly different (i.e., most similar). The most similar pair is the pair whose test statistic 
gives the largest p-value with respect to the dependent variable Y. How to calculate p-value under 
various situations will be described in later sections. 

4. For the pair having the largest p-value, check if its p-value is larger than a  user-specified 
alpha-level merge. If it does, this pair is merged into a single compound category. Then a new 
set of categories of X is formed.  If it does not, then go to step 7. 

5. (Optional) If the newly formed compound category consists of three or more original categories, 
then find the best binary split within the compound category which p-value is the smallest. 
Perform this binary split if its p-value is not larger than an alpha-level   split-merge. 

6. Go to step 2. 

7. (Optional) Any category having too few observations (as compared with a user-specified 
minimum segment size) is merged with the most similar other category as measured by the largest 
of the p-values. 

8. The adjusted p-value is computed for the merged categories by applying Bonferroni adjustments 
that are to be discussed later. 
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Splitting 

The “best” split for each predictor is found in the merging step. The splitting step selects which 
predictor to be used to best split the node. Selection is accomplished by comparing the adjusted 
p-value associated with each predictor. The adjusted p-value is obtained in the merging step. 

1. Select the predictor that has the smallest adjusted p-value (i.e., most significant). 

2. If this adjusted p-value is less than or equal to a user-specified alpha-level    split, split the node 
using this predictor. Else, do not split and the node is considered as a terminal node. 

 
Stopping 

The stopping step checks if the tree growing process should be stopped according to the following 
stopping rules. 

1. If a node becomes pure; that is, all cases in a node have identical values of the dependent variable, 
the node will not be split. 

2. If all cases in a node have identical values for each predictor, the node will not be split. 

3. If the current tree depth reaches the user specified maximum tree depth limit value, the tree 
growing process will stop. 

4. If the size of a node is less than the user-specified minimum node size value, the node will not be 
split. 

5. If the split of a node results in a child node whose node size is less than the user-specified 
minimum child node size value, child nodes that have too few cases (as compared with this 
minimum) will merge with the most similar child node as measured by the largest of the p-values. 
However, if the resulting number of child nodes is 1, the node will not be split. 

 
Exhaustive CHAID Algorithm 

Splitting and stopping steps in Exhaustive CHAID algorithm are the same as those in CHAID. 
Merging step uses an exhaustive search procedure to merge any similar pair until only a single 
pair remains. 

 
Also like CHAID, only nominal or ordinal categorical predictors are allowed, continuous 
predictors are first transformed into ordinal predictors before using the following algorithm. 

 
Merging 

1. If X has 1 category only, then set the adjusted p-value to be 1. 

2. Set index = 0.  Calculate the p-value based on the set of categories of X at this time.  Call the 
p-value p(index) = p(0). 

3. Else, find the allowable pair of categories of X that is least significantly different; that is, most 
similar.  This can be determined by the pair whose test statistic gives the largest p-value with 
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respect to the dependent variable Y. How to calculate p-value under various situations will be 
described in a later section. 

4. Merge the pair that gives the largest p-value into a compound category. 

5. (Optional) If the compound category just formed contains three or more original categories, 
search for a binary split of this compound category that gives the smallest p-value. If this p-value 
is larger than the one in forming the compound category by merging in the previous step, perform 
the binary split on that compound category. 

6. Update the index = index + 1, calculate the p-value based on the set of categories of X at this 
time.  Denote p(index) as the p-value. 

7. Repeat 3 to 6 until only two categories remain. Then among all the indices, find the set of 
categories such that p(index) is the smallest. 

8. (Optional) Any category having too few observations (as compared with a user-specified minimum 
segment size) is merged with the most similar other category as measured by the largest p-value. 

9. The adjusted p-value is computed by applying Bonferroni adjustments which are to be discussed 
in a later section. 

Unlike CHAID algorithm, no user-specified alpha-level is needed. Only the alpha-level αsplit is 
needed in the splitting step. 

 
p- Value Calculations 

Calculations of (unadjusted) p-values in the above algorithms depend on the type of dependent 
variable. 

 
The merging step of both CHAID and Exhaustive CHAID sometimes needs the p-value for a pair 
of X categories, and sometimes needs the p-value for all the categories of X. When the p-value for 
a pair of X categories is needed, only part of data in the current node is relevant. Let D denote the 
relevant data. Suppose in D there are I categories of X, and J categories of Y (if Y is categorical). 
The p-value calculation using data in D is given below. 

 
Scale Dependent Variable 

If the dependent variable Y is scale, perform an ANOVA F test that tests if the means of Y for 
different categories of X are the same. This ANOVA F test calculates the F-statistic and hence 
derives the p-value as 
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where 
 

, , 
 
 

and is a random variable following a F-distribution with degrees of freedom 
I−1 and 

 

Nominal Dependent Variable 

If the dependent variable Y is nominal categorical, the null hypothesis of independence of X and 
Y is tested. To perform the test, a contingency (or count) table is formed using classes of Y as 
columns and categories of the predictor X as rows. The expected cell frequencies under the null 
hypothesis are estimated. The observed cell frequencies and the expected cell frequencies are 
used to calculate the Pearson chi-squared statistic or likelihood ratio statistic. The p-value is 
computed based on either one of these two statistics. 

 
The Pearson’s Chi-square statistic and likelihood ratio statistic are, respectively, 

 

 
 

 

 
 

 

 

 
 

where is the observed cell frequency and   is the estimated 

expected cell frequency for cell                following the independence model. The 
corresponding p-value is given by for Pearson’s Chi-square test or 

  for likelihood ratio test, where follows a chi-squared distribution with 
degrees of freedom d = (J−1)(I−1). 

 
Estimation of Expected Cell Frequencies without Case Weights 

 

where 
 

, , 
 
 

Estimation of Expected Cell Frequencies with Case Weights 
 

If case weights are specified, the expected cell frequency under the null hypothesis of 
independence is of the form 
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where and   are parameters to be estimated, and 

           , 

Parameters estimates , , and hence , are resulted from the following iterative procedure. 

1. ,                 ,   

2.                 

 
3.   

 
4.   

5.   If , stop and output and   as the final estimates. 
Otherwise, k=k+1, go to step 2. 

 
Ordinal Dependent Variable 

If the dependent variable Y is categorical ordinal, the null hypothesis of independence of X and Y 
is tested against the row effects model, with the rows being the categories of X and columns the 
classes of Y, proposed by Goodman (1979).  Two sets of expected cell frequencies,   (under 
the hypothesis of independence) and   (under the hypothesis that the data follow a row effects 
model), are both estimated. The likelihood ratio statistic and the p-value are 

 

 

 
Estimation of Expected Cell Frequencies under Row Effects Model 

 
In the row effects model, scores for classes of Y are needed. By default, the order of a class of Y is 
used as the class score. Users can specify their own set of scores. Scores are set at the beginning 
of the tree and kept unchanged afterward. Let be the score for class j of Y, j = 1, …, J. The 
expected cell frequency under the row effects model is given by 

 

 
where 
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in which  , ,   and  are unknown parameters to be estimated. Parameters 
estimates and hence are resulted from the following iterative procedure. 

 
1. ,                     ,   

2.              

 
 

3.           

 
4. 

 
,   

  
 

5. 
otherwise 

 
6. 

 
 

7.   If , stop and output and   as the final 
estimates.  Otherwise, k=k+1, go to step 2. 

 
 
Bonferroni Adjustments 
 

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni 
multiplier adjusts for multiple tests. 

 

CHAID 
 

Suppose that a predictor variable originally has I categories, and it is reduced to r categories after 
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories can 
be merged into r categories. For r = I, B = 1. For 2≤r<I, use the following equation. 
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Exhaustive CHAID 
 

Exhaustive CHAID merges two categories iteratively until only two categories left. The 
Bonferroni multiplier B is the sum of number of possible ways of merging two categories at 
each iteration. 

 

 
 

Missing Values 

If the dependent variable of a case is missing, it will not be used in the analysis. If all predictor 
variables of a case are missing, this case is ignored. If the case weight is missing, zero, or negative, 
the case is ignored. If the frequency weight is missing, zero, or negative, the case is ignored. 

 
Otherwise, missing values will be treated as a predictor category. For ordinal predictors, the 
algorithm first generates the “best” set of categories using all non-missing information from the 
data.  Next the algorithm identifies the category that is most similar to the missing category. 
Finally, the algorithm decides whether to merge the missing category with its most similar 
category or to keep the missing category as a separate category. Two p-values are calculated, one 
for the set of categories formed by merging the missing category with its most similar category, 
and the other for the set of categories formed by adding the missing category as a separate 
category.  Take the action that gives the smallest p-value. 

 
For nominal predictors, the missing category is treated the same as other categories in the analysis. 
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QUEST Algorithms 

QUEST is proposed by Loh and Shih (1997) as a Quick, Unbiased, Efficient, Statistical Tree. It is 
a tree-structured classification algorithm that yields a binary decision tree. A comparison study of 
QUEST and other algorithms was conducted by Lim et al (2000). 

 

Notation   
The following notation is used throughout this chapter unless otherwise stated: 
 
Y The dependent, or target, variable. It must be nominal categorical. If  Y is 

categorical with J classes, its class takes values in C = {1, …, J}. 
, m=1, ..., M The set of all predictor variables. A predictor can be nominal categorical or 

continuous (including ordinal categorical). 
The whole learning sample. 

 

The learning samples that fall in node t. 
 

                                          The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer. 

                                         Total number of learning cases,   
 

                                       Total number of class j learning cases,  

Total number of learning cases in node t,   

                        Total number of class j learning cases in node t, 
. 

 

π(j), j=1,...,J Prior probability of Y = j, j = 1, …, J. 
p(j,t), j=1,...,J The probability of a case in class j and node t. 
p(t) The probability of a case in node t. 
p(j|t), j=1,...,J The probability of a case in class j given that it falls into node t. 
C(i|j) The cost of miss-classifying a class j case as a class i case. C(j|j)=0 

 
 

Tree Growing Process 

The QUEST tree growing process consists of the selection of a split predictor, selection of a 
split point for the selected predictor, and stopping. In this algorithm, only univariate splits are 
considered. 

 
Selection of Split Predictor 

1. For each continuous predictor X, perform an ANOVA F test that tests if all the different classes of 
the dependent variable Y have the same mean of X, and calculate the p-value according to the 
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F statistics. For each categorical predictor, perform a Pearson’s chi-square test of Y and X’s 
independence, and calculate the p-value according to the chi-square statistics. 

2. Find the predictor with the smallest p-value and denote it X*. 

3. If this smallest p-value is less than α / M, where α∈(0,1) is a user-specified level of significance 
and M is the total number of predictor variables, predictor X* is selected as the split predictor 
for the node.  If not, go to 4. 

 
4. For each continuous predictor X, compute a Levene’s F statistic based on the absolute deviation 

of X from its class mean to test if the variances of X for different classes of Y are the same, and 
calculate the p-value for the test. 

5. Find the predictor with the smallest p-value and denote it as X**. 

6. If this smallest p-value is less than α/(M + M1), where M1 is the number of continuous predictors, 
X** is selected as the split predictor for the node. Otherwise, this node is not split. 

 
ANOVA F Test 

 
Suppose, for node t, there are  classes of dependent variable Y. The F statistic for a continuous 
predictor X is given by 

 

 

where 
 

                                                , 
 

Its corresponding p-value is given by 
 

 
where F( −1 ,       ) follows an F distribution with −1 and         degrees of 
freedom. 

 
Pearson’s Chi-Square Test 

 
Suppose, for node t, there are   classes of dependent variable Y. The Pearson’s Chi-Square 
statistic for a categorical predictor X with  categories is given by 
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where 
 

,   
 

with 
 

, , 
 

where =1 if case n has and ; 0 otherwise. 

The corresponding p-value is given by   where  follows a chi-squared 
distribution with degrees of freedom d = (   −1)(   −1). 

 
Levene’s F Test 

For continuous predictor X, calculate                    . The Levene’s F statistics for predictor 
X is the ANOVA F statistic for . 

 
Selection of Split Point 

At a node, suppose that a predictor variable X has been selected for splitting. The next step is to 
determine the split point. If X is a continuous predictor variable, a split point d in the split X≤d  
is to be determined. If X is a nominal categorical predictor variable, a subset K of the set of all 
values taken by X in the split X∈K is to be determined. The algorithm is as follows. 

Continuous Splitting Predictor 

If the selected predictor variable X is continuous: 

1. Group classes of dependent variable Y into two super-classes. If there are only two classes of Y, 
go to step 2. Otherwise, calculate the sample mean of X for each class of Y. If all class means 
are identical, the class with the most cases is gathered as super-class A and the other  classes 
as super-class B. If there are two or more classes with the same maximum number of cases,  
the one with the smallest class index j is chosen to form A and the rest to B. If not all the class 
means are identical, a k-means clustering method, with the initial cluster centers set at the two 
most extreme class means, is applied to class means to divide classes of Y into two super-classes: 
A and B. Let and  denote the sample mean and variance for super-class A, and   the 
sample mean and variance for super-class B. 

2. If , order the two super-classes by their variance in increasing order and denote 
the variances by       , and the corresponding means by . Let ε be a very small positive 
number, say ε=10-12. If , . Else,  . 
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3. If    , quadratic discriminant analysis (QDA) is applied to determine the split 
point d. QDA assumes that X follows a normal distributions in each super-class with the 
calculated sample mean and variance. The split point is among the roots that make probability 

for node t, where 
 

with 
 

, 
 
 

Solving is equivalent to solving the following quadratic equation 
 

 

where 
 

, 
 

 

If there is only one real root, it is chosen to be the split point, provided this yields two non-empty 
nodes.  If there are two real roots, choose the one that is closer to , provided this yields two 
non-empty nodes. Otherwise use the mean               as split point. 

 
Note: In step 3, the prior probability distribution for the dependent variable is needed. When user 
specified costs are involved, the altered priors can be used to replace the priors (optional). The 
altered prior is defined as  = , where C(j) = . 

 
 

Nominal Splitting Predictor 
 

If the selected predictor variable X is nominal and with more than two categories (if X is binary, 
the split point is clear), QUEST first transforms it into a continuous variable (call it ξ) by assigning 
the largest discriminant coordinates to categories of the predictor. QUEST then applies the split 
point selection algorithm for continuous predictor on ξ to determine the split point. 

 
Transforming a Categorical Predictor into a Continuous Predictor 

 
Let X be a nominal categorical predictor taking values in the set {b1, …, bI}. Transform X into a 
continuous variable ξ such that the ratio of between-classes to within-classes sum squares of ξ is 
maximized (the classes here refer to the classes of dependent variable). The details are as follows: 
 Transform each value x of X in into an I-dimensional dummy vector v = (v1, …, vI)’, where 

otherwise . 
 Calculate the overall and class j mean of v 
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,   
 Calculate the following I×I matrices. 

 

 
 

 
   

 
 Perform single value decomposition on T to obtain T = QDQ’, where Q is an I×I orthogonal 

matrix, D = diag(d1, …, dI) such that d1 ≥ … ≥ dI ≥ 0. Let = diag( , …, ) where 
  if di > 0, 0 otherwise. Perform single value decomposition on to 

obtain its eigenvector a which is associated with its largest eigenvalue. 
 The largest discriminant coordinate of v is the projection 

 

Note: The original QUEST by Loh and Shih (1997) transforms a categorical predictor into a 
continuous predictor at a considered node based on the data in the node.  This implementation 
of QUEST does the transformation only once at the very beginning based on the whole learning 
sample. 

 

Stopping 
 

The stopping step checks if the tree growing process should be stopped according to the following 
stopping rules. 

 
1. If a node becomes pure; that is, all cases belong to the same dependent variable class at the node, 

the node will not be split. 
 

2. If all cases in a node have identical values for each predictor, the node will not be split. 
 

3. If the current tree depth reaches the user-specified maximum tree depth limit value, the tree 
growing process will stop. 

 
4. If the size of a node is less than the user-specified minimum node size value, the node will not be 

split. 
 

5. If the split of a node results in a child node whose node size is less than the user-specified 
minimum child node size value, the node will not be split. 

 

Missing Values 
 

If the dependent variable of a case is missing, this case will be ignored in the analysis. If all 
predictor variables of a case are missing, this case will be ignored. If the frequency weight is 
missing, zero or negative, the case will be ignored. 
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Otherwise, the surrogate split method will be used to deal with missing data in predictor variables. 
If a case has a missing value at the selected predictor, the assignment will be done based on the 
surrogate split. The method of defining and calculating surrogate splits is the same as that in 
CART. For more information, see the topic “Missing Value Handling”. 
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Assignment and Risk Estimation Algorithms 

This section discusses how a class or a value is assigned to a node and to a case and three methods 
of risk estimation: the resubstitution method, test sample method and cross validation method. 
The information is applicable to the tree growing algorithms CART, CHAID, exhaustive CHAID 
and QUEST. Materials in this document are based on Classification and Regression Trees by 
Breiman, et al (1984). It is assumed that a CART, CHAID, exhaustive CHAID or QUEST tree has 
been grown successfully using a learning sample. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

Y The dependent variable, or target variable.  It can be either categorical 
(nominal or ordinal) or continuous. If Y is categorical with J classes, its 
class takes values in C = {1, …, J}. 
The learning sample where and are the predictor vector and dependent 
variable for case n. 
The learning samples that fall in node t. 

 
                                          The frequency weight associated with case n. Non-integral positive value is 

rounded to its nearest integer. 
The case weight associated with case n. 

π(j), j=1,...,J Prior probability of Y = j 
C(i | j) The cost of miss-classifying a class j case as a class i case, C(j | j)=0. 

 
 
Assignment 

Once the tree is grown, an assignment (also called action or decision) is given to each node based 
on the learning sample. To predict the dependent variable value for an incoming case, we first find 
in which terminal node it falls, then use the assignment of that terminal node for prediction. 
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Assignment of a Node 

For any node t, let  be the assignment given to node t, 
 

is categorical 
is continuous 

 

 

 
where 

 

, 
 
 

,   
 

                               , 
 

If there is more than one class j that achieves the minimum, choose j*(t) to be the smallest such j 
for which                           is greater than 0, or the absolute smallest if Nf, j(t) is zero 

for all of them. For CHAID and exhaustive CHAID, use in the equation. 

Assignment of a Case 

For a case with predictor vector x, the assignment or prediction dT(x) for this case by the tree T is 

is categorical 
is continuous 

 
where is the terminal node the case falls in. 

 

Risk Estimation 

Note that case weight is not involved in risk estimation, though it is involved in tree growing 
process and class assignment. 

 
Loss Function 

A loss function L(y, a) is a real-valued function in which y is the actual value of Y and a is the 
assignment taken. Throughout this document, the following types of loss functions are used. 
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is categorical 
is continuous 

 
 

Risk Estimation of a Tree 
 

Suppose that a tree T is grown and assignments have been given to each node. Let  denote the 
set of terminal nodes of the tree. Let D be the data set used to calculate the risk. Dropping all 
cases in D to T, let D(t) denote the set of cases that fall in node t.  The risk of the tree  based 
on data D is estimated by 
 

 
 

where M1 represents empirical prior situation, and M2 non-empirical prior, and 
 

,  
 
 

, 
 
 

Assuming that are independent of each other, then the variance of  R(T) is 
estimated by 

 
where 
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Putting everything together: 
 

 
 

 
 

where 
 

 

The estimated standard error of R(T|D) is given by se . 
Risk estimation of a tree is often written as with being the 

contribution from node t to the tree risk such that 
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Resubstitution Estimate of the Risk 
 

The resubstitution risk estimation method uses the same set of data (learning sample) that is used 
to grow the tree T to calculate its risk, that is: 

 

 

 

 
  

 

Var Var 
 
 

Test Sample Estimate of the Risk 
 

The idea of test sample risk estimation is that the whole data set is divided into 2 mutually 
exclusive subsets and  . is used as a learning sample to grow a tree T and  is used as a test 
sample to check the accuracy of the tree. The test sample estimate is 

 

 
Var            Var 

 

Cross Validation Estimate of the Risk 
 

Cross validation estimation is provided only when a tree is grown using the automatic tree 
growing process.  Let T be a tree which has been grown using all data from the whole data set 

. Let be a positive integer. 

1. Divide into V mutually exclusive subsets , v = 1, …, V. Let be − , v = 1, …, V. 

2. For each v, consider  as a learning sample and grow a tree   on   by using the same set of 
user specified stopping rules which was applied to grow T. 

3. After is grown and assignment or for node t of is done, consider as a test 
sample and calculate its test sample risk estimate         . 

4. Repeat above for each v = 1, …, V. The weighted average of these test sample risk estimates is 
used as the V-fold cross validation risk estimate of T. 

 
The V-fold cross validation estimate, , of the risk of a tree T and its variance are estimated 
by 
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where 
 

 
                  ,   

 
, , 
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Gain Summary Algorithms 

The Gain Summary summarizes a tree by displaying descriptive statistics for each terminal node. 
This allows users to recognize the relative contribution of each terminal node and identify the 
subsets of terminal nodes that are most useful. This document can be used for all tree growing 
algorithms CART, CHAID, exhaustive CHAID and QUEST. 

 
Note that case weight is not involved in gain summary calculations though it is involved in tree 
growing process and class assignment. 

 
Types of Gain Summaries 

Depending on the type of dependent variable, different statistics are given in the gain summary. 
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Average Oriented Gain Summary (Y continuous). Statistics related to the node mean of Y are 
given. Through this summary, users may identify the terminal nodes that give the largest (or 
smallest) average of the dependent variable. 

 
Target Class Gain Summary (Y categorical). Statistics related to an interested dependent 
variable class (target class) are given. Users may identify the terminal nodes that have a large 
relative contribution to the target class. 

 
Average Profit Value Gain Summary (Y categorical). Statistics related to average profits are 
given. Users may be interested in identifying the terminal nodes that have relatively large 
average profit values. 

 
Node-by-Node, Cumulative, Percentile Gain Summary. To assist users in identifying the 
interesting terminal nodes and in understanding the result of a tree, three different ways (node-by-
node, cumulative and percentile) of looking at the gain summaries mentioned above are provided. 

 

Notation 
 

The following notation is used throughout this chapter unless otherwise stated: 

Y The dependent, or target, variable.  It can be either categorical (nominal 
or ordinal) or continuous. If Y is categorical with J classes, its class takes 
values in C = {1, …, J}. 

D Data set used to calculate gain statistics.  It can be either learning sample 
data set or test sample data set. 

D(t) Cases in D in node t. 
The dependent variable value for case n. 

                                          The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer. 

                                         The number of cases in D,   
 

The number of cases in D(t),   

                            The number of class j cases in D,  

                         The number of class j cases in D(t),     
 

The mean of dependent variable in D(t), 
 

                                          Target class of interest; it is any value in {1, …, J}. If not user-specified, 
the default target class is 1. 

r(j), e(j) Respectively, the revenue and expense associated with class j. 
pv(j) The profit value associated with class j, pv(j) = r(j)−e(j) 

                                                   Class assignment given by terminal node  . 

Prior probability of class j, j = 1, …, J. 
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M1 For categorical Y, denotes the empirical prior situation.  CHAID and 
exhaustive CHAID are always considered as having an empirical prior. 

M2 For categorical Y, denotes the non-empirical prior situation. 
 
 
Node by Node Summary 

The node-by-node gain summary includes statistics for each node that are defined as follows. 
 

Terminal Node 

The identity of a terminal node.  It is denoted by  . 
 

Size: n 

Total number of cases in the terminal node. It is denoted by   . 
 

Size: % 

Percentage of cases in the node. It is denoted by 100%, where  is given by 
 

 
Gain: n 

Total number of target class   cases in the node,    . 

This is only computed for the target class gain summary type. 

Gain: % 

Percentage of target class   cases in the sample that belong to the node. It is denoted by 
100%, where 

 

 
This is only computed for the target class gain summary type. 

 
Score 

Depending on the type of gain summary, the score is defined and named differently. But they 
are all denoted by s(   ). 
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Response:  % (for target class gain summary only) 
 

The ratio of the number of target class  cases in the node to the total number of cases in the node. 
 

 
 

Average Profit (for average profit value gain summary only) 
 

The average profit value for the node. 
 

 
 
Mean (for average oriented gain summary only) 

The respective mean of the continuous dependent variable Y at the node. 
 

 
ROI (Return on Investment) 

ROI for a node is calculated as average profit divided by average expense. 
 

 
Where   is the average expense for node    and is calculated using  equation for   with 
pv(j) replaced by e(j). 

 
This is only computed for the average profit value gain summary type. 

 
Index (%) 

For the target class gain summary, it is the ratio of the score for the node to the proportion of class 
  cases in the sample.  It is denoted by is (  )100%, where is (  ) is 
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For the average profit value gain summary, it is the ratio of the score for the node to the average 
profit value for the sample. 

 

 
For the average oriented gain summary, it is the ratio of the gain score for the node to the gain 
score s(t = 1) for root node t =  1. 

 

 
Note: if the denominator is 0, the index is not available. 

 
Cumulative Summary 

In the cumulative gain summary, all nodes are first sorted with respect to the values of the score 
 .  To simplify the formulas, we assume that nodes in the collection { , , …, } are 

already sorted either in descending or ascending order. 
 

Terminal Node 

The identity of a terminal node.  It is denoted by . 
 

Cumulative Size: n 
 
 

  

 

  
 

Cumulative Size: % 
 
 

  

 

  
 

Cumulative Gain: n 
 
 

  

 

  



 
 

( 

( 
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Cumulative Gain: % 
 

 
 

 

  
 

Score 
 

For Cumulative response, it is the ratio of the number of target class   cases up to the node to 
the total number of cases up to the node. For cumulative average profit, it is the average profit 
value up to the node. For cumulative mean, it is the mean of all yn’s up to the terminal nodes. In 
all cases, the same formula is used, but the appropriate formulas for s( ) and pf( ) should be 
used in the calculations.  This cumulative score is denoted by: 

 
 

    
M1, or, Y continuous 

(  
    

M2 

 

Cumulative ROI 
 

 
Where   is the cumulative expense and calculated by  equation for   with 

  replaced by  . 
 

This is only computed for the average profit value gain summary type. 

 
Cumulative Index % 

 
For the target class cumulative gain summary, it is the ratio of the cumulative gain score for the 
node to the proportion of class   cases in the sample. It is denoted by ( )100%, where: 
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For the average profit value cumulative gain summary, it is the ratio of the cumulative gain score 
for the node to the average profit value for the sample. 
 

 
For the average oriented cumulative gain summary, it is the ratio of the cumulative score for the 
node to the score s(t = 1) for root node t =  1. 

 

 
Note: if the denominator is 0, the index is not available. 

 
Percentile Summary 

Like cumulative gain summary, all nodes are first sorted with respect to the values of their scores. 
To simplify the formulas, we assume that nodes in the collection { ,  , …, } are already 
sorted in either descending or ascending order. Let q be any positive integer divisible to 100. The 
value of q will be used as the percentage increment for percentiles, and is user-specified (default 
q = 10). For fixed q, the number of percentiles to be studied is 100/q. The pth percentile to be 
studied is the pq%-tile, and its size is                     , p = 1, …, 100/q. For any pq%-tile, let 

and be the two smallest integers in {1, …, |   |} such that 

   ,             

where 
 

Terminal Node 

The identity of all terminal nodes that belong to the pth increment. Node �̃�𝑡 belongs to the pth 
increment if                         . 

 
Percentile (%) 

Percentile being studied. The pth percentile is the pq%-tile. 
 

Percentile: n 

Total number of cases in the percentile,                    , where [x] denotes the nearest 
integer of x. 
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Gain: n 

Total number of class   cases in the pq-percentile. 
 

 

where  ( ) is defined to be 0. 

This is only computed for the target class percentile gain summary type. 
 

Gain: % 

Percentage of class   cases in the sample that belong to the pq%-tile. It is denoted by 
  100%, where 

 

This is only computed for the target class percentile gain summary type. 
 

Percentile Score 

For the target class percentile gain summary, it is an estimate of the ratio of the number of class 
  cases in the pq-percentile to the total number of cases in the percentile. For the average profit 

value percentile gain summary, it is an estimate of the average profit value in the pq-percetile. For 
the average oriented percentile gain summary, it is an estimate of the average of the gain score for 
all nodes in the percentile.  In all charts, the same formula is used. 
 

 
where 

 

 
Percentile ROI 

 

where   is the percentile expense and calculated through equation with   replaced 
by . 

( 
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This is only computed for the average profit value gain summary type. 
 

Percentile Index 
 

For the target class percentile gain summary, it is the ratio of the percentile gain score for the 
pq-percentile to the proportion of class   cases in the sample. It is denoted by (p)100 percent, 
where 

 

 
For the average profit value percentile gain summary, it is the ratio of the percentile gain score for 
the pq-percentile to the average of the profit values for the sample. 

 

 
 

For the average oriented cumulative gain summary, it is the ratio of the percentile gain score in 
the pq-percentile to the gain score s(t = 1) for root node t = 1. 

 

 
Note: if the denominator, which is the average or the median of yn’s in the sample, is 0, the 
index is not available. 

 
Cost—Complexity Pruning Algorithms 

Assuming a CART or QUEST tree has been grown successfully using a learning sample, this 
document describes the automatic cost-complexity pruning process for both CART and QUEST 
trees. Materials in this document are based on Classification and Regression Trees by Breiman et 
al (1984). Calculations of the risk estimates used throughout this document are given in TREE 
Algorithms. 

 
Cost-Complexity Risk of a Tree 

Given a tree T and a real number α, the cost-complexity risk of T with respect to α is 
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where is the number of terminal nodes and R(T) is the resubstitution risk estimate of T. 
 
Smallest Optimally Pruned Subtree 

Pruned subtree. For any tree T,  is a pruned subtree of T if  is a tree with the same root node 
as T and all nodes of  are also nodes of T. Denote  if  is a pruned subtree of T. 

 
Optimally pruned subtree.  Given α, a pruned 𝑇𝑇′subtree of T is called an optimally pruned 
subtree of T with respect to α if  (𝑇𝑇′) = min𝑇𝑇"?𝑇𝑇𝑅𝑅𝑠𝑠(𝑇𝑇"). The optimally pruned subtree may not 
be unique 

 
Smallest  optimally  pruned  subtree. If  for any optimally pruned subtree  such that 

= , then is the smallest optimally pruned subtree of T0 with respect to 
α, and is denoted by T0(α). 

 
Cost-Complexity Pruning Process 

Suppose that a tree T0 was grown. The cost-complexity pruning process consists of two steps: 

1. Based on the learning sample, find a sequence of pruned subtrees       of T0 such that T0 ≻ 
T1 ≻ T2 ≻ … ≻ TK, where TK has only the root node of T0. 

2. Find an “honest” risk estimate (Tk) of each subtree. Select a right sized tree from the sequence 
of pruned subtrees. 

 
Generate a sequence of smallest optimally pruned subtrees 

To generate a sequence of pruned subtrees, the cost-complexity pruning technique developed by 
Breiman et. al. (1984) is used. In generating the sequence of subtrees, only the learning sample 
is used.  Given any real value         ( ) and an initial tree T0, there exists a sequence 
of real values and a sequence of pruned subtrees 

, such that the smallest optimally pruned subtree of T0 for a given α is 
 

 
where 

 

,                           for all ancestors of t 
 

 
 

  is the branch of stemming from node t, and R(t) is the resubstitution risk estimate of 
node t based on the learning sample. 
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Explicit algorithm 
 

For node t, let  
 

is terminal 
left child of otherwise 

is terminal 
right child of otherwise 

is root node 
parent of otherwise 

is terminal 
otherwise 

is terminal 
otherwise 

 

 

Then the explicit algorithm is as follows: 
 

Initialization.   Set k=1, α=αmin 

For t=#T0 to 1: 

if t is a terminal node, set 
 

=1, S(t)=R(t), g(t)=G(t)=+∞ 
 

else set 
 

= + 
 

S(t) = S(lt(t)) + S(rt(t)) 
 

g(t) = (R(t) −S(t))/( −1) 
 

G(t) = min{g(t), G(lt(t)), G(rt(t))} 
 

Main algorithm.  If G(1) > α,  set 
 

and                           for all ancestor s of t  
 

α=G(1), k=k+1 
 

else if =1, terminate the process. 

Set t=1. 
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While G(t) < g(t), otherwise 

Make the current node t terminal by setting =1, S(t)=R(t), g(t)=G(t)=+∞ 
 

Update ancestor’s information of current node t; while t>1 

t=pa(t) 

= + 
 

S(t) = S(lt(t)) + S(rt(t)) 
 

g(t) = (R(t) −S(t))/( −1) 
 

G(t) = min{g(t), G(lt(t)), G(rt(t))} 
 

Repeat the main algorithm until the process terminates. 
 

Selecting the Right Sized Subtree 
 

To select the right sized pruned subtree from the sequence of pruned subtrees  of T0, an 
“honest” method is used to estimate the risk (Tk) and its standard error of each 
subtree Tk. Two methods can be used: the resubstitution estimation method and the test sample 
estimation method. Resubstitution estimation is used if there is no test sample. Test sample 
estimation is used if there is a testing sample. Select the subtree Tk* as the right sized subtree of 
T0 based on one of the following rules. 

 
Simple rule 

 

The right sized tree is selected as the k* ∈ {0, 1, 2, …, K} such that 
 

 
b-SE rule 

 
For any nonnegative real value b (default b = 1), the right sized tree is selected as the largest k** ∈ 
{0, 1, 2, …, K} such that 
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TSMODEL Algorithms 
The TSMODEL procedure builds univariate exponential smoothing, ARIMA (Autoregressive 
Integrated Moving Average), and transfer function (TF) models for time series, and produces 
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate 
model for each dependent variable series. Alternatively, you can specify a custom model. 

 
This algorithm is designed with help from professor Ruey Tsay at The University of Chicago. 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

Yt (t=1, 2, ..., n) Univariate time series under investigation. 
n Total number of observations. 

Model-estimated k-step ahead forecast at time t for series Y. 
 

S The seasonal length. 
 
 
Models 

TSMODEL estimates exponential smoothing models and ARIMA/TF models. 
 

Exponential Smoothing Models 

The following notation is specific to exponential smoothing models: 

Level smoothing weight 

Trend smoothing weight 

Damped trend smoothing weight 

Season smoothing weight 

 
 

Simple Exponential Smoothing 
 

Simple exponential smoothing has a single level parameter and can be described by the following 
equations: 

 

 

 
It is functionally equivalent to an ARIMA(0,1,1) process. 

   



 
 
 

 

TSMODEL Algorithms 
 

Brown’s Exponential Smoothing 
 

Brown’s exponential smoothing has level and trend parameters and can be described by the 
following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters. 

 

Holt’s Exponential Smoothing 
 

Holt’s exponential smoothing has level and trend parameters and can be described by the 
following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(0,2,2). 

 

Damped-Trend Exponential Smoothing 
 

Damped-Trend exponential smoothing has level and damped trend parameters and can be 
described by the following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(1,1,2). 
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Simple Seasonal Exponential Smoothing 

Simple seasonal exponential smoothing has level and season parameters and can be described 
by the following equations: 

 

 

 

It is functionally equivalent to an ARIMA(0,1,(1,s,s+1))(0,1,0) with restrictions among MA 
parameters. 

 
Winters’ Additive Exponential Smoothing 

Winters’ additive exponential smoothing has level, trend, and season parameters and can be 
described by the following equations: 

 

 

 

 

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters. 
 

Winters’ Multiplicative Exponential Smoothing 

Winters’ multiplicative exponential smoothing has level, trend and season parameters and can be 
described by the following equations: 

 

 

 

 

There is no equivalent ARIMA model. 



 

TSMODEL Algorithms 

 
 

 
 

Estimation and Forecasting of Exponential Smoothing 
 

The sum of squares of the one-step ahead prediction error, , is minimized 
to optimize the smoothing weights. 

 
Initialization of Exponential Smoothing 

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The 
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting is 
described here. 

 
For all the models . 

 
For all non-seasonal models with trend, T is the negative of the slope of the line (with intercept) 
fitted to the data with time as a regressor. 

 
For the simple seasonal model, the elements of S are seasonal averages minus the sample mean; 
for example, for monthly data the element corresponding to January will be average of all January 
values in the sample minus the sample mean. 

 
For the additive Winters’ model, fit   to the data where t is time  and 

       are seasonal dummies. Note that the model does not have an intercept. Then , and 
. 

 
For the multiplicative Winters’ model, fit a separate line (with intercept) for each season with time 
as a regressor. Suppose is the vector of intercepts and  is the vector of slopes (these vectors 
will be of length s). Then  and . 

 
The initial smoothing states are: 

 

 

 

 
ARIMA and Transfer Function Models 

The following notation is specific to ARIMA/TF models: 

at (t = 1, 2, ... , n) White noise series normally distributed with mean zero and variance 
p Order of the non-seasonal autoregressive part of the model 
q Order of the non-seasonal moving average part of the model 
d Order of the non-seasonal differencing 
P Order of the seasonal autoregressive part of the model 
Q Order of the seasonal moving-average part of the model 
D Order of the seasonal differencing 
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s Seasonality or period of the model 
AR polynomial of B of order p, 

MA polynomial of B of order q, 

Seasonal AR polynomial of BS of order P, 
 

      
Seasonal MA polynomial of BS of order Q, 

  
    

   
Differencing operator  

B Backward shift operator with and    
                                       Prediction variance of 

                                       Prediction variance of the noise forecasts 
 
 

Transfer function (TF) models form a very large class of models, which include univariate ARIMA 
models as a special case. Suppose  is the dependent series and, optionally, are 
to be used as predictor series in this model. A TF model describing the relationship between the 
dependent and predictor series has the following form: 
 

 
 

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the 
following form: 

 

 
The main features of this model are: 
 An initial transformation of the dependent and predictor series, f and fi. This transformation 

is optional and is applicable only when the dependent series values are positive. Allowed 
transformations are log and square root.  These transformations are sometimes called 
variance-stabilizing transformations. 

 A constant term   . 
 The unobserved i.i.d., zero mean, Gaussian error process with variance . 
 The moving average lag polynomial MA= and the auto-regressive lag 

polynomial AR= . 
 The difference/lag operators and . 
 A delay term,  , where   is the order of the delay 
 Predictors are assumed given. Their numerator and denominator lag polynomials are 

 
 

 The “noise” series 
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is assumed to be a mean zero, stationary ARMA process. 
 

Interventions and Events 
 

Interventions and events are handled like any other predictor; typically they are coded as 0/1 
variables, but note that a given intervention variable’s exact effect upon the model is determined 
by the transfer function in front of it. 

 
Estimation and Forecasting of ARIMA/TF 

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least 
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in 
only one aspect: they forecast the noise process differently. The general steps in the forecasting 
computations are as follows: 

1. Computation of noise process  through the historical period. 

2. Forecasting the noise process  up to the forecast horizon. This is one step ahead forecasting 
during the historical period and multi-step ahead forecasting after that. The differences in CLS 
and ELS forecasting methodologies surface in this step. The prediction variances of noise 
forecasts are also computed in this step. 

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the 
constant term and the transfer function inputs and then integrating and back-transforming the 
result. The prediction variances of noise forecasts also may have to be processed to obtain the 
final prediction variances. 

 
Let   and   be the k-step forecast and forecast variance, respectively. 

 
Conditional Least Squares (CLS) Method 
 

 
 

Maximum Likelihood (ML) Method (Brockwell and Davis, 1991) 
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Maximize likelihood of ; that is, 

 

 

where , and        is the one-step ahead forecast variance. 

When missing values are present, a Kalman filter is used to calculate  . 

Error Variance 
 

in both methods. Here n is the number of non-zero residuals and k is the number of parameters 
(excluding error variance). 

 
Initialization of ARIMA/TF 

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function. 
The modification takes into account the “admissibility” constraints on the parameters. The 
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit circle 
and the sum of denominator polynomial parameters be non-zero for each predictor variable. The 
minimization algorithm requires a starting value to begin its iterative search. All the numerator and 
denominator polynomial parameters are initialized to zero except the coefficient of the 0th power 
in the numerator polynomial, which is initialized to the corresponding regression coefficient. 

 
The ARMA parameters are initialized as follows: 

 
Assume that the series  follows an ARMA(p,q)(P,Q) model with mean 0; that is: 

 

In the following and represent the lth lag autocovariance and  autocorrelation of 
 respectively, and   and   represent their estimates. 

 
Non-Seasonal AR Parameters 

 
For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of 
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as . 

 
Non-Seasonal MA Parameters 

 
Let 
 

 

The cross covariance 
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Assuming that an AR(p+q) can approximate , it follows that: 
 

 

The AR parameters of this model are estimated as above and are denoted as . 

Thus   can be estimated by 

  
 

    
 

   
 

 

   

And the error variance   is approximated by 
 

with           . 
 

Then the initial MA parameters are approximated by                    and estimated by 
 

 

So  can be calculated by , and . In this procedure, only are used and all 
other parameters are set to 0. 

 
Seasonal parameters 

 
For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above 
equations are used. 

 
Calculation of the Transfer Function 

 
The transfer function needs to be calculated for each predictor series. For the predictor series , 
let the transfer function be: 
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be 

 

 
 

It can be calculated as follows: 
 

1. Calculate 
 

2. Recursively calculate 
 

 

where    and    are the coefficients of   in the polynomials     and 
  respectively. Likewise, the summation limits  and  are the maximum degree of   in 

the polynomials   and   respectively. 
 

All missing in the first term of  are taken to be   and missing in the second term 
are taken to , where   is the first non-missing measurement of . is given by 

 

 

where   and   are the  and  polynomials evaluated at . 
 

Diagnostic Statistics 
 

ARIMA/TF diagnostic statistics are based on residuals of the noise process, . 
 

Ljung-Box Statistic 
 

 

where is the kth lag ACF of residual. 
 

Q(K) is approximately distributed as                 , where m is the number of parameters other than 
the constant term and predictor related-parameters. 

 

Outlier Detection in Time Series Analysis 

The observed series may be contaminated by so-called outliers. These outliers may change the 
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are 
outliers and what are their locations, types, and magnitudes. 

 
TSMODEL considers seven types of outliers. They are additive outliers (AO), innovational 
outliers (IO), level shift (LS), temporary (or transient) change (TC), seasonal additive (SA), local 
trend (LT), and AO patch (AOP). 
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Notation   
The following notation is specific to outlier detection: 
 
U(t) or The uncontaminated series, outlier free. It is assumed to be a univariate ARIMA or 

transfer function model. 
 

Definitions of Outliers 

Types of outliers are defined separately here. In practice any combination of these types can 
occur in the series under study. 

 
AO (Additive Outliers) 

Assuming that an AO outlier occurs at time t=T, the observed series can be represented as 
 

 

where                           is a pulse function and w is the deviation from the true U(T) caused 
by the outlier. 

 
IO (Innovational Outliers) 

Assuming that an IO outlier occurs at time t=T, then 
 

 
LS (Level Shift) 

Assuming that a LS outlier occurs at time t=T, then 
 

 
where                                      is a step function. 

 

TC (Temporary/Transient Change) 

Assuming that a TC outlier occurs at time t=T, then 
 

where , is a damping function. 
 

SA (Seasonal Additive) 

Assuming that a SA outlier occurs at time t=T, then 
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where                                                              is a step seasonal pulse function. 
 

 
LT (Local Trend) 

 
Assuming that a LT outlier occurs at time t=T, then 

 

 

where is a local trend function. 
 

 
AOP (AO patch) 

 
An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described 
by its starting time and length. Assuming that there is a patch of AO outliers of length k at time 
t=T, the observed series can be represented as 

 

 

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for 
outliers one by one. This is why the AO patch is considered as a separate type from individual 
AO. For type AO patch, the procedure searches for the whole patch together. 

 
Summary 

 
For an outlier of type O at time t=T (except AO patch): 

 

where 
 

   
 

with .  A general model for incorporating outliers can thus be written as 
follows: 

 

 

where M is the number of outliers. 



 
 

Var 
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Estimating the Effects of an Outlier 

Suppose that the model and the model parameters are known. Also suppose that the type and 
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics 
are as follows. 

The results in this section are only used in the intermediate steps of outlier detection procedure. 
The final estimates of outliers are from the model incorporating all the outliers in which all 
parameters are jointly estimated. 

 
Non-AO Patch Deterministic Outliers 

 
For a deterministic outlier of any type at time T (except AO patch), let be the residual and 

, so: 
 

 
From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression 
of e(t) on x(t). 

 
For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define test statistics: 

(T) 

Under the null hypothesis of no outlier, (T) is distributed as N(0,1) assuming the model and 
model parameters are known. 

 

AO Patch Outliers 
 

For an AO patch of length k starting at time T, let  for i = 1 to k, then 
 

Multiple linear regression is used to fit this model. Test statistics are defined as: 
 

 
Assuming the model and model parameters are known,   has a Chi-square distribution with k 
degrees of freedom under the null hypothesis                               . 

 
Detection of Outliers 

The following flow chart demonstrates how automatic outlier detection works. Let M be the total 
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the 
beginning of the procedure, M = 0 and Nadj = 0. 
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Figure 100-1 

 
 

Goodness-of-Fit  Statistics 
Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the 
model, n = number of non-missing residuals. 
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Mean Squared Error 

 

 

Mean Absolute Percent Error 
 

Maximum Absolute Percent Error 
 

Mean Absolute Error 
 

Maximum Absolute Error 
 

Normalized Bayesian Information Criterion 

Normalized 
 

R-Squared 
 

 

Stationary R-Squared 

A similar statistic was used by Harvey (Harvey, 1989). 
 

 

where 
 

The sum is over the terms in which both and are not missing. 
 

 is the simple mean model for the differenced transformed series, which is equivalent to the 
univariate baseline model ARIMA(0,d,0)(0,D,0). 



 
 
 

 

TSMODEL Algorithms 
 

For the exponential smoothing models currently under consideration, use the differencing orders 
(corresponding to their equivalent ARIMA models if there is one). 

 
Brown, Holt , other 

 

Note: Both the stationary and usual R-squared can be negative with range . A negative 
R-squared value means that the model under consideration is worse than the baseline model. Zero 
R-squared means that the model under consideration is as good or bad as the baseline model. 
Positive R-squared means that the model under consideration is better than the baseline model. 

 
Expert Modeling 

 
Univariate Series 

Users can let the Expert Modeler select a model for them from: 
 All models (default). 
 Exponential smoothing models only. 
 ARIMA models only. 

 

Exponential Smoothing Expert Model 
Figure 100-2 
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ARIMA Expert Model 

Figure 100-3 

 
 

Note: If 10<n<3s, set s=1 to build a non-seasonal model. 
 
 

All Models Expert Model 
 

In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model 
with the smaller normalized BIC is chosen. 

Note: For short series, n<max(20,3s), use Exponential Smoothing Expert Model. 
 
 
Multivariate Series 

 
In the multivariate situation, users can let the Expert Modeler select a model for them from: 
 All models (default). Note that if the multivariate expert ARIMA model drops all the 

predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA 
model will be compared with expert exponential smoothing models as before and the Expert 
Modeler will decide which is the best overall model. 

 ARIMA models only. 
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Transfer Function Expert Model 
Figure 100-4 

 
Note: For short series, n<max(20,3s), fit a univariate expert model. 
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TWOSTEP  CLUSTER Algorithms 
The TwoStep cluster method is a scalable cluster analysis algorithm designed to handle very large 
data sets. It can handle both continuous and categorical variables or attributes. It requires only one 
data pass. It has two steps 1) pre-cluster the cases (or records) into many small sub-clusters; 2) 
cluster the sub-clusters resulting from pre-cluster step into the desired number of clusters. It can 
also automatically select the number of clusters. 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 
Table 101-1 
Notation 

Notation Description 
                                        Total number of continuous variables used in the procedure. 

                                          Total number of categorical variables used in the procedure. 

Number of categories for the kth categorical variable. 

The range of the kth continuous variable. 

Number of data records in total. 

Number of data records in cluster k. 

                                          The estimated mean of the kth continuous variable across the entire dataset. 

                                          The estimated variance of the kth continuous variable across the entire 
dataset. 

                                        The estimated mean of the kth continuous variable in cluster j. 

                                           The estimated variance of the kth continuous variable in cluster j. 

                                       Number of data records in cluster j whose kth categorical variable takes 
the lth category. 
Number of data records in the kth categorical variable that take the lth 
category. 

d(j, s) Distance between clusters j and s. 
Index that represents the cluster formed by combining clusters j and s. 

 
 

TwoStep Clustering Procedure 
The TwoStep clustering procedure consists of the following steps: 

 
► Pre-clustering, 

 
► Outlier handling (optional), 

 
► Clustering 
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Pre-cluster 

The pre-cluster step uses a sequential clustering approach. It scans the data records one by one 
and decides if the current record should be merged with the previously formed clusters or starts a 
new cluster based on the distance criterion (described below). 

The procedure is implemented by constructing a modified cluster feature (CF) tree. The CF 
tree consists of levels of nodes, and each node contains a number of entries. A leaf entry (an entry 
in the leaf node) represents a final sub-cluster. The non-leaf nodes and their entries are used to 
guide a new record quickly into a correct leaf node. Each entry is characterized by its CF that 
consists of the entry’s number of records, mean and variance of each range field, and counts for 
each category of each symbolic field. For each successive record, starting from the root node, it is 
recursively guided by the closest entry in the node to find the closest child node, and descends 
along the CF tree.  Upon reaching a leaf node, it finds the closest leaf entry in the leaf node.  If 
the record is within a threshold distance of the closest leaf entry, it is absorbed into the leaf entry 
and the CF of that leaf entry is updated. Otherwise it starts its own leaf entry in the leaf node. If 
there is no space in the leaf node to create a new leaf entry, the leaf node is split into two. The 
entries in the original leaf node are divided into two groups using the farthest pair as seeds, and 
redistributing the remaining entries based on the closeness criterion. 

If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on the existing 
CF tree by increasing the threshold distance criterion.  The rebuilt CF tree is smaller and hence 
has space for new input records. This process continues until a complete data pass is finished. 
For details of CF tree construction, see the BIRCH algorithm (Zhang, Ramakrishnon, and Livny, 
1996). 

All records falling in the same entry can be collectively represented by the entry’s CF. When a 
new record is added to an entry, the new CF can be computed from this new record and the old CF 
without knowing the individual records in the entry. These properties of CF make it possible to 
maintain only the entry CFs, rather than the sets of individual records. Hence the CF-tree is much 
smaller than the original data and can be stored in memory more efficiently. 

Note that the structure of the constructed CF tree may depend on the input order of the cases or 
records. To minimize the order effect, randomly order the records before building the model. 

 
Outlier Handling 

An optional outlier-handling step is implemented in the algorithm in the process of building the 
CF tree. Outliers are considered as data records that do not fit well into any cluster. We consider 
data records in a leaf entry as outliers if the number of records in the entry is less than a certain 
fraction (25% by default) of the size of the largest leaf entry in the CF tree. Before rebuilding the 
CF tree, the procedure checks for potential outliers and sets them aside. After rebuilding the CF 
tree, the procedure checks to see if these outliers can fit in without increasing the tree size. At the 
end of CF tree building, small entries that cannot fit in are outliers. 

 

Cluster  
 

The cluster step takes sub-clusters (non-outlier sub-clusters if outlier handling is used) resulting 
from the pre-cluster step as input and then groups them into the desired number of clusters. Since 
the number of sub-clusters is much less than the number of original records, traditional clustering 
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methods can be used effectively. TwoStep uses an agglomerative hierarchical clustering method, 
because it works well with the auto-cluster method (see the section on auto-clustering below). 

Hierarchical clustering refers to a process by which clusters are recursively merged, until 
at the end of the process only one cluster remains containing all records. The process starts  by 
defining a starting cluster for each of the sub-clusters produced in the pre-cluster step. (For more 
information, see the topic “Pre-cluster”.) All clusters are then compared, and the pair of clusters 
with the smallest distance between them is selected and merged into a single cluster. After 
merging, the new set of clusters is compared, the closest pair is merged, and the process repeats 
until all clusters have been merged. (If you are familiar with the way a decision tree is built, this 
is a similar process, except in reverse.) Because the clusters are merged recursively in this way, 
it is easy to compare solutions with different numbers of clusters. To get a five-cluster solution, 
simply stop merging when there are five clusters left; to get a four-cluster solution, take the five-
cluster solution and perform one more merge operation, and so on. 

 

Accuracy 

In general, the larger the number of sub-clusters produced by the pre-cluster step, the more 
accurate the final result is. However, too many sub-clusters will slow down the clustering during 
the second step. The maximum number of sub-clusters should be carefully chosen so that it is large 
enough to produce accurate results and small enough not to slow down the second step clustering. 

 
Distance Measure 

A log-likelihood or Euclidean measure can be used to calculate the distance between clusters. 
 

Log-Likelihood Distance 

The log-likelihood distance measure can handle both continuous and categorical variables. It 
is a probability based distance.  The distance between two clusters is related to the decrease 
in log-likelihood as they are combined into one cluster.  In calculating log-likelihood, normal 
distributions for continuous variables and multinomial distributions for categorical variables are 
assumed. It is also assumed that the variables are independent of each other, and so are the cases. 
The distance between clusters j and s is defined as: 

 

 
where 

 

 
and 
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If  is ignored in the expression for ξv, the distance between clusters i and j would be exactly the 
decrease in log-likelihood when the two clusters are combined. The  term is added to solve the 
problem caused by , which would result in the natural logarithm being undefined. (This 
would occur, for example, when a cluster has only one case.) 

 

Euclidean Distance 

This distance measure can only be applied if all variables are continuous. The Euclidean distance 
between two points is clearly defined. The distance between two clusters is here defined by the 
Euclidean distance between the two cluster centers.  A cluster center is defined as the vector 
of cluster means of each variable. 

 
Number of Clusters (auto-clustering) 

TwoStep can use the hierarchical clustering method in the second step to assess multiple cluster 
solutions and automatically determine the optimal number of clusters for the input data. A 
characteristic of hierarchical clustering is that it produces a sequence of partitions in one run: 1, 2, 
3, … clusters. In contrast, a k-means algorithm would need to run multiple times (one for each 
specified number of clusters) in order to generate the sequence. To determine the number of 
clusters automatically, TwoStep uses a two-stage procedure that works well with the hierarchical 
clustering method. In the first stage, the BIC for each number of clusters within a specified range is 
calculated and used to find the initial estimate for the number of clusters. The BIC is computed as 

 
 

 

 

 

  
 

 
where 
 

 
 
and other terms defined as in “Distance Measure”. The ratio of change in BIC at each 
successive merging relative to the first merging determines the initial estimate. Let  be 
the difference in BIC between the model with J clusters and that with (J + 1) clusters, 

. Then the change ratio for model J is 
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If        , then the number of clusters is set to 1 (and the second stage is omitted). 
Otherwise, the initial estimate for number of clustersk is the smallest number for   which 

 
In the second stage, the initial estimate is refined by finding the largest relative increase in distance 
between the two closest clusters in each hierarchical clustering stage. This is done as follows: 

► Starting with the model Ck indicated by the BIC criterion, take the ratio of minimum inter-cluster 
distance for that model and the next larger model Ck+1, that is, the previous model in the 
hierarchical clustering procedure, 

 

 

where Ck is the cluster model containing k clusters and dmin(C) is the minimum inter-cluster 
distance for cluster model C. 

► Now from model Ck-1, compute the same ratio with the following model Ck, as above. Repeat for 
each subsequent model until you have the ratio R2(2). 

► Compare the two largest R2 ratios; if the largest is more that 1.15 times the second largest, then 
select the model with the largest R2 ratio as the optimal number of clusters; otherwise, from those 
two models with the largest R2 values, select the one with the larger number of clusters as the 
optimal model. 

 
Cluster Membership Assignment 

Records are assigned to clusters based upon the specified outlier handling and distance measure 
options. 

 
Without Outlier-Handling 

Assign a record to the closest cluster according to the distance measure. 
 

With Outlier-Handling 

With outlier handling, records are assigned depending upon the distance measure specified. 
 

Log-Likelihood Distance 
 

Assume outliers or noises follow a uniform distribution. Calculate both the log-likelihood 
resulting from assigning a record to a noise cluster and that resulting from assigning it to the 
closest non-noise cluster. The record is then assigned to the cluster which leads to the larger 
log-likelihood. This is equivalent to assigning a record to its closest non-noise cluster if the 
distance between them is smaller than a critical value , where . 
Otherwise, designate it as an outlier. 
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Euclidean Distance 
 

Assign a record to its closest non-noise cluster if the Euclidean distance between them is smaller 

than a critical value . Otherwise, designate it as an outlier. 

 
Missing Values 

No missing values are allowed. Cases with missing values are deleted on a listwise basis. 
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VARCOMP Algorithms 
The Variance Components procedure provides estimates for variances of random effects under a 
general linear model framework. Four types of estimation methods are available in this procedure. 

 

Notation 

The following notation is used throughout this chapter. Unless otherwise stated, all vectors are 
column vectors and all quantities are known. 

n Number of observations, n≥1 
k Number of random effects, k≥0 

Number of parameters in the fixed effects,  

Number of parameters in the ith random effect,    , i=1,...,k 
m Total number of parameters, 

                                          Unknown variance of the ith random effect,      , i=1,...,k 
 

                                          Unknown variance of the residual term, same as  ,   

                                          Unknown variance ratio of the ith random effect,               ,       , 
i=1,...,k, and   

y The length n vector of observations 
e The length n vector of residuals 

The design matrix, i=0,1,...,k 

                                          The length vector of parameters of the fixed effects 

                                          The length vector of parameters of the ith random effect, i=1,...,k 
 
 

Unless otherwise stated, a p×p identity matrix is denoted as , a p×q zero matrix is denoted as 
, and a zero vector of length p is denoted as . 

 
Weights 

For the sake of clarity and simplicity, the algorithms described in this chapter assume unit 
frequency weight and unit regression weight for all cases. Weights can be applied as described in 
the following two sections. 

 
 

Frequency Weight 
 

The WEIGHT command specifies frequency weights. 
 Cases with nonpositive frequency are excluded from all calculations in the procedure. 
 Non-integral frequency weight is rounded to the nearest integer. 
 The total sample size is equal to the sum of positive rounded frequency weights. 
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Regression Weight 

The REGWGT subcommand specifies regression weights. Suppose the lth case has a regression 
weight (cases with nonpositive regression weights are excluded from all calculations 
in the procedure). Let be the n×n diagonal weight matrix.  Then the 
VARCOMP procedure will perform all calculations as if y is physically transformed to and 

to , i=0,1,...,k; and then the pertinent algorithm is applied to the transformed data. 
 

Model   
The mixed model is represented, following Rao (1973), as 

 

 
  

  

The random vectors and e are assumed to be jointly independent. Moreover, the random 
vector is distributed as  for i=1,...,k and the residual vector e is distributed as 

. It follows from these assumptions that y is distributed as b where 
 

 

where               , i=1,...,k, and       . 
 
Minimum Norm Quadratic Unbiased Estimate (MINQUE) 

Given the initial guess or the prior values                     , i=1,...,k+1, the MINQUE of are 
obtained as a solution of the linear system of equations: 

 

 
where is a (k+1)×(k+1) symmetric matrix, is a (k+1) vector, and 

. Define 
 

The elements of S and q are 
 

 
and 
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where SSQ(A) is the sum of squares of all elements of a matrix A. 

 
MINQUE(0) 

The prior values are , i=1,...,k, and . Under this set of prior values,  and 
                                    . Since this R is an idempotent matrix, some of the elements of S 

and q can be simplified to 
 

Using the algorithm by Goodnight (1978), the elements of S and q are obtained without explicitly 
computing R. The steps are described as follows: 

 
Step 1.  Form the symmetric matrix: 
 

 
 

Step 2.  Sweep the above matrix by pivoting on each diagonal of .  This produces the 
following matrix: 
 

 
 

where . In the process of computing the above matrix, the rank of  is obtained 
as the number of nonzero pivots found. 

 
Step 3.  Form S and q.  The MINQUE(0) of σ are . 

 
MINQUE(1) 

 
The prior values are , i=1,...,k+1.  Under this set of prior values, . Using 

Giesbrecht (1983), the matrix S and the vector q are obtained through an iterative procedure. 
The steps are described as follows: 
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. 

 

 
 
 

Step 2. Define                       , and                  , l=1,...,k. Update   to   using the  

W Transform given in Goodnight and Hemmerle (1979). The updating formula is 
 

 
Step 3. Once                             is obtained, apply the Sweep operation to the diagonal 
elements of upper left  submatrix of  . The resulting matrix will contain the quadratic 
form          , the vectors , j=1,...,k, and the matrices , i, j=1,...,k . 

 
Step 4.  Compute the elements of S and q. Since , then 

 

 
 
 

 

The MINQUE(1) of σ are . 
 

Maximum Likelihood Estimate (MLE) 
The maximum likelihood estimates are obtained using the algorithm by Jennrich and Sampson 
(1976). The algorithm is an iterative procedure that combines Newton-Raphson steps and Fisher 
scoring steps. 

 

Parameters 
 
 

The parameter vector is where                 . 
 
 

Likelihood Function 

The likelihood function is 
 

 
The log-likelihood function is 

 



 
 

 

Gradient Vector 
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where .  The gradient vector is 

 

 

Hessian Matrix 
 

 
 
 
 

The Hessian matrix is 
 

 

where 
 
 

, 
 
 
 

. . . 
 

 

and 
 

. 

. 

. .. . 



 

VARCOMP Algorithms 

 

. 

 

 
 

Fisher Information Matrix 

As            and , the expected second derivatives are 
 

 

 

The Fisher Information matrix is 
 

where 
 

. . . .. 

 
 

and 
 

 

Iteration Procedure 

The iterative estimation algorithm proceeds according to the details in the following sections. 
 

Initial Values 
 Fixed Effect Parameters:                                 . 

 Random Effect Variance Components:  For the ith random effect, compute 
                                 .  Then assign the variance of the elements of   using divisor 

          to the estimate  if ; otherwise        . 

 Residual Variance:                           where and . If 
but k≥1 then reset  so that the iteration can continue. 

. 

. 
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The variance ratios are then computed as                . Following the same method in which the 
residual variance is initialized,          for k≥1. 

 
Updating 

At the sth iteration, s=0,1,..., the parameter vector is updated as 
 

where is the value of increment evaluated at , and ρ>0 is a step size such that 
 . The increment vector depends on the choice of step type—Newton-Raphson 

versus Fisher scoring. The step size is determined by the step-halving technique with ρ=1 initially 
and a maximum of 10 halvings. 

 
Choice of Step 

Following Jennrich and Sampson (1976), the first iteration is always the Fisher scoring step 
because it is more robust to poor initial values. For subsequent iteration the Newton-Raphson 
step is used if: 

1. The Hessian matrix is nonnegative definite, and 

2. The increment in the log-likelihood function of step 1 is less than or equal to one. 
 

Otherwise the Fisher scoring step is used. The increment vector for each type of step is: 

 Newton-Raphson Step: . 
 

 Fisher Scoring Step: . 

 
Convergence Criteria 

Given the convergence criterion , the iteration is considered converged when the following 
criteria are satisfied: 
 

 
 
Negative Variance Estimates 

Negative variance estimates can occur at the end of an iteration. An ad hoc method is to set 
those estimates to zero before the next iteration. 

 
Covariance Matrix 

Let be the vector of maximum likelihood estimates. Their covariance matrix is given by 
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Let 
 

be the original parameters. Their maximum likelihood estimates are given by 
 

and their covariance matrix is estimated by 
 

where 
 

which is the                         Jacobian matrix of transforming θ to ψ. 
 
Restricted Maximum Likelihood Estimate (REML) 

The restricted maximum likelihood method finds a linear transformation on y such that the 
resulting vector does not involve the fixed effect parameter vector b regardless of their values. It 
has been shown that these linear combinations are the residuals obtained after a linear regression 
on the fixed effects. Suppose r is the rank of ; then there are at most linearly independent 
combinations.  Let K be an matrix whose columns are these linearly independent 
combinations. Then the properties of K are (Searle et al., 1992, Chapter 6): 

 

 

where T is a matrix with linearly independent rows and 
 

It can be shown that REML estimation is invariant to K (Searle et al., 1992, Chapter 6); thus, we 
can choose K such that  to simplify calculations. It follows that the distribution of 

is . 

. 

. 



 
 

. 
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The iterative estimation algorithm proceeds according to the details in the following sections. 
 

Initial Values 
 Random Effect Variance Components:  For the ith random effect, compute 

                                 .  Then assign the variance of the elements of b  using divisor 
          to the estimate  if ; otherwise        . 

 Residual Variance:                            where and . If 
        but k≥1 then reset        so that the iteration can continue. 

The variance ratios are then computed as                . Following the same method in which the 
residual variance is initialized, for k≥1. 
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Updating 

At the sth iteration, s=0,1,..., the parameter vector is updated as 
 

where is the value of increment evaluated at , and ρ>0 is a step size such that 
 . The increment vector depends on the choice of step type—Newton-Raphson 

versus Fisher scoring. The step size is determined by the step-halving technique with ρ=1 initially 
and a maximum of 10 halvings. 

 
Choice of Step 

Following Jennrich and Sampson (1976), the first iteration is always the Fisher scoring step 
because it is more robust to poor initial values. For subsequent iterations the Newton-Raphson 
step is used if: 

1. The Hessian matrix is nonnegative definite, and 

2. The increment in the log-likelihood function of step 1 is less than or equal to one. 
 

Otherwise the Fisher scoring step is used. The increment vector for each type of step is: 

 Newton-Raphson Step: . 
 

 Fisher Scoring Step: . 
 

Convergence Criteria 

Given the convergence criterion , the iteration is considered converged when the following 
criteria are satisfied: 

 
Given the convergence criterion , the iteration is considered converged when the following 
criteria are satisfied: 
 

 
 
Negative Variance Estimates 

Negative variance estimates can occur at the end of an iteration. An ad hoc method is to set 
those estimates to zero before the next iteration. 

 
Covariance Matrix 

Let be the vector of maximum likelihood estimates. Their covariance matrix is given by 
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Let 

 

be the original parameters. Their maximum likelihood estimates are given by 

 

and their covariance matrix is estimated by 
 

where 
 

which is the                Jacobian matrix of transforming θ to ψ. 
 
ANOVA 

The ANOVA variance component estimates are obtained by equating the expected mean squares 
of the random effects to their observed mean squares. The VARCOMP procedure offers two types 
of sum of squares: Type I and Type III (see Appendix 11 for  details). 

 
Let 

 

be the vector of variance components. 
 

Let 
 

where   is the observed mean squares of the ith random effect, and MSE is the residual 
mean squares. 

. 

. 



 
 
 

 

VARCOMP Algorithms 
 

Let 
 

 

be a                matrix whose rows are coefficients for the expected mean squares. For 
example, the expected mean squares of the ith random effect is y. Algorithms for computing 
the expected mean squares can be found in the section “Univariate Mixed Model” in the chapter 
GLM Univariate and Multivariate. The ANOVA variance component estimates are then obtained 
by solving the system of linear equations: 

 

y 
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Introduction

Cohen’s kappa statistic is broadly used in cross-classification as a measure of agreement between two observed
raters [Warrens, 2012]. It is an appropriate index of agreement when ratings are nominal scales with no
order structure [Cohen, 1960]. [Cohen, 1968] proposed a weighted version, an important generalization of
the kappa statistic, to measure the agreement of two ordinal subjects with identical categories. Up to
now, the estimation of Cohen’s weighted kappa in SPSS Statistics relies on an extension so called “STATS
WEIGHTED KAPPA.spe,” which, however, is not supported by any main procedures or functions.

In this section, we derive the Cohen’s weighted kappa statistic, and further discuss the Weighted Kappa
procedure in SPSS Statistics.

General Notations

The following notations defined in this section will be used for the subsequent sections.

Xi: Distinct string or numeric values of the first rating variable arranged for row in ascending order:
X1 < X2 < . . . < XR, where R ≥ 2, and R is an integer.

Yj : Distinct string or numeric values of the second rating variable arranged for column in ascending
order: Y1 < Y2 < . . . < YC , where C ≥ 2, and C is an integer.

i: i = 1, 2, . . . , R denoting the row index. i is an integer.

j: j = 1, 2, . . . , C denoting the column index. j is an integer.

fij : Count for the case in the cell (i, j), which is a non-negative integer.

ri: ri =
∑C

j=1 fij , which is the subtotal of the i-th row.

cj : cj =
∑R

i=1 fij , which is the subtotal of the j-th column.

W : W =
∑R

i=1

∑C
j=1 fij =

∑R
i=1 ri =

∑C
j=1 cj , which is the grand total.

ωij : Agreement weight preset for the case in the cell (i, j).

α: Significance level specified by users. α ∈ (0, 100), and the default setting is α = 95.

Implementation Notes

Particularly, we let R = C for the following presentation, but retain the notations R and C to denote the
number of rows and columns, respectively.

Input Data Structure

It requires constructing a two-way table based on an active data set to estimate the Cohen’s weighted kappa
statistic. Table 1 illustrates a general table design resulting from the classification of W items by two raters
on an ordinal scale with R or C categories.

The following procedure may be followed to generate Table 1 based on an active data set:

• Pairwise deletion is applied to exclude any missing values for a pair of two rating variables.

• Identify all unique categories specified by the pair of rating variables, and create a union of them.

• Sort the union of the categories in ascending order for both row and column.

• Count fij based on the frequency of a rating value equal to Xi and Yj .

• Sum up corresponding fij ’s to compute ri, cj , and W .

https://www.ibm.com/developerworks/community/files/app#/file/9c07d417-3f28-4087-9306-b73fdd72047a
https://www.ibm.com/developerworks/community/files/app#/file/9c07d417-3f28-4087-9306-b73fdd72047a
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A Contingency Table with Rating Data

Rater 1 Rater 2 (Row) Total

(column) Y1 . . . Yj . . . YC

X1 f11 . . . f1j . . . f1C r1
...

...
...

...
...

...
...

Xi fi1 . . . fij . . . f1C ri
...

...
...

...
...

...
...

XR fR1 . . . fRj . . . f1C rR

Total c1 . . . c2 . . . cC W

Table 1: Input Data with Rating Variables

Note that the estimation of Cohen’s weighted kappa make
senses only when the categories of the two rating variables,
represented by the row and column in the table, are
appropriately ordered. Although users may sometimes
request an output table format in descending order, the
discussions in the following presentation are strictly based
on the categories arranged in ascending order for both
row and column raters. For a pair of numeric variables,
numerical order is applied. For a pair of string variables,
alphabetical order is applied. A footnote will be appended
to remind users that caution should be exercised in the
string categories arranged by the procedure. For a mixed
pair of variables, Cohen’s weighted kappa is not estimated.
More details will be discussed later in Section ??.

Input Data Restraints

There are several restraints on the estimation of Cohen’s weighted kappa:

• We need exactly two rating variables to construct Table 1.

• The two rating variables must be of the same type. We do not estimate Cohen’s weighted kappa for a
mixed pair of numeric and string variables.

• After pairwise deletion, we require at least two records.

• After pairwise deletion, at least one variable must have at least two different categories.

• The two rating variables are assumed to share the same set of categories, or Xi = Yi. When we
construct Table 1, any missing categories Xi or Yj should be involved, and listed in both row and
column.

Assignment of Weights

The development of Cohen’s weighted kappa was motivated by the argument that some assignments in
a contingency table might be of greater gravity than the others [Cohen, 1968]. As a matter of factor,
the statistic relies on the predefined cell weights. A unique weight value is required for each table cell.
For the agreement weights ωij , it is convenient but not necessary to assign ωij = ωmax = 1 when i =
j, and ωmin = 0. Theoretically, the weights are assigned a priori, and may arbitrarily be defined, and
the estimation of the weighted kappa statistic may vary significantly under different weighting schemes
[Graham and Jackson, 1993]. To avoid this undesired behavior, we only implement linear and quadratic
weighting for agreement, two most widely used weighting schemes [Vanbelle and Albert, 2009], and thus
preventing users from arbitrarily assigning cell weights. Table 2 summarizes the weights that will be used in
the following sections. Note that the quantities ωij , i, j, and R in the table are defined in Section .

Predefined Weights for Cohen’s Weighted Kappa

Linear Quadratic

Agreement weights ωij 1− |i− j|/(R− 1) 1− (i− j)2/(R− 1)2

Table 2: Predefined Agreement Weights

Derivation of Cohen’s Weighted Kappa Statistic

For a given cross table setting, the expected count for the cases in the cell (i, j) can be estimated by

Eij =
ricj
W

, (1)
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where ri, cj , and W are the marginal and grand totals.

Point and Interval Estimation

By using the agreement weights, the Cohen’s weighted kappa statistic, proposed by [Cohen, 1968], is

κa =

∑R
i=1

∑C
j=1 ωijfij −

∑R
i=1

∑C
j=1 ωijEij

ωmaxW −
∑R

i=1

∑C
j=1 ωijEij

, (2)

where ωmax = max{ωij} = 1, which is associated with the diagonal cells according to the weights defined
by Table 2. When W is large, [Fleiss et al., 1969] suggested the following asymptotic standard error of κa
useful in estimating the confidence limits

σa =
1√

W (1− pe)2

 R∑
i=1

C∑
j=1

pij [ωij(1− pe)− (ω̄i. + ω̄.j)(1− po)]2

− (pope − 2pe + po)2

1/2

, (3)

where

pe =

R∑
i=1

C∑
j=1

wijpi.p.j , (4)

with

pi. =
1

W

C∑
j=1

fij and p.j =
1

W

R∑
i=1

fij , (5)

pij =
fij
W

, (6)

ω̄i. =

C∑
j=1

ωijp.j and ω̄.j =

R∑
i=1

ωijpi. , (7)

where pi. and p.j are defined by Equation (5), and

po =

R∑
i=1

C∑
j=1

wijpij , (8)

where pij is estimated by Equation (6). Since the sampling distribution of κa is asymptotically normal for
large samples, the α% asymptotic confidence interval bounds are determined by

κa ± IDF.NORMAL(0.5 + α/200, 0, 1)× σa , (9)

where α is specified by users.

Hypothesis Test

To test the significance of the observed κa, we can formulate a Z-statistic under the null hypothesis of κa = 0
by computing the test statistic

za = κa/σ
∗
a , (10)

where κa is estimated by Equation (2), and

σ∗
a =

1√
W (1− pe)

 R∑
i=1

R∑
j=1

pi.p.j(ωij − ω̄i. − ω̄.j)
2

− p2e
1/2

, (11)

where pe is estimated by Equation (4); pi. and p.j are defined by Equation (5); and ω̄i. and ω̄.j are estimated
by Equation (7). Thus, the two-sided significance is computed by

2× [ 1− CDFNORM(|za|) ] , (12)

where za is computed by Equation (10).
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WLS Algorithms 
WLS estimates regression model with different weights for different cases. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n The number of cases 
p The number of parameters for the model 
y n×1 vector with element , which represents the observed dependent 

variable for case i 
X n×p matrix with element , which represents the observed value of the ith 

case of the jth independent variable 
β p×1 vector with element  , which represents the regression coefficient of 

the jth independent variable 
w n×1 vector with element , which represents the weight for case i 

 

Model 
The linear regression model has the form of 

 

 
where  is the vector of covariates for the ith case, , and . Assuming 
that follow a normal distribution, the log-likelihood function is 

 

 

Computational Details 
The algorithm used to obtain the weighted least-square estimates for the parameters in the model 
is the same as the REGRESSION procedure with regression weight. For details of the algorithm 
and statistics (the ANOVA table and the variables in the equation), see REGRESSION. 

After the estimation is finished, the log-likelihood function is estimated by 
 

 

where   is the mean square error in the ANOVA  table. 
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A 
Significance Level of a Standard 
Normal Deviate 

The significance level is based on a polynomial approximation. 
 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table A-1 
Notation 
Notation Description 
X Value of the standard normal deviate 
Q One-sided significance level 

 
 

Computation 
 

 

where 
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B 
Significance Levels for Fisher’s 
Exact Test 

The procedure described in this appendix is used to calculate the exact one-tailed and two-tailed 
significance levels of Fisher’s exact test for a 2×2 table under the assumption of independence 
of rows and columns and conditional on the marginal totals. All cell counts are rounded to the 
nearest integers. 

 
Background 

Consider the following observed 2×2 table: 
Table B-1 
2 x 2 table 

 

 Column 1 Column 2 Column total 
Row 1 n1 n2 n1+n2 
Row 2 n3 n4 n3+n4 
Row total n1+n3 n2+n4 N 

 
Conditional on the observed marginal totals, the values of the four cell counts can be expressed as 
the observed count of the first cell only.  Under the hypothesis of independence, the count of 
the first cell   follows a hypergeometric distribution with the probability of            given by 

 
Prob  

 
where   ranges from to  and . 

The exact one-tailed significance level  is defined as 

Prob if 
 

Prob if 
 

where                                . 
 

The exact two-tailed significance level p2 is defined as the sum of the one-tailed significance level 
p1 and the probabilities of all points in the other side of the sample space of N1 which are not 
greater than the probability of N1=n1. 

 
Computations 

To begin the computation of the two significance levels p1 and p2, the counts in the observed 2×2 
table are rearranged. Then the exact one-tailed and two-tailed significance levels are computed 
using the CDF.HYPER cumulative distribution function. 

   



 
 
 

 

Significance Levels for Fisher’s Exact Test 
 
Table Rearrangement 

The following steps are used to rearrange the table: 
 

1. Check whether , which can be done by checking whether  . If so, 
rearrange the table so that the first cell contains the minimum of and , maintaining the row 
and column totals; otherwise, rearrange the table so that the first cell contains the minimum of 

and , again maintaining the row and column totals. 
 

2. Without loss of generality, we assume that the count of the first  cell is after the above 
rearrangement. Calculate the first row total, the first column total, and the overall total, and name 
them SAMPLE, HITS, and TOTAL, respectively. 

 

One-Tailed Significance Level 

The following steps are used to calculate the one-tailed significance level: 

1. If TOTAL=0, set the one-tailed significance level p1 equal to 1; otherwise, obtain p1 by using the 
CDF.HYPER cumulative distribution function with arguments n1, SAMPLE, HITS, and TOTAL. 

2. Also calculate the probability of the first cell count equal to n1 by finding the difference between 
p1 and the value obtained from CDF.HYPER with n1−1, SAMPLE, HITS, and TOTAL as its 
arguments, provided that n1>0.  Call this probability PEXACT. 

3. If n1=0, set PEXACT=p1. PEXACT will be used in the next step to find the points for which the 
probabilities are not greater than PEXACT. 

 

Two-Tailed Significance Level 

The following steps are used to calculate the two-tailed significance level: 
 

1. If TOTAL=0, set the two-tailed significance level p2 equal to 1; otherwise, start searching 
backwards from min(n1+n2, n1+n3) to (n1+1), and find the first point x with its point probability 
greater than PEXACT. (Notice that this backward search takes advantage of the unimodal property 
of the hypergeometric distribution.) 

2. If such an x exists between min(n1+n2, n1+n3) and (n1+1), calculate the probability value obtained 
from CDF.HYPER with arguments x, SAMPLE, HITS, and TOTAL. Call this probability . 

 
3. The two-tailed significance level p2 is obtained by finding the sum of p1 and          . If no 

qualified x exists, the two-tailed significance level is equal to 1. 
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Sorting and Searching 
Sorting and searching have a significant impact on the performance of a number of procedures. 
For those procedures, the methods used are identified here. 

 
CROSSTABS 

In the general mode, the table of cells is searched using an unordered open scatter table search 
and insertion algorithm similar to Knuth’s Algorithm L (Knuth, 1973, p. 518). The scatter table 
contains only pointers to the actual cell contents and is twice as large as it need be (that is, if 
there is room for m cells, the scatter table has room for 2m pointers). This means it can never be 
more than half full.  Collisions are resolved by sequential search from the initial location until 
an empty pointer is found. 

 
Letting 

 
k be the table number 

 
p be the dimension of the table 

 
v(i), i=1,...,p, be the bit string used to represent the value of the ith variable defining table k 

m be the length of the scatter table 

n be the resulting hash value, to be used as an index in the scatter table 
 

The hash function used is given by the following algorithm: 

j:=k 
for i:=1 to p 
j:=j rotated left 3 
bits j:=j 
EXCLUSIVE OR 
v(i) 

end 
n:=(j modulo m)+1 

 
When the tables have been completed, the cells are sorted by table numbers and the values of the 
defining variables using the algorithm described by Singleton (1969). 

 
FREQUENCIES 

FREQUENCIES uses the same search and sort algorithms as CROSSTABS, except that its 
hashing function is given by: 

  



 
 
 

 

Sorting and Searching 
 

where 
 

h is the hash value, to be used as an index in the scatter table 
 

k is the table number 
 

v is the integer value of the bits representing the value to be tabulated 
 

m is the length of the scatter table 
 
NONPAR CORR and NPAR TESTS 

Both use the method of Singleton to sort cases for computing ranks. 
 
SURVIVAL 

SURVIVAL uses a modified Quicksort similar to Knuth’s algorithm Q (Knuth, 1973, p. 116) to 
sort cases. 
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Generation of Uniform Random 
Numbers 

Two different random number generators are available: 
 Version 12 Compatible. The random number generator used in version 12 and previous 

releases. If you need to reproduce randomized results generated in previous releases based on 
a specified seed value, use this random number generator. 

 Mersenne Twister. A newer random number generator that is more reliable for simulation 
purposes. If reproducing randomized results from version 12 or earlier is not an issue, use this 
random number generator. 

 
Specifically, the Mersenne Twister has a far longer period (number of draws before it repeats) 
and far higher order of equidistribution (its results are “more uniform”) than the IBM® SPSS® 
Statistics 12 Compatible generator. The Mersenne Twister is also very fast and uses memory 
efficiently. 

 
IBM SPSS Statistics 12 Compatible Random Number Generator 

Uniform numbers are generated using the algorithm of (Fishman and Moore, 1981). It is a 
multiplicative congruential generator that is simply stated as: 

 
seed(t+1) = (a * seed(t)) 
modulo p rand = seed(t+1) / 
(p+1) 

 
 

where a = 397204094 and p = 231−1 = 2147483647, which is also its period. Seed(t) is a 32-bit 
integer that can be displayed using SHOW SEED. SET SEED=number sets seed(t) to the specified 
number, truncated to an integer. SET SEED=RANDOM sets seed(t) to the current time of day in 
milliseconds since midnight. 

 

Mersenne Twister Random Number Generator 
The Mersenne Twister (MT) algorithm generates uniform 32-bit pseudorandom integers. The 
algorithm provides a period of 219937−1, assured 623-dimensional equal distribution, and 32-bit 
accuracy. Following the description given by Matsumoto and Nishimura (1998), the algorithm is 
based on the linear recurrence: 

 

, 
 

where 
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Table D-1 
Notation 
Notation Description 
x is a word vector; a w-dimensional row vector over the two-element field 

is the degree of recurrence (recursion) 

is an integer,                 , the separation point of one word 

is an integer,           , the middle term 

is a constant matrix with entries in 

                         is the upper (w−r) bits of 

                    is the lower r bits of ; thus 

is the word vector obtained by concatenating the upper (w−r) bits of and the lower 
r bits of 
Bitwise addition modulo two (XOR) 

 
 

Given initial seeds , the algorithm generates by the above recurrence for 
k=0, 1, ... 

 
A form of the matrix A is chosen so that multiplication by A is very fast. candidate is 

 

 

 

. . . 

 

where and ; then can be computed using 
only bit operations 

 

Thus calculation of the recurrence is realized with bitshift, bitwise EXCLUSIVE-OR, bitwise 
OR, and bitwise AND operations. 

 
For improving the k-distribution to v-bit accuracy, we multiply each generated word by a suitable 

invertible matrix from the right (called tempering in (Matsumoto and Kurita, 1994)). For 
the tempering matrix , we choose the following successive transformations 

 

 

 

 

 
where 
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Table D-2 
Notation 
Notation Description 
l, s, t, u are integers 
b, c are suitable bitmasks of word size 

denotes the   -bit shiftright 

denotes the   -bit shiftleft 
 
 

To execute the recurrence, let x[0:n−1]be an array of n unsigned integers of word size, i be an 
integer variable, and be unsigned constant integers of word size vectors. 

Step Description 
Step 0 

u ← ; bitmask for upper (w−r) bits 

v ← ; bitmask for lower r bits 
  

a ← ; the last row of matrix 

If the least significant bit of equals to one then 
←           

Step 4 calculate 
← 
← 
← 
← 
← 

Step 5 ← 
Step 6 Go to Step 2. 

 
 
IBM SPSS Statistics Usage 

The MT algorithm provides 32 random bits in each draw. IBM® SPSS® Statistics draws 64-bit 
floating-point numbers in the range [0..1] with 53 random bits in the mantissa using 

Draw = (226*[k(t)/25]+[k(t+1)/26])/253 

There are two options for initializing the state space vector array. SET RNG=MT MTINDEX=x 
accepts a 64-bit floating point number x to set the seed. SET RNG=MT MTINDEX=RANDOM uses 
the current time of day in milliseconds since midnight to set the seed. 

 
init_genrand(unsigned32 s,unsigned32 &x[]) 
{ 

 

; 
1812433253; is an unsigned long interger from i=0 to n 

Step 1 ← 0  
 
Step 2 

Initialize the state space vector array 
y ←                                              

. 
; computing 

Step 3 If the least significant bit of equals to zero then 
← 

 

 



 

Generation of Uniform Random Numbers 

 
 

 
 
 

 

k[0]: 8*d+4*c+2*b+a 

k[1]: y = trunc(z*226) 

k[2]:  z*253 - y*227 

where 
 x is the argument a is 1 if x == 0, or 0 otherwise 
 b is 1 if x<0, or 0  otherwise 
 c is 1 if |x| >= 1, or 0  otherwise 
 d is an integer such that 
    if |x| > 1, .5 <= |x|/2d < 1, 

else if |x| > 0, .5 <= |x|*2d < 1 
else x == 0 and d ==  0. 

 e is d if |x| <= 1, else -d 
 z is |x|*2e 

init_by_array(unsigend32 init_key[ ] ,int key_length, unsigned32 &x[]) 
{ 
init_genrand(19650218, 
x); i=1, j=0, 
k=max(key_length,n) for 
(;k;k--) 
x[i] = (x[i]�((x[i-1]�(x[i-1]>>30))f1)) 
+init_key[j]+
j; if i>=n 
then x[0] = 
x[n-1] 
i=1 

if (j>=key_length) 
then j=0 

end for 
for (k=n-1;k;k--) 
x[i] = (x[i]�((x[i-1]�(x[i-
1]>>30))f2))-i; if i>=n then 
x[0]=x[n-1]; 
i=1; 

end for 
} 
f1=1664525 is an unsigned long 
interger; f2=1566083941 is an 
unsigned long interger; 
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E 
Grouped Percentiles 

 
 

Two summary functions, GMEDIAN and GPTILE are used in procedures such as Frequencies 
and Graph, to calculate the percentiles for the data which are grouped by specifying a value for 
each grouping. It is assumed that the actual data values give represent midpoints of the grouped 
intervals. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table E-1 
Notation 
Notation Description 

Distinct observed values with frequencies (caseweights) 

k Number of distinct observed data points 
p percentile/100 (a number between 0 and 1) 

Cumulative frequency up to and including 
 
 

 

Finding  Percentiles 
 

To find the 100pth grouped percentile, first find i such that , where w= , 

the total sum of caseweights.  Then the grouped percentile is 
 

 
where 

 

 
Note the following: 
 If , the grouped percentile is system missing and a warning message “Since the lower 

bound of the first interval is unknown, some percentiles are undefined” is produced. 
 If , the grouped percentile is system missing and a warning message “Since the upper 

bound of the last interval is unknown, some percentiles are undefined” is produced. 
 If , the grouped percentile is equal to . 
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F 
Indicator Method 

 
 

The indicator method is used in the GENLOG and the GLM procedures to generate the design 
matrix corresponding to the design specified.  Under this method, each parameter  (either 
non-redundant or redundant) in the model corresponds uniquely to a column in the design matrix. 
Therefore, the terms parameter and design matrix column are often used interchangeably without 
ambiguity. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table F-1 
Notation 
Notation Description 
n Number of valid observations 
p Number of parameters 
X n×p design matrix (also known as model matrix) 

Elements of X 
 
 

Row Dimension 
The design matrix has as many rows as the number of valid observations. In the GLM procedure, 
an observation is a case in the data file.  In the GENLOG procedure, an observation is a cell. 
In both procedures, the observations are uniquely identified by the factor-level combination. 
Therefore, rows of the design matrix are also uniquely identified by the factor-level combination. 

 
Column Dimension 

The design matrix has as many columns as the number of parameters in the model. Columns of 
the design matrix are uniquely indexed by the parameters, which are in turn related to factor-level 
combinations. 

 
Elements 

A factor-level combination is contained in another factor-level combination if the following 
conditions are true: 
 All factor levels in the former combination appear in the latter combination. 
 There are factor levels in the latter combination which do not appear in the former combination. 

 
For example, the combination [A=1] is contained in [A=1]*[B=3] and so is the combination 
[B=3]. However, neither [A=3] nor [C=1] is contained in [A=1]*[B=3]. 
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Indicator Method 
 

The design matrix X is generated by rows. Elements of the ith row are generated as follows: 
 If the jth column corresponds to the intercept term, then . 
 If the jth column is a parameter of a factorial effect which is constituted of factors only, 

then if the factor-level combination of the jth column is contained in that of the ith 
row. Otherwise . 

 If the jth column is a parameter of an effect involving covariates (or, in the GLM procedure, a 
product of covariates), then is equal to the covariate value (or the product of the covariate 
values in GLM) of the ith row if the levels combination of the factors of the jth column is 
contained in that of the ith row. Otherwise . 

 
Redundancy 

A parameter is redundant if the corresponding column in the design matrix is linearly dependent 
on other columns. Linear dependent columns are detected using the SWEEP algorithm by Clarke 
(1982) and Ridout and Cobby (1989). Redundant parameters are permanently set to zero and 
their standard errors are set to system missing. 
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G 
Post Hoc Tests 

 
 

Post hoc tests are available in more than one procedure, including ONEWAY and GLM. 
 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table G-1 
Notation 
Notation Description 
k Number of levels for an effect 

Number of observations at level i 

Mean at level i 

Standard deviation of level i 

Degrees of freedom for level i, 

Square root of the mean square error 
ε Experimentwise error rate under the complete null hypothesis 
α Comparisonwise error rate 
r Number of steps between means 
f 

Degrees of freedom for the within-groups mean square 

, Absolute difference between the ith and jth means 

*  
 

, 
 

Harmonic mean of the sample size 
 
 

 

Studentized Range and Studentized Maximum Modulus 
Let     ,    ,      ,     be independent and identically distributed .  Let       be an estimate 
of σ with m degrees of freedom, which is independent of the        , and . Then 
the quantity 

 

is called the Studentized range. The upper-ε critical point of this distribution is denoted by . 

   

   



 
 

( ) 
( 

 
 

Post Hoc Tests 
 

The quantity 
 

is called the Studentized maximum modulus. The upper-ε critical point of this distribution 
is denoted as . 

 
Methods 

The tests are grouped as follows according to assumptions about sample sizes and variances. 
 
Equal Variances 

The tests in this section are based on the assumption that variances are equal. 
 
Waller-Duncan t Test 

The Waller-Duncan t test statistic is given by 
 

, , 

where (  ,   ,  ,  ) is the Bayesian t value that depends on w (a measure of the relative seriousness 
of a Type I error versus a Type II error), the F statistic for the one-way ANOVA, 

 

and 
 

 
Here ( ) and .    and   are the usual mean squares in the 
ANOVA table. 

 
Only homogeneous subsets are given for the Waller-Duncan t test. This method is for equal 
sample sizes. For unequal sample sizes, the harmonic mean is used instead of n. 

 
Constructing Homogeneous Subsets 

For many tests assuming equal variances, homogeneous subsets are constructed using a range 
determined by the specific test being used. The following steps are used to construct the 
homogeneous subsets: 

1. Rank the k means in ascending order and denote the ordered means as   ( ), ,  ( ). 

2. Determine the range value, , for the specific test, as shown in Range Values. 

3. If   ( ) 
{  ( ), , 

, there is a significant range and the ranges of the two sets of k−1 means 
)} and {  ( ), ,  (  )} are compared with   . Smaller subsets of means 

,  , / 
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are examined as long as the previous subset has a significant range. For some tests,   is used 
instead of . For more information, see the topic “Range Values”. 

4. Each time a range proves nonsignificant, the means involved are included in a single group—a 
homogeneous subset. 

 
Range Values 

Following are range values for the various types of tests. 
 

Student-Newman-Keuls (SNK) 
 

 
Tukey’s Honestly Significant Difference Test (TUKEY) 

 

The confidence intervals of the mean difference are calculated using  instead of . 
 

Tukey’s b (TUKEYB) 
 

 
Duncan’s Multiple Range Test (DUNCAN) 

 

where 
 

Scheffé Test (SCHEFFE) 
 

The confidence intervals of the mean difference are calculated using  instead of . 
 

Hochberg’s GT2 (GT2) 
 

The confidence intervals of the mean difference are calculated using  instead of . 
 

Gabriel’s Pairwise Comparisons Test (GABRIEL) 
 

The test statistic and the critical point are as follows: 
 

( ) 

k 1 k 1 



 
 
 

 

Post Hoc Tests 
 

For homogeneous subsets, is used instead of and . The confidence intervals of the mean 
difference are calculated based on the above equation. 

 
Least Significant Difference (LSD), Bonferroni, and Sidak 

For the least significant difference, Bonferroni, and Sidak tests, only pairwise confidence intervals 
are given.  The test statistic is 

 
i j 

where the range, , for each test is provided below. 
 

Least Significant Difference (LSD) 
 

 
Bonferroni t Test (BONFERRONI or MODLSD) 

 

where . 
 

Sidak t Test (SIDAK) 
 

 

where ( ) . 

 
Dunnett Tests 

For the Dunnett tests, confidence intervals are given only for the difference between the control 
group and the other groups. 

 
Dunnett’s Two-Tailed t Test (DUNNETT) 

 
When a set of new treatments (   ) is compared with a control ( ), Dunnett’s two-tailed t test is 
usually used under the equal variances assumption. 

 
For two-tailed tests, 

 
,  

 

where is the upper 100ε percentage point of the distribution of 
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where and   .  

 
Dunnett’s One-Tailed t Test (DUNNETTL) 

This Dunnett’s one-tailed t test indicates whether the mean at any level is smaller than a reference 
category. 

 

where   is the upper 100ε percentage point of the distribution of 
 

Confidence intervals are given only for the difference between the control group and the other 
groups. 

 
Dunnett’s One-Tailed t Test (DUNNETTR) 

This Dunnett’s one-tailed t test indicates whether the mean at any level is larger than a reference 
category. 

 

where   is the upper 100ε percentage point of the distribution of 
 

Confidence intervals are given only for the difference between the control group and the other 
groups. 

 
Ryan-Einot-Gabriel-Welsch (R-E-G-W) Multiple Stepdown Procedures 

For the R-E-G-W F test and the R-E-G-W Q test, a new significant level, , based on the number 
of steps between means is introduced: 

( ) / if 
if 

Note: For homogeneous subsets, the and are used for the R-E-G-W F test and the R-E-G-W 
Q test. To apply these methods, the procedures are same as in “Constructing Homogeneous 
Subsets”, using the tests provided below. 

 
Ryan-Einot-Gabriel-Welsch Based on the Studentized Range Test (QREGW) 

The R-E-G-W Q test is based on 
 

, , 

, 

, 
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Ryan-Einot-Gabriel-Welsch Procedure Based on an F Test (FREGW) 

The R-E-G-W F test is based on 
 

where and summations are over . 
 
Unequal Sample Sizes and Unequal Variances 

The tests in this section are based on assumptions that variances are unequal and sample sizes are 
unequal. An estimate of the degrees of freedom is used. The estimator  is 

 

Two means are significantly different if 
 

where 
 

and  depends on the specific test being used, as listed below. 
 

For the Games-Howell, Tamhane’s T2, Dunnett’s T3, and Dunnett’s C tests, only pairwise 
confidence intervals are given. 

 
Games-Howell Pairwise Comparison Test (GH) 

 

 

Tamhane’s T2 (T2) 

                    =   where  
 
Dunnett’s T3 (T3) 

 

 
Dunnett’s C (C) 

 



 
 

 
References 

Post Hoc Tests 

 

Cheng, P. H., and C. Y. K. Meng. 1992. A New Formula for Tail probabilities of DUNNETT’s T 
with Unequal Sample Sizes. ASA Proc. Stat. Comp., ,  177–182. 

 
Duncan, D. B. 1955. Multiple Range and Multiple F tests. Biometrics, 11, 1–42. 

 
Duncan, D. B. 1975. t Tests and Intervals for Comparisons Suggested by the Data. Biometrics, 31, 
339–360. 

 
Dunnett, C. W. 1955. A Multiple Comparisons Procedure for Comparing Several Treatments with 
a Control. Journal of the American Statistical Association, 50, 1096–1121. 

 
Dunnett, C. W. 1980. Pairwise Multiple Comparisons in Homogeneous Variance, Unequal Sample 
Size Case. Journal of the American Statistical Association, 75, 789–795. 

 
Dunnett, C. W. 1980. Pairwise Multiple Comparisons in the Unequal Variance Case. Journal of 
the American Statistical Association, 75, 796–800. 

 
Dunnett, C. W. 1989. Multivariate Normal Probability Integrals with Product Correlation 
Structure.  Applied Statistics, 38, 564–571. 

 
Einot, I., and K. R. Gabriel. 1975. A Study of the powers of Several Methods of Multiple 
Comparisons. Journal of the American Statistical Association, 70, 574–783. 

 
Gabriel, K. R. 1978. A Simple method of Multiple Comparisons of Means. Journal of the 
American Statistical Association, 73, 724–729. 

 
Games, P. A., and J. F. Howell. 1976. Pairwise Multiple Comparison Procedures with Unequal 
N’s and/or Variances: A Monte Carlo Study. Journal of Educational Statistics, 1, 113–125. 

 
Gebhardt, F. 1966.  Approximation to the Critical Values for Duncan’s Multiple Range Test. 
Biometrics, 22, 179–182. 

 
Hochberg, Y. 1974. Some Generalizations of the T-method in Simultaneous Inference. Journal of 
Multivariate Analysis, 4, 224–234. 

 
Hochberg, Y., and A. C. Tamhane. 1987. Multiple Comparison Procedures. New York: John 
Wiley & Sons, Inc.  . 

 
Hsu, J. C. 1989. Multiple Comparison Procedures. : American Statistical Association Short 
Course. 

 
Miller, R. G. 1980. Simultaneous Statistical Inference, 2 ed. New York: Springer-Verlag. 

 
Milliken, G., and D. Johnson. 1992. Analysis of Messy Data: Volume 1. Designed Experiments. 
New York:  Chapman & Hall. 

 
Ramsey, P. H. 1978. Power Differences Between Pairwise Multiple Comparisons. Journal of the 
American Statistical Association, 73, 479–485. 



 
 
 

 

Post Hoc Tests 
 

Ryan, T. A. 1959. Multiple Comparisons in Psychological Research. Psychological Bulletin, 
56, 26–47. 

 
Ryan, T. A. 1960. Significance Tests for Multiple Comparison of Proportions, Variances, and 
Other Statistics.  Psychological Bulletin, 57, 318–328. 

 
Scheffe, H. 1953. A method for judging all contrasts in the analysis of variance. Biometrika, 
40, 87–104. 

 
Scheffe, H. 1959. The Analysis of Variance. New York: John Wiley & Sons, Inc.. 

Searle, S. R. 1971. Linear Models. New York:  John Wiley & Sons, Inc. 

Sidak, Z. 1967. Rectangular confidence regions for the means of multivariate normal distributions. 
Journal of the American Statistical Association, 62, 626–633. 

 
SAS Institute, Inc., . 1990. SAS/STAT User’s Guide, Version 6, 4 ed. Cary, NC: SAS Institute  Inc.. 

 
Tamhane, A. C. 1977. Multiple Comparisons in Model I One-Way ANOVA with Unequal 
Variances.  Communications in Statistics, 6, 15–32. 

 
Tamhane, A. C. 1979. A Comparison of Procedures for Multiple Comparisons of Means with 
Unequal Variances. Journal of the American Statistical Association, 74, 471–480. 

 
Waller, R. A., and D. B. Duncan. 1969. A Bayes Rule for the Symmetric Multiple Comparison 
Problem. Journal of the American Statistical Association, 64, 1484–1499. 

 
Waller, R. A., and D. B. Duncan. 1972. . Journal of the American Statistical Association, 67, 253–
255. 

 
Waller, R. A., and K. E. Kemp. 1975. Computations of Bayesian t-value for Multiple Comparison. 
Journal of statistical computation and simulation, 4, 169–172. 

 
Welsch, R. E. 1977. Stepwise Multiple Comparison Procedures. Journal of the American 
Statistical Association, 72, 566–575. 



 

 

H  
Sums of Squares 

Appendix 

 
 

This appendix describes methods for computing sums of squares. 
 
Notation 

The notation used in this appendix is the same as that in the GLM Univariate and Multivariate 
chapter. 

 
Type I Sum of Squares and Hypothesis Matrix 

The Type I sum of squares is computed by fitting the model in steps according to the order of 
the effects specified in the design and recording the difference in error sum of squares (ESS) at 
each step. 

By applying the SWEEP operator on the rows and columns of the augmented matrix , of 
dimension , the Type I sum of squares and its hypothesis matrix for each effect 
(except for the intercept effect, if any) is obtained. 

 
Calculating the Sum of Squares 

The following procedure is used to find the Type I sum of squares for effect F: 
Let the order of effects specified in the design be F0, F1, F2, ..., Fm. The columns of X are 

partitioned into X0, X1, X2, ..., Xm, where corresponds to the intercept effect F0, and the 
columns in the submatrix Xj correspond to effect Fj, j=0,1,...,m. 

Let Fj be the effect F of interest. Let ESSj-1(l) and ESSj(l) be the lth diagonal elements of the r×r 
lower diagonal submatrix of after the SWEEP operator is applied to the columns associated 
with X0, X1, X2, ..., Xj, . When the lth column of Y is used as the dependent variable, the Type I 
sum of squares for effect Fj is ESS  ESS , where ESS-1(l) is defined as 0. 

 
Constructing a Hypothesis Matrix 

The hypothesis matrix L is constructed using the following steps: 
 

1. Let L0 be the upper diagonal p×p submatrix of after the SWEEP operator is applied to 
the columns associated with the effects preceding F. Set the columns and rows of L0 , which are 
associated with the effects preceding F, to 0. 

2. For the rows of L0 associated with the effects ordered after Fj, if any, set the corresponding rows 
of L0 to 0. Remove all of the 0 rows in the matrix L0. The row dimension of L0 is then less than p. 

3. Use row operations on the rows of L0 to remove any linearly dependent rows. The set of all 
nonzero rows of L0 forms a Type I hypothesis matrix L. 

   



 
 
 

 

Sums of Squares 
 

Type II Sum of Squares and Hypothesis Matrix 
A Type II sum of squares is the reduction in ESS due to adding an effect after all other terms have 
been added to the model except effects that contain the effect being tested. 

For any two effects F and F’, F is contained in F’ if the following conditions are true: 
 Both effects F and F’ involve the same covariate, if any. 
 F’ consists of more factors than F. 
 All factors in F also appear in F’. 

 
Intercept Effect. The intercept effect μ is contained in all the pure factor effects. However, it is not 
contained in any effect involving a covariate. No other effect is contained in the intercept effect. 

 

Calculating the Sum of Squares 

To find the Type II (and also Type III and IV) sum of squares associated with any effect F, you 
must distinguish which effects in the model contain F and which do not. The columns of X can 
then be partitioned into three groups: X1, X2 and X3, where: 

• X1 consists of columns of X that are associated with effects that do not contain F. 
 

• X2 consists of columns that are associated with F. 
 

• X3 consists of columns that are associated with effects that contain F. 
 

The SWEEP operator applied on the augmented matrix is used to find the Type II sum 
of squares for each effect. The order of sweeping is determined by the “contained” relationship 
between the effect being tested and all other effects specified in the design. 

Once the ordering is defined, the Type II sum of squares and its hypothesis matrix L can be 
obtained by a procedure similar to that used for the Type I sum of squares. 

 

Constructing a Hypothesis Matrix 

A hypothesis matrix L for the effect F has the form 
 

2 2 2 3 
 

where 
 

 

 

A* is a g2 generalized inverse of a symmetric matrix A. 



 

 

 
 
Type III Sum of Squares and Hypothesis Matrix 

 

Sums of Squares 

 

The Type III sum of squares for an effect F can best be described as the sum of squares for F 
adjusted for effects that do not contain it, and orthogonal to effects (if any) that contain it. 

 
Constructing a Hypothesis Matrix 

A Type III hypothesis matrix L for an effect F is constructed using the following steps: 

1. The design matrix X is reordered such that the columns can be grouped in three parts as described 
in the Type II approach. Compute . Notice that the columns of H can also 
be partitioned into three parts: the columns corresponding to effects not containing F, the columns 
corresponding to the effect F, and the columns corresponding to the effects containing F (if any). 

2. The columns of those effects not containing F (except F) are set to 0 by means of the row 
operation.  That is: 

a) For each of those columns that is not already 0, fix any nonzero element in that column and 
call this nonzero element the pivot element. 

b) Divide the row that corresponds to the pivot element by the value of the pivot element itself. 

c) Use row operations to introduce zeros to all other nonzero elements (except the pivot element 
itself) in that column. 

d) Set the whole row containing the pivot element to 0. The column and the row corresponding to 
this pivot element should now be 0. 

e) Continue the process for the next column that is not 0 until all columns corresponding to those 
effects that do not contain F are 0. 

3. For each column associated with effect F, find a nonzero element, use it as pivot, and perform  
the Gaussian elimination method as described in a, b, and c of step 2. After all such columns are 
processed, remove all of the 0 rows from the resulting matrix. If there is no column corresponding 
to effects containing F (which is the case when F contains all other effects), the matrix just 
constructed is the Type III hypothesis matrix for effect F. If there are columns corresponding to 
effects that contain F, continue with step 4. 

4. The rows of the resulting matrix in step 3 can now be categorized into two groups. In one 
group, the columns corresponding to the effect F are all 0; call this group of rows G0. In the 
other group, those columns are nonzero; call this group of rows G1. Notice that the rows in G0 
form a generating basis for the effects that contain F. Transform the rows in G1 such that they 
are orthogonal to any rows in G0. 

 
Calculating the Sum of Squares 

Once a hypothesis matrix is constructed, the corresponding sum of squares can be calculated by 
. 
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Type IV Sum of Squares and Hypothesis Matrix 
A hypothesis matrix L of a Type IV sum of squares for an effect F is constructed such that for 
each row of L, the columns corresponding to effect F are distributed equitably across the columns 
of effects containing F. Such a distribution is affected by the availability and the pattern of the 
nonmissing cells. 

 

Constructing a Hypothesis Matrix 

A Type IV hypothesis matrix L for effect F is constructed using the following steps: 
 

1. Perform steps 1, 2, and 3 as described for the Type III sum of squares. 

2. If there are no columns corresponding to the effects containing F, the resulting matrix is a Type 
IV hypothesis matrix for effect F. If there are columns corresponding to the effects containing F, 
the following step is needed. 

3. First, notice that each column corresponding to effect F represents a level in F. Moreover, the 
values in these columns can be viewed as the coefficients of a contrast for comparing different 
levels in F. For each row, the values of the columns corresponding to the effects that contain F are 
based on the values in that contrast. The final hypothesis matrix L consists of rows with nonzero 
columns corresponding to effect A. For each row with nonzero columns corresponding to effect F: 

a) If the value of any column (or level) corresponding to effect F is 0, set to 0 all values of columns 
corresponding to effects containing F and involving that level of F. 

b) For columns (or levels) of F that have nonzero values, count the number of times that those 
levels occur in one or more common levels of the other effects.  This count will be based on  
the availability of the nonmissing cells in the data. Then set each column corresponding to an 
effect that contains F and involves that level of F to the value of the column that corresponds to 
that level of F divided by the count. 

c) If any value of the column corresponding to an effect that contains F and involves a level 
(column) of F is undetermined, while the value for that level (column) of F is nonzero, set the 
value to 0 and claim that the hypothesis matrix created may not be unique. 

 

Calculating the Sum of Squares 

Once a hypothesis matrix is constructed, the corresponding sum of squares can be calculated by 
. The corresponding degrees of freedom for this test is the row rank of 

the hypothesis matrix. 
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Appendix 

 
 

The functions described in this appendix are used in more than one procedure. They are grouped 
into the following categories: 
 Continuous Distributions. Beta, Cauchy, chi-square, exponential, F, gamma, Laplace, 

logistic, lognormal, normal, noncentral beta, noncentral chi-square, noncentral F, noncentral 
Student’s t, Pareto, Student’s t, uniform, and Weibull 

 Discrete Distributions. Bernoulli, binomial, geometric, hypergeometric, negative 
binomial, and Poisson 

 Special Functions. Gamma function, beta function, incomplete gamma function 
(ratio), incomplete beta function (ratio), and standard normal function 

 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 
Table I-1 
Notation 
Notation Description 
f(x) Density function of continuous random variable X or probability mass 

function of discrete random variable X 
F(x) Cumulative distribution function of continuous or discrete variable X 

Inverse cumulative distribution function of X 
 
 
Continuous Distributions 

These are functions of a single scale variable. 
 

Beta  
 

The beta distribution takes values in the range 0<x<1 and has two shape parameters, α and β. Both 
α and β must be positive, and they have the property that the mean of the distribution is α/(α+β). 

 
Common uses. The beta distribution is used in Bayesian analyses as a conjugate to the binomial 
distribution. 

 
Functions. The CDF, IDF, PDF, NCDF, NPDF, and RV functions are available. 

The beta distribution has PDF, CDF, and IDF 
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where B is the beta function   and 
 

IB 
 

Relationship to other 
distributions. 

is the incomplete beta function. 

 When α=β=1, the beta(α,β) distribution is equivalent to the uniform(0,1) distribution. 
 The beta(α,β) distribution is the distribution of X/(X+Y) where X and Y are variables that have 

chi-square distributions with degrees of freedom parameters 2α and 2β, respectively. 
 

Random Number Generation 
 

Special case  (a=1 or b=1) 

1. Generate U from Uniform(0,1). 

2. If a=1, set . 

3. If b=1, set . 

4. If both a=1 and b=1, set X=U. 
 

Algorithm BN due to Ahrens and Dieter (1974) for a > 1 and b > 1  

1. Set  and   =0.5/  c. 

2. Generate Y from N(0,1) and set . 

3. If or , go to step 2. 

4. Generate U from Uniform(0,1). 

5. If , finish; otherwise go to step 2. 

References.  CDF: AS 63 (1973); ICDF: AS 64 (1973) and AS 109 (1977); RV: AS 134 (1979), 
(Ahrens and Dieter, 1974), and (Cheng, 1978). (See the Algorithm Index and References.) 

 
Bivariate Normal 

The bivariate normal distribution takes real values and has one correlation parameter, ρ, which 
must be between –1 and 1, inclusive. 

 
Functions. The CDF and PDF functions are available and require two quantiles, x1 and x2. 

The bivariate normal distribution has PDF 

 

 
    

The CDF does not have a closed form and is computed by approximation. 



 
 
 

 

Distribution and Special Functions 
 

Relationship to other distributions. 
 Two variables with a bivariate normal(ρ) distribution with correlation ρ have marginal normal 

distributions with a mean of 0 and a standard deviation of 1. 
 

Numerical algorithms for computing the CDF are described in the references. 
 

References. AS 462 (1973) and AS 195. (See the Algorithm Index and References.) 
 

Cauchy  
 
The Cauchy distribution takes real values and has a location parameter, θ, and a scale parameter, 
ς; ς must be positive. The Cauchy distribution is symmetric about the location parameter, but 
has such slowly decaying tails that the distribution does not have a computable mean. 

 
Functions. The CDF, IDF, PDF, and RV functions are 

available. The Cauchy distribution has PDF, CDF, and IDF 

 

 
 

  
 

 

 
Relationship to other distributions. 
 A “standardized” Cauchy variate, (x−θ)/ς, has a t distribution with 1 degree of freedom. 

 

Random Number Generation 
 

Inverse CDF algorithm 

1. Generate U from Uniform(0,1). 

2. Set 
 

Chi-Square 

The chi-square(ν) distribution takes values in the range x>=0 and has one degrees of freedom 
parameter, ν; it must be positive and has the property that the mean of the distribution is ν. 

Functions. The CDF, IDF, PDF, RV, NCDF, NPDF, and SIG functions are available. 

The chi-square distribution has PDF, CDF, and IDF 
 

IG 



 

Distribution and Special Functions 

 
 

 
 

 

where                                 is the gamma function and IG is the 
incomplete gamma function. 

Relationship to other distributions. 
 The chi-square(ν) distribution is the distribution of the sum of squares of ν independent 

normal(0,1) random variates. 
 The chi-square(ν) distribution is equivalent to the gamma(ν/2, 1/2) distribution. 

 
Random Number Generation 

 
Generate X from the Gamma(a/2, 1/2) distribution. 

 
References.  CDF: CACM 299 (1967); ICDF: AS 91 (1975), AS R85(1991), and CACM 451 
(1973). (See the Algorithm Index and References.) 

 
Exponential 

The exponential distribution takes values in the range x>=0 and has one scale parameter, β, which 
must be greater than 0 and has the property that the mean of the distribution is 1/β. 

 
Common uses.  In life testing, the scale parameter a represents the rate of  decay. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The exponential distribution has PDF, CDF, and IDF 

 

 

Relationship to other distributions. 
 The exponential(β) distribution is equivalent to the gamma(1,β) distribution. 

 
Random Number Generation 

 
Inverse CDF algorithm 

 
Generate U from Uniform(0,1); . 

 

F 
The F distribution takes values in the range x>=0 and has two degrees of freedom parameters, ν1 
and ν2, which are the “numerator” and “denominator” degrees of freedom, respectively.  Both  
ν1 and ν2 must be positive. 



 

Distribution and Special Functions 

 

B 

 

 
 

Common uses. The F distribution is commonly used to test hypotheses under the Gaussian 
assumption. 

 
Functions. The CDF, IDF, IDF, RV, NCDF, NPDF, and SIG functions are available. 

The F distribution has PDF, CDF, and IDF 

 

 
 

  

IB 
 

 

where B is the beta function   and 
 

IB 
 

Relationship to other 
distributions. 

is the incomplete beta function. 

 The F(ν1,ν2) distribution is the distribution of (X/ν1)/(Y/ν2), where X and Y are independent 
chi-square random variates with ν1 and ν2 degrees of freedom, respectively. 

 
Random Number Generation 

 
Using the chi-square distribution 

1. Generate Y and Z independently from chi-square(a) and chi-square(b), respectively. 

2.   Set X=(Y/a) / (Z/b). 

References. CDF: CACM 332 (1968). ICDF: use inverse of incomplete beta function. (See the 
Algorithm Index and References.) 

 

Gamma  
 

The gamma distribution takes values in the range x>=0 and has one shape parameter, α, and one 
scale parameter, β.  Both parameters must be positive and have the property that the mean of  
the distribution is α/β. 

 
Common uses. The gamma distribution is commonly used in queuing theory, inventory control, 
and precipitation processes. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The gamma distribution has PDF, CDF, and IDF 

 

  

IG 

B 



 

Distribution and Special Functions 

 
 

 
 

IG 
 

where                                 is the gamma function and IG is the 
incomplete gamma function. 

Relationship to other distributions. 
 When α=1, the gamma(α,β) distribution reduces to the exponential(β) distribution. 
 When β=1/2, the gamma(α,β) distribution reduces to the chi-square(2α) distribution. 
 When α is an integer, the gamma distribution is also known as the Erlang distribution. 

 
Random Number Generation 

 
Special case 

 
If a = 1 and b > 0, generate X from an exponential distribution with parameter b. 

 
Algorithm GS due to Ahrens and Dieter (1974) for 0<a<1 and b=1 

1. Generate U from Uniform(0,1). Set c=(e+a)/e, where e=exp(1). 

2. Set P=cU. If P>1, go to step 4. 

3. (P≤1) Set . Generate V from Uniform(0,1). If V>exp(−x), go to step 1; otherwise finish. 

4. (P>1) Set X=−ln((c−P)/a). If X<0, go to step 1; otherwise go to step 5. 

5. Generate V from Uniform(0,1). If , go to step 1; otherwise finish. 

Algorithm due to Fishman (1976) for a>1 and b=1 

1. Generate Y from Exponential (1). 

2. Generate U from Uniform(0,1). 

3. If lnU≤(a−1)(1−Y+lnY), X=aY; otherwise go to Step 1. 
 

References. CDF: AS 32 (1970) and AS 239 (1988); ICDF: Use the relationship between gamma 
and chi-square distributions. RV: (Ahrens et al., 1974), (Fishman, 1976), and (Tadikamalla, 1978). 
(See the Algorithm Index and References.) 

 
Half-normal 

The half-normal distribution takes values in the range x>=μ and has one location parameter, μ, 
and one scale parameter, σ.  Parameter σ must be positive. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The half-normal distribution has PDF, CDF, and IDF 



 

Distribution and Special Functions 

 
 

 
 
 

 

 

Relationship to other distributions. 
 If X has a normal(μ,σ) distribution, then |X−μ| has a half-normal(μ,σ) distribution. 

 
Random Number Generation 

1. Generate X from a normal(a,b) distribution. 

2. Then |X−a| has a half normal distribution. 
 
Inverse Gaussian 

The inverse Gaussian, or Wald, distribution takes values in the range x>0 and has two parameters, 
μ and λ, both of which must be positive. The distribution has mean μ. 

 
Common uses. The inverse Gaussian distribution is commonly used to test hypotheses for model 
parameter estimates. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The inverse Gaussian distribution has PDF and CDF 
 

exp 
 

The IDF is computed by approximation. 

Inverse CDF Approximation 

For the upper tail, an inverse Gaussian variable X can be approximated by 
 

 
where 

 

 

 

 
For the lower tail, one can use the approximation 

 



 
 
 

 

Distribution and Special Functions 
 

where 
 

 

 

 
Random Number Generation 

1. Generate a standard normal variate Z. 

2. Let 

3. Let  

4. Let 

5. Then the inverse Gaussian variate will take value x with probability and value with 
probability p. 

 
References.(Mudholkar and Natarajan, 1999) and (Michael, Schucany, and Haas, 1976). (See the 
Algorithm Index and References.) 

 

Laplace   
The Laplace distribution takes real values and has one location parameter, μ, and one scale 
parameter, β. Parameter β must be positive. The distribution is symmetric about μ and has 
exponentially decaying tails. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The Laplace distribution has PDF, CDF, and IDF 
 

 

  
 

 

Random Number Generation 
 

Inverse CDF algorithm 

1. Generate Y and U independently from Exponential(1/ b) and Uniform(0,1), respectively. 

2. If U≥0.5, set X=a+Y; otherwise set X=a−Y. 



 

Distribution and Special Functions 

 
 

 
 

Logistic   
The logistic distribution takes real values and has one location parameter, μ, and one scale 
parameter, ς. Parameter ς must be positive. The distribution is symmetric about μ and has longer 
tails than the normal distribution. 

 
Common uses.  The logistic distribution is used to model growth curves. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The logistic distribution has PDF, CDF, and IDF 

 

   
 

 

Random Number Generation 
 

Inverse CDF algorithm 

1. Generate U from Uniform(0,1). 

2. Set . 
 
Lognormal 

The lognormal distribution takes values in the range x>=0 and has two parameters, η and σ, both 
of which must be positive. 

 
Common uses. Lognormal is used in the distribution of particle sizes in aggregates, flood flows, 
concentrations of air contaminants, and failure time. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The lognormal distribution has PDF, CDF, and IDF 

 

  
 

 

 

Relationship to other distributions. 
 If X has a lognormal(η,σ) distribution, then ln(X) has a normal(ln(η),σ) distribution. 

 
Random Number Generation 

 
Inverse CDF algorithm 



 
 

B 

 
 

Distribution and Special Functions 
 

1. Generate Z from N(0,1). 
 

2. Set . 

 
Noncentral Beta 

The noncentral beta distribution is a generalization of the beta distribution that takes values in the 
range 0<x<1 and has an extra noncentrality parameter, λ, which must be greater than or equal to 0. 

 
Functions. 

 
The noncentral beta distribution has PDF, CDF, and IDF 

 

 
IB 

 
 

where B is the beta function   and 
 

IB 
 

Relationship to other 
distributions. 

is the incomplete beta function. 

 When λ equals 0, this distribution reduces to the beta distribution. 
 The noncentral beta(α,β,λ) distribution is the distribution of X/(X+Y) where X is a variable 

that has a noncentral chi-square(2α,λ) distribution, and Y is a variable that has a central 
chi-square(2β) distribution. 

 
References. CDF: (Abramowitz and Stegun, 1970) Chapter 26, AS 226 (1987), and AS R84 
(1990). (See the Algorithm Index and References.) 

 

Noncentral Chi-Square 

The noncentral chi-square distribution is a generalization of the chi-square distribution that takes 
values in the range x>=0 and has an extra noncentrality parameter, λ, which must be greater  
than or equal to 0. 

 
Functions. 

 
The noncentral chi-square distribution has PDF and CDF 

 

B 



 

Distribution and Special Functions 

 

B 

 

 
 
 

IG 
 
 

where                                 is the gamma function and IG is the 
incomplete gamma function. 

 
Relationship to other distributions. 
 When λ equals 0, this distribution reduces to the chi-square distribution. 
 The noncentral chi-square(ν,λ) distribution is the distribution of the sum of squares of ν 

independent normal(   ,1) random variates. Then . 
 

References. CDF: (Abramowitz et al., 1970) Chapter 26, AS 170 (1981), AS 231 (1987). Density: 
AS 275 (1992). (See the Algorithm Index and References.) 

 
 

Noncentral F 
 

The noncentral F distribution is a generalization of the F distribution that takes values in the range 
x>=0 and has an extra noncentrality parameter, λ, which must be greater than or equal to 0. 

 
Functions. 

 
The noncentral F distribution has PDF and CDF 

 

 

IB 
 
 

where B is the beta function   and 
 

IB is the incomplete beta function. 
 

Relationship to other distributions. 
 When λ equals 0, this distribution reduces to the F distribution. 
 The noncentral F distribution is the distribution of (X/ν1)/(Y/ν2), where X and Y are 

independent variates with noncentral chi-square(ν1, λ) and central chi-square(ν2) distributions, 
respectively. 

 
References. CDF: (Abramowitz et al., 1970) Chapter 26. (See the Algorithm Index and 
References.) 
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Distribution and Special Functions 
 
Noncentral Student’s t 

The noncentral t distribution is a generalization of the t distribution that takes real values and has 
an extra noncentrality parameter, λ, which must be greater than or equal to 0. When λ equals 0, 
this distribution reduces to the t distribution. 

 
Functions. 

 
The noncentral t distribution has PDF and CDF 

 

 
 

where B is the beta function   and 
 

IB 
 

Relationship to other 
distributions. 

is the incomplete beta function. 

 The noncentral t(ν,λ) distribution is the distribution of X/Y, where X is a normal(λ,1) variate 
and Y is a central chi-square(ν) variate divided by ν. 

 
Special case 

 

References. CDF: (Abramowitz et al., 1970) Chapter 26, AS 5 (1968), AS 76 (1974), and AS 243 
(1989). (See the Algorithm Index and References.) 

 

Normal  
 

The normal, or Gaussian, distribution takes real values and has one location parameter, μ, and 
one scale parameter, σ. Parameter σ must be positive. The distribution has mean μ and standard 
deviation σ. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The normal distribution has PDF, CDF, and IDF 

 

  
 

 



 

Distribution and Special Functions 

 

min 
min 

min 

 

 
 

Relationship to other distributions. 
 If X has a normal(μ,σ) distribution, then exp(X) has a normal(exp(μ),σ) distribution. 

For Φ and Φ−1, see “Standard Normal”  

Random Number Generation 
 

Kinderman and Ramage (1976) method 

1.   Generate as X=a+bz, where z is an N(0,1) random number. 
 

References.  CDF: AS 66 (1973); ICDF: AS 111 (1977) and AS 241 (1988); RV: CACM  488 
(1974) and (Kinderman and Ramage, 1976). (See the Algorithm Index and References.) 

 

Pareto  
 

The Pareto distribution takes values in the range xmin<x and has a threshold parameter, xmin, 
and a shape parameter, α.  Both parameters must be positive. 

 
Common uses. Pareto is commonly used in economics as a model for a density function with a 
slowly decaying tail. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The Pareto distribution has PDF, CDF, and IDF 

min 

min 
 

min min 

Random Number Generation 
 

Inverse CDF 

1. Generate U from Uniform(0,1). 

2. Set . 
 
Studentized Maximum Modulus 

The Studentized maximum modulus distribution takes values in the range x>0 and has a number 
of comparisons parameter, k*, and degrees of freedom parameter, ν, both of which must be 
greater than or equal to 1. 

 
Common uses. The Studentized maximum modulus is commonly used in post hoc multiple 
comparisons for GLM and ANOVA. 



 
 
 

 

Distribution and Special Functions 
 

Functions. The CDF and IDF functions are available, and are computed by approximation. 
 

The Studentized maximum modulus distribution has CDF 

dg    

where and are the PDF and CDF of the standard normal distribution and 

dg  exp d 

The IDF does not have a closed form. The CDF can be computed by using numerical integration. 
The inverse CDF can be found by solving F(x) = p numerically for given p. 

 
Studentized Range 

The Studentized range distribution takes values in the range x>0 and has a number of samples 
parameter, k, and degrees of freedom parameter, ν, both of which must be greater than or equal to 1. 

 
Common uses. The Studentized range is commonly used in post hoc multiple comparisons 
for GLM and ANOVA. 

 
Functions. The CDF and IDF functions are available, and are computed by approximation. 

The Studentized range distribution has CDF 

d dg 
 

 

where and are the PDF and CDF of the standard normal distribution and 

dg  exp d 

The IDF does not have a closed form. Both the CDF and IDF have to be computed numerically 
(see the following references). 

 
References. AS 190, plus correction and remark. (See the Algorithm Index and References.) 

 
Student’s t 

The Student t distribution takes real values and has one degrees of freedom parameter, ν, which 
must be positive. The Student t distribution is symmetric about 0. 

 
Common uses. The major uses of the Student t distribution are to test hypotheses and construct 
confidence intervals for means of data. 

 
Functions.  The CDF, IDF, PDF, RV, NCDF, and NPDF functions are available. 



 

Distribution and Special Functions 

 

B 

 
 

Distribution and Special Functions 
 

The t distribution has PDF, CDF, and IDF 
 

 
x 0 

 
 

   
 
 

   

 

where B  is the beta function and 
 

IB 
 

Relationship to other distributions. 

is the incomplete beta function. 

 The t(ν) distribution is the distribution of X/Y, where X is a normal(0,1) variate and Y is a 
chi-square(ν) variate divided by ν. 

 The square of a t(ν) variate has an F(1,ν) distribution. 
 The t(ν) distribution approaches the normal(0,1) distribution as ν approaches infinity. 

 
Random Number Generation 

 
Special case 

 
If a=1, generate X from a Cauchy (0, 1) distribution. 

 
Using the normal and the chi-square distributions 

1. Generate Z from N(0,1) and V from Chi-square(a) independently. 

2. Set . 

References.  CDF: AS 3 (1968), AS 27 (1970), and CACM 395 (1970); ICDF: CACM 396 
(1970). 
(See the Algorithm Index and References.) 

 

Uniform 

The uniform distribution takes values in the range a<x<b and has a minimum value parameter, a, 
and a maximum value parameter, b. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The uniform distribution has PDF, CDF, and IDF 

B ν/2,1/2 

IB + 
1- 1 IB 2 + 

IB 

IB 



 
 

 
 
 

 

 

Random Number Generation 
 

Inverse CDF algorithm 
 

1. Generate U from Uniform(0,1). 
 

2. Set . 
 

References.  Uniform of (0,1) is generated by the method in (Schrage, 1979). 
 

Weibull 

The Weibull distribution takes values in the range x>=0 and has one scale parameter, β, and one 
shape parameter, α, both of which must be positive. 

 
Common uses.  The Weibull distribution is commonly used in survival analysis. 

 
Functions. The CDF, IDF, PDF, and RV functions are available. 

The Weibull distribution has PDF, CDF, and IDF 

 

 
 

 

 

 

Relationship to other distributions. 
 A Weibull(β,1) distribution is equivalent to an exponential(β) distribution. 

 
Random Number Generation 

 
Inverse CDF algorithm 

 
1. Generate U from Uniform(0,1). 

 
2. Set 

 
Discrete Distributions 

These are functions of a single variable that takes integer values. 



 
 

 
B 

 

Bernoulli 

Distribution and Special Functions 

 

The Bernoulli distribution takes values 0 or 1 and has one success probability parameter, θ, which 
must be between 0 and 1, inclusive. 

 
Functions. The CDF, PDF, and RV functions are available. 

The Bernoulli distribution has PDF and CDF 

 

   
 

Relationship to other distributions. 
 The Bernoulli distribution is a special case of the binomial distribution and is used in simple 

success-failure experiments. 
 

Random Number Generation 
 

Special case 
 

If a=0, X=0.  If a=1, X=1. 
 

Direct  algorithm  for 0<a<1 

1. Generate U from Uniform(0,1). 

2. Set X=1 if U≤a (a success) and X=0 if U>a (a failure). 
 

Binomial  
 
The binomial distribution takes integer values 0<=x<=n, representing the number of successes 
in n trials, and has one number of trials parameter, n, and one success probability parameter, θ. 
Parameter n must be a positive integer and parameter θ must be between 0 and 1, inclusive. 
 
Common uses. The binomial distribution is used in independently replicated success-failure 
experiments. 
 
Functions. The CDF, PDF, and RV functions are available. 

The binomial distribution has PDF and CDF 
 

 
  

 

IB 
 

    

 
where IB is the incomplete beta function. 



 

Distribution and Special Functions 

 
 

 
 

Random Number Generation 
 

Special case 
 

If b = 0, X = 0.  If b = 1, X =  a. 
 

Algorithm BB due to Ahrens and Dieter (1974) for 0 < b < 1  

1. Set  and . 

2. If c<40, generate J from Binomial(c, d) using algorithm BU. X=k+J. 

3. If c is odd, go to step 4. If c is even, set c=c−1 and generate U from Uniform(0,1). If U≤d, 
set k=k+1. 

4. Set s=(c+1)/2 and generate S from Beta(s, s). Set G=hs and Z=y+G. 

5. If Z≤b, set and ; otherwise set and . 

6. Set and go to step 2. 
 

Computation time for algorithm BB is O(log a). 
 

References.  RV: (Ahrens et al., 1974). 
 
Geometric 

The geometric distribution takes integer values x>=1, representing the number of trials needed 
(including the last trial) before a success is observed, and has one success probability parameter, 
θ, which must be between 0 and 1, inclusive. 

 
Functions. The CDF, PDF, and RV functions are available. 

The geometric distribution has PDF and CDF 

 

   
 

Relationship to other distributions. 
 The geometric(θ) distribution is equivalent to the negative binomial (1,θ) distribution. 

 
Random Number Generation 

 
Special case 

 
If a=1, X=1. 

 
Direct algorithm for 0 < a < 1  

1. Set X=1. 

2. Generate U from Uniform(0,1). 



 

Distribution and Special Functions 

 
 

 
 

3. If U>a, set X=X+1 and go to step 2; otherwise finish. 
 
Hypergeometric 

The hypergeometric distribution takes integer values in the range max(0, 
Np+n−N)<=x<=min(Np,n), and has three parameters, N, n, and Np, where N is the total number 
of objects in an urn model, n is the number of objects randomly drawn without replacement from 
the urn, Np is the number of objects with a given characteristic, and x is the number of objects 
with the given characteristic observed out of the withdrawn objects. All three parameters are 
positive integers, and both n and Np must be less than or equal to N. 

 
Functions. The CDF, PDF, and RV functions are available. 

The hypergeometric distribution has PDF and CDF 

 

 

 
 

Prob = 
 

Random Number Generation 
 

Special case 
 

If b=a, X=c.  If c=a, X=b. 
 

Direct algorithm 

1. (Initialization) X=0, g=c, h=b, t=a. 

2. Do the following loop exactly b times: 

Begin Loop 

i. Generate U from Uniform(0,1). 

ii. If , set else . 

iii. If g=0, go to step 3. 

iv. If h=0, set , where i (from 1 to b) is the loop index. Go to step 3. 

v. Set t=t−1. 

End Loop 

3. Finish. 

References. CDF: AS 152 (1989), AS R77 (1989), and AS R86 (1991). (See the “Algorithm 
Index” and “References”) 



 
 
 

 

Distribution and Special Functions 
 
Negative Binomial 

The negative binomial distribution takes integer values in the range x>=r, where x is the number 
of trials needed (including the last trial) before r successes are observed, and has one threshold 
parameter, r, and one success probability parameter, θ. Parameter r must be a positive integer and 
parameter θ must be greater than 0 and less than or equal to 1. 

 
Functions. The CDF, PDF, and RV functions are available. 

The negative binomial distribution has PDF and CDF 

 

 
   

 

IB  
 

where IB 

 
 

is the incomplete beta function. 
 

Relationship to other distributions. 
 The negative binomial(1,θ) distribution is equivalent to the geometric(θ) distribution. 

 
Random Number Generation 

 
Special case 

 
If b=1, X=a. 

 
Direct algorithm 

1. Generate G from Gamma(a, b/(1−b)). 

2. If G=0, go to step 1. Otherwise generate P from Poisson (G). 

3. Compute X=P+a. 
 

Poisson  
 
The Poisson distribution takes integer values in the range x>=0 and has one rate or mean 
parameter, λ.  Parameter λ must be positive. 

 
Common uses. The Poisson distribution is used in modeling the distribution of counts, such as 
traffic counts and insect counts. 

 
Functions. The CDF, PDF, and RV functions are 

available. The Poisson distribution has PDF and CDF 
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Distribution and Special Functions 

  
 

 
 
 

where IG is the incomplete gamma function. 
 

Random Number Generation 
 

Algorithm PG due to Ahrens and Dieter (1974) 

1. (Initialization) Set X=0 and w=a. 

2. If w>16, go to step 6. 

3. Set c=exp(−w) and p=1. 

4. Generate U from Uniform(0,1).  Set p=pU. 

5. If p<c, continue with step 6; otherwise set X=X+1 and go to step 4. 

6. Set .  Generate G from Gamma(n, 1). 

7. If G>w, generate Y from Binomial(n−1, w/G), set X=X+Y. 

8. If G≤w, set and go to step 2. 
 

Notes.  [y] means the integer part of y. 
 

Steps 3 to 5 of Algorithm PG are in fact the direct algorithm. 
 

References.  RV: (Ahrens et al., 1974). 
 
Special Functions 

These are not distribution functions, but are used in the functional definition of one or more 
distributions. 

 
Gamma Function 

 

The gamma function has the following properties: 
  

         
                                   
                       when a is a positive integer 

 
Note.  Since Γ(a) can be very large even for a moderate value of a, the (natural) logarithm of 
Γ(a) is computed instead. 

 
References. The ln(Γ(a)) function: CACM 291 (1966) and AS 245 (1989). (See the “Algorithm 
Index” and “References”) 
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Distribution and Special Functions 
 
Beta Function 

B 
 

The beta function has the following properties: 
 B  

 B  1 

 B   , 
 B   , B 
 B   , B  
 B B 

 
Note. Usually, B(x, y) is calculated as: 

B 

Incomplete Gamma Function (Ratio) 
 

IG 

IG 

for a>0 
 

The incomplete gamma function has the following properties: 
 IG 
 Using integration by parts, for a>1

 

Note. IG-1 . 

References.  AS 32 (1970), AS 147 (1980), and AS 239 (1988). (See the “Algorithm Index”  
and “References”) 

 
Incomplete Beta Function (Ratio) 

IB 

IB 
for 

The incomplete beta function has the following properties: 
 IB 
 Using the transformation , we get IB 

IG 

B 
IB 

and 



 
 
 

 

Distribution and Special Functions 
 

 IB  
 Using integration by parts, we get, for b>1, 

IB IB  

 Using the fact that we have 

 

References.  AS 63 (1973); Inverse: AS 64 (1973), AS 109 (1977). (See the “Algorithm Index”  
and “References”) 

 

Standard Normal 
 

For  , the Abramowitz and Stegun method is used. 

References. AS 66 (1973); Inverse: AS 111 (1977) and AS 241 (1988). See (Patel and Read, 
1982) for related distributions, and see the “Algorithm Index” and “References”. 
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AS 231: (Farebrother, 1987) 
 

AS 239:  (Shea, 1988) 
 

AS 241:  (Wichura, 1988) 
 

AS 243:  (Lenth, 1989) 
 

AS 245:  (Macleod, 1989) 
 

AS 275:  (Ding, 1992) 
 

AS 462: (Donnelly, 1973) 

AS R85:  Shea (1991) 

CACM 291:  (Pike and Hill, 1966) 
 

CACM 299:  (Hill and Pike, 1967) 
 

CACM 332: (Dorrer, 1968) 

CACM 395: (Hill, 1970)a 

CACM 396:  (Hill, 1970)b 



 
 
 

 

Distribution and Special Functions 
 

CACM 451:  (Goldstein, 1973) 
 

CACM 488:  (Brent, 1974) 
 
References 

Abramowitz, M., and I. A. Stegun, eds. 1970. Handbook of mathematical functions. New York: 
Dover Publications. 

 
Ahrens, J. H., and U. Dieter. 1974. Computer methods for sampling from gamma, beta, Poisson 
and binomial distributions.  Computing, 12, 223–246. 

 
Atkinson, A. C., and J. Whittaker. 1979. Algorithm AS 134: The generation of beta random 
variables with one parameter greater than and one parameter less than 1. Applied Statistics, 
28, 90–93. 

 
Beasley, J. D., and S. G. Springer. 1977. Algorithm AS 111: The percentage points of the normal 
distribution.  Applied Statistics, 26, 118–121. 

 
Berger, R. L. 1991. AS R86: A remark on algorithm AS 152. Applied Statistics, 40, 374–375. 

 
Best, D. J., and D. E. Roberts. 1975. Algorithm AS 91: The percentage points of the c2 
distribution.  Applied Statistics, 24, 385–388. 

 
Bhattacharjee, G. P. 1970. Algorithm AS 32: The incomplete gamma integral. Applied Statistics, 
19, 285–287. 

 
Box, G. E. P., and M. E. Muller.  1958.  A note on the generation of random normal deviates. 
Annals of Mathematical Statistics, 29, 610–611. 

Bratley, P., and L. E. Schrage. 1987. A Guide to Simulation. New York: Springer-Verlag. 

Brent, R. P.  1974.  Algorithm 488:  A Gaussian pseudo–random number  generator. 
Communications of the ACM, 17, 704–706. 

 
Cheng, R. C. H. 1978.  Generating beta variates with nonintegral shape   parameters. 
Communications of the ACM, 21, 317–322. 

 
Cooper, B. E. 1968. Algorithm AS 3: The integral of Student’s t distribution. Applied Statistics, 
17, 189–190. 

 
Cooper, B. E. 1968. Algorithm AS 5: The integral of the noncentral t distribution. Applied 
Statistics, 17, 193–194. 

 
Cran, G. W., K. J. Martin, and G. E. Thomas. 1977. Algorithm AS 109: A remark on algorithms: 
AS 63 and AS 64 (replacing AS 64). Applied Statistics, 26, 111–114. 

 
Ding, C. G. 1992. Algorithm AS 275: Computing the noncentral chi-squared distribution 
function.  Applied Statistics, 41, 478–482. 



 
 
 

 

Distribution and Special Functions 
 

Donnelly, T. G. 1973. Algorithm 462: Bivariate Normal Distribution. Communications of 
ACM, 16, 638. 

 
Dorrer, E. 1968. Algorithm 332: F-distribution. Communications of the ACM, 11, 115–116. 

 
Farebrother, R. W. 1987. Algorithm AS 231: The distribution of a noncentral c2 variable with 
nonnegative degrees of freedom (Correction: 38: 204). Applied Statistics, 36, 402–405. 

 
Fishman, G. S. 1976. Sampling from the gamma distribution on a computer. Communications 
of the ACM, 19, 407–409. 

 
Frick, H. 1990. Algorithm AS R84: A remark on algorithm AS 226. Applied Statistics, 39, 311–
312. 

 
Goldstein, R. B. 1973. Algorithm 451: Chi-square quantiles. Communications of the ACM, 16, 
483–485. 

 
Hill, G. W. 1970. Algorithm 395: Student’s t-distribution. Communications of the ACM, 13, 617–
619. 

 
Hill, G. W. 1970. Algorithm 396: Student’s t-quantiles. Communications of the ACM, 13, 619–
620. 

 
Hill, I. D. 1973. Algorithm AS 66: The normal integral. Applied Statistics, 22, 424–424. 

 
Hill, I. D., and A. C. Pike. 1967. Algorithm 299: Chi-squared integral. Communications of the 
ACM, 10, 243–244. 

 
Jöhnk, M. D. 1964. Erzeugung von Betaverteilten und Gammaverteilten Zufallszahlen. Metrika, 
8, 5–15. 

 
Johnson, N. L., S. Kotz, and A. W. Kemp. 1992. Univariate Discrete Distributions, 2 ed. New 
York:  John Wiley. 

 
Johnson, N. L., S. Kotz, and N. Balakrishnan. 1994. Continuous Univariate Distributions, 2 
ed.  New York:  John Wiley. 

 
Kennedy, W. J., and J. E. Gentle. 1980. Statistical computing. New York: Marcel Dekker. 

 
Kinderman, A. J., and J. G. Ramage. 1976. Computer generation of normal random variables 
(Correction: 85: 212). Journal of the American Statistical Association, 71, 893–896. 

 
Lau, C. L. 1980. Algorithm AS 147: A simple series for the incomplete gamma integral. Applied 
Statistics, 29, 113–114. 

 
Lenth, R. V. 1987. Algorithm AS 226: Computing noncentral beta probabilities (Correction: 39: 
311–312).  Applied Statistics, 36, 241–244. 

 
Lenth, R. V. 1989. Algorithm AS 243: Cumulative distribution function of the noncentral t 
distribution.  Applied Statistics, 38, 185–189. 



 
 
 

 

Distribution and Special Functions 
 

Lund, R. E. 1980. Algorithm AS 152: Cumulative hypergeometric probabilities. Applied 
Statistics, 29, 221–223. 

 
Lund, R. E., and J. R. Lund. 1983. Algorithm AS 190: Probabilities and upper quantiles for the 
studentized range.  , 32, 204–210. 

 
Lund, R. E., and J. R. Lund. 1985. Correction to Algorithm AS 190. , 34,  104–. 

 
Macleod, A. J. 1989. Algorithm AS 245: A robust and reliable algorithm for the logarithm of the 
gamma function.  Applied Statistics, 38, 397–402. 

 
Majumder, K. L., and G. P. Bhattacharjee. 1973. Algorithm AS 63: The incomplete beta integral.. 
Applied Statistics, 22, 409–411. 

 
Majumder, K. L., and G. P. Bhattacharjee. 1973. Algorithm AS 64: Inverse of the incomplete beta 
function ratio.  Applied Statistics, 22, 412–414. 

 
Marsaglia, G. 1962. Random variables and computers. In: Information theory statistical decision 
functions random processes: Transactions of the third Prague conference, J. Kozesnik, ed. 
Prague, Czechoslovak: Czechoslovak Academy of Science, 499–510. 

 
Michael, J., W. Schucany, and R. Haas. 1976. Generating random variates using transformation 
with multiple roots.  American Statistician, 30, 88–90. 

 
Mudholkar, G. S., Y. P. Chaubrey, and C. Lin. 1976. Approximations for the doubly noncentral 
F-distribution. Communications in Statistics, Part A, 5, 49–53. 

 
Mudholkar, G. S., Y. P. Chaubrey, and C. Lin. 1976. Some Approximations for the noncentral 
F-distribution. Technometrics, 18, 351–358. 

 
Mudholkar, G., and R. Natarajan. 1999. Approximations for the inverse Gaussian probabilities 
and percentiles. Communications in Statistics - Simulation and Computation, 28:4, 1051–1071. 

 
Narula, S. C., and M. M. Desu. 1981. Computation of probability and noncentrality parameter of 
a noncentral chi-square distribution. Applied Statistics, 30, 349–352. 

 
Patel, J. K., and C. B. Read. 1982. Handbook of the normal distribution. New York: Marcel 
Dekker. 

 
Pike, M. C., and I. D. Hill. 1966. Algorithm 291: Logarithm of gamma function. Communications 
of the ACM, 9, 684–684. 

Royston, J. P. 1987. AS R69: A remark on Algorithm AS 190. Applied Statistics, 36, 119. 

Schervish, M. J. 1984. Algorithm AS 195: Multivariate normal probabilities with error  bound. 
Applied Statistics, 33, 81–94. 

 
Schrage, L. 1979. A more portable Fortran random number generator. ACM Transactions on 
Mathematical Software, 5:2, 132–132. 



 
 

 

Distribution and Special Functions 
 

Shea, B. L. 1988. Algorithm AS 239: Chi-squared and incomplete gamma integral. Applied 
Statistics, 37, 466–473. 

 
Shea, B. L. 1989. AS R77: A remark on algorithm AS 152. Applied Statistics, 38, 199–204. 

 
Tadikamalla, P. R. 1978. Computer generation of gamma random variables. Communications 
of the ACM, 21, 419–422. 

 
Taylor, G. A. R. 1970. Algorithm AS 27: The integral of Student’s t-distribution. Applied 
Statistics, 19, 113–114. 

 
Von Neumann, J. 1951. Various techniques used in connection with random digits. National 
Bureau of Standards Applied Mathematics, 12, 36–38. 

 
Wichura, M. J. 1988.  Algorithm AS 241:  The percentage points of the normal distribution. 
Applied Statistics, 37, 477–484. 

 
Young, J. C., and C. E. Minder. 1974. Algorithm AS 76: An integral useful in calculating 
noncentral t and bivariate normal probabilities. Applied Statistics, 23, 455–457. 



Appendix 
 

J 
Box’s M Test 

 
 

Box’s M statistic is used to test for homogeneity of covariance matrices. The jth set of r 
dependent variables in the ith cell are where for i=1,...,g 
and .  The null hypothesis of the test for homogeneity of covariance matrices is 

. Box (1949) derived a test statistic based on the likelihood-ratio test. The 
test statistic is called Box’s M statistic. For moderate to small sample sizes, an F approximation 
is used to compute its significance. 

Box’s M statistic is not designed to be used in a linear model context; therefore the observed 
cell means are used in computing the statistic. 

 
Note: Although Anderson (Anderson, 1958) mentioned that the population cell means can be 
expressed as linear combinations of parameters, he assumed that the combination coefficients are 
different for different cells, which is not the model assumed for GLM. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table J-1 
Notation 
Notation Description 
g Number of cells with non-singular covariance matrices. 

Number of cases in the ith cell. 
n Total sample size, 

The jth set of dependent variables in the ith cell. A column vector of length r. 

Regression weight associated with .  It is assumed . 

 
 

Means 
 

 

Cell Covariance Matrix 
     if 

if 
 
Pooled Covariance Matrix 

if 
if 

  



 
 

 

Box’s M Test 
 

Box’s M Statistic 

if 
 

SYSMIS if 
 
Significance 

 

 

where CDF.F is the IBM® SPSS® Statistics function for the cumulative F distribution and 
 
 
 
 
 
 
 
 
 
 

The significance is a system-missing value whenever the denominator is zero in the above 
expression. 

 
References 

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley & 
Sons, Inc.. 

 
Box, G. E. P. 1949. A general distribution theory for a class of likelihood criteria. Biometrika, 36, 
317–346. 

 
Seber, G. A. F. 1984. Multivariate observations. New York: John Wiley & Sons,  Inc. 



Appendix 
 

K 
Confidence Intervals for 
Percentages and Counts 
Algorithms 

This document describes the algorithms for computing confidence intervals for percentages 
and counts for bar charts. The data are assumed to be from a simple random sample, and each 
confidence interval is a separate or individual interval, based on a binomial proportion of the total 
count.  The computed binomial intervals are equal-tailed Jeffreys prior intervals (see Brown, 
Cai, & DasGupta, 2001, 2002, 2003). Note that they are generally not symmetric around the 
observed proportion. Therefore, the plotted interval bounds are generally not symmetric around 
the observed percentage or count. 

 
Notation 

The following notation is used throughout this section unless otherwise noted: 
Table K-1 
Notation 
Notation Description 
Xi Distinct values of the category axis variable Xi 

Rounded sum of weights for cases with value 

Total sum of weights over values of X 
 

Pi Population proportion of cases at Xi 
• Specified error level for 100(1- • )% confidence intervals 

 
IDF.BETA(p,shape1,shape2) in COMPUTE gives the pth quantile of the beta distribution or 
incomplete beta function with shape parameters shape1 and shape2. For a precise mathematical 
definition, see “Beta Function”. 

 
Confidence Intervals for Counts 

Lower bound for W pi = W [IDF.BETA(•/2,wi +.5,W−wi +.5)]. 

Upper bound for W pi = W [IDF.BETA(1-•/2,wi +.5,W−wi +.5)]. 

Standard error for W pi = 

Confidence Intervals for Percentages 
Lower bound for 100 pi = 100 [IDF.BETA(•/2,wi +.5,W−wi +.5)]. 

Upper bound for 100 pi = 100 [IDF.BETA(1-•/2,wi +.5,W−wi +.5)]. 

  



 
 

 

Confidence Intervals for Percentages and Counts Algorithms 
 

Standard error for pi = 
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IBM may not offer the products, services, or features discussed in this document in other countries. 
Consult your local IBM representative for information on the products and services currently 
available in your area. Any reference to an IBM product, program, or service is not intended to 
state or imply that only that IBM product, program, or service may be used. Any functionally 
equivalent product, program, or service that does not infringe any IBM intellectual property right 
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation 
of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this 
document.  The furnishing of this document does not grant you any license to these patents. 
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For license inquiries regarding double-byte character set (DBCS) information, contact the IBM 
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Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan. 

The following paragraph does not apply to the United Kingdom or any other country 
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IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 
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PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties 
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of the publication. IBM may make improvements and/or changes in the product(s) and/or the 
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The licensed program described in this document and all licensed material available for it are 
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